首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 220 毫秒
1.
2.
Summary Aim: To compare the expression of p57 as indirect marker of genomic imprinting of CDKN1C in a series of infantile hemangiomas (IH) of patients with and without Beckwith–Wiedemann syndrome. Materials and methods: Cases of mammary, salivary gland, liver (one each), and placental (2 cases) capillary hemangiomas all with histological features akin to IH as well as typical examples of cutaneous (8 cases) IH were analyzed by immunohistochemistry with antibody against p57KIP2. This protein is the product of CDKN1C an imprinted, maternally expressed gene. The liver hemangioma and both chorioangiomas were from patients with Beckwith–Wiedemann syndrome. Positive and negative controls included normal placental tissue and complete hydatidiform mole, respectively. Positive staining was localized to nuclei. Results: Endothelial cells from the skin, breast and salivary gland hemangiomas were p57KIP2 positive while chorioangiomas and liver IH presenting in patients with Beckwith–Wiedemann syndrome were negative. Controls reacted appropriately. Conclusions: Endothelial cells of IH not associated with BWS normally express p57KIP2 while chorioangiomas and IH of the liver associated with BWS do not. These results suggest that the BWS IH may result from dysregulation of the cell cycle.  相似文献   

3.
To develop a salt-tolerant upland rice cultivar (Oryza sativa L.), OsNHX1, a vacuolar-type Na+/H+ antiporter gene from rice was transferred into the genome of an upland rice cultivar (IRAT109), using an Agrobacterium-mediated method. Seven independent transgenic calli lines were identified by polymerase chain reaction (PCR) analysis. These 35S::OsNHX1 transgenic plants displayed a little accelerated growth during seedling stage but showed delayed flowering time and a slight growth retardation phenotype during late vegetative stage, suggesting that the OsNHX1 has a novel function in plant development. Northern and western blot analyses showed that the expression levels of OsNHX1 mRNA and protein in the leaves of three independent transgenic plant lines were significantly higher than in the leaves of wild type (WT) plants. T2 generation plants exhibited increased salt tolerance, showing delayed appearance and development of damage or death caused by salt stress, as well as improved recovery upon removal from this condition. Several physiological traits, such as increased Na+ content, and decreased osmotic potential in transgenic plants grown in high saline concentrations, further indicated that the transgenic plants had enhanced salt tolerance. Our results suggest the potential use of these transgenic plants for further agricultural applications in saline soil.  相似文献   

4.
S phase kinase-associated protein 2 (Skp2), an F-box protein, is required for the ubiquitination and consequent degradation of p27kip1. Previous reports have showed that p27kip1 played important roles in cell cycle regulation and neurogenesis in the developing central nervous system. But the distribution and function of p27kip1 and Skp2 in nervous system lesion and regeneration remains unclear. In this study, we observed that they were expressed mainly in both Schwann cells and axons in adult rat sciatic nerve. Sciatic nerve crush and transection resulted in a significant up-regulation of Skp2 and a down-regulation of p27kip1. By immunochemistry, we found that in the distal stumps of transected nerve from the end to the edge, the appearance of Skp2 in the edge is coincided with the decrease in p27kip1 levels. Changes of them were inversely correlated. Results obtained by coimmunoprecipitation and double labeling further showed their interaction in the regenerating process. Thus, these results indicate that p27kip1 and Skp2 likely play an important role in peripheral nerve injury and regeneration. Ai-Guo Shen and Shu-Xian Shi contributed equally to this work.  相似文献   

5.
The protein p27BBP (alias eIF6) occurs in yeast and mammalian epithelial cells. It is essential for ribosome genesis and has also been implicated in the functionality of integrins and intermediate filaments. By immunoblot, we show that homogenized integument from Sepia officinalis (Cephalopoda, Mollusca) contains a protein with immunological properties that closely resemble those of p27BBP. We also demonstrate, by immunogold electron microscopy with an indirect immunoreaction technique on ultrathin sections of human skin and Sepia integument, that p27BBP is constantly present in both species in epithelial cells, fibroblasts, and muscle fibers. It is found in the vicinity of intermediate filaments, in nucleoli, along the internal wall of the nuclear membrane, and in association with desmosomes and hemidesmosomes and occasionally occurs extracellularly. Thus, the structure and function of p27BBP seem to have been highly conserved throughout evolution; the protein appears to be essential in eukaryotic cells in which it interacts with several ultrastructural components of diverse function.Financial support was provided by funds from FIRST.  相似文献   

6.
7.
Although a positive association between cigarette smoking and colorectal adenoma development is consistently found, the association with colorectal cancer remains controversial. We evaluated the potential roles of p27Kip1 and bcl-2 protein expressions in conjunction with cigarette smoking exposure and colorectal cancer risk in a hospital-based case-control study. A total of 163 colorectal cancer patients from Roswell Park Cancer Institute and Buffalo General Hospital and 326 healthy controls responded to a standardized questionnaire on colorectal cancer risk factors including detailed information on their history of cigarette smoking; 110 of the patients' tumours were available for immunohistochemical analysis of p27Kip1 and bcl-2 protein overexpression. An avidin-biotin immunoperoxidase procedure was used to determine expression after incubation with mouse monoclonal p27Kip1 and mouse monoclonal bcl-2 antibodies, respectively. A statistically significant trend for total pack-years of smoking was found when p27Kip1 positive cases were compared with p27Kip1 negative cases (trend test, p = 0.007). Although a weak inverse association was observed with smoking exposure among p27Kip1 negative tumour cases in comparison to controls, a significant dose-response association was seen with p27Kip1 positive tumours. The relative risk of developing a p27Kip1 positive tumour was estimated to be 1.17 (95% CI 0.54-2.54) for those with less than 20 pack-years, 1.95 (95 % CI 0.95-3.97) for those with 20-39 pack-years, and 2.25 (95% CI 1.14-4.45) for those with greater than 39 pack-years of smoking exposure (trend test, p = 0.009) when compared with controls. When cases with bcl-2 expression were compared with cases without bcl-2 expression, suggestion of a trend was also observed with pack-years smoked (trend test, p = 0.09). In our study of 110 patients with sporadic colorectal cancer and 326 controls, we observed differences in associations between cigarette smoking and expressions in p27Kip1 and bcl-2. Our data suggest that bcl-2 overexpression (or a bcl-2 dependent pathway) is associated with cigarette smoking in the development of colorectal cancer, whereas a loss of p27Kip1 expression is not. These associations indicate that there is aetiological heterogeneity in colorectal cancer development, and that they can indirectly allude to where these changes in protein expression occur in the adenoma-carcinoma sequence (i.e. early versus late events).  相似文献   

8.
p27Kip1 is a potent inhibitor of the cyclin-dependent kinases that drive G1 to S phase transition. Since deregulation of p27Kip1 is found in many malignancies and is associated with the poor prognosis, elucidation of the molecular bases for regulation of p27Kip1 expression is of great significance, not only in providing insight into the understanding of biological p27Kip1, but also in the development of new cancer therapeutic tactics. We here explored the inhibitory regulation of IKKβ on p27Kip1 expression following arsenite exposure. We found that although the basal level of p27Kip1 expression in the IKKβ−/− cells is much lower than that in the IKKβ+/+ cells, the deletion of IKKβ in the MEFs led to a marked increase in p27Kip1 protein induction due to arsenite exposure in comparison to that in the IKKβ+/+ cells. The IKKβ regulatory effect on p27Kip1 expression was also verified in the IKKβ−/− and IKKβ−/− cells with IKKβ reconstitutional expression, IKKβ−/− (IKKβ). Further studies indicated that IKKβ-mediated p27Kip1 downregulation occurred at protein degradation level via p65-dependent and p50-independent manner. Moreover, the results obtained from the comparison of arsenite-induced GSK3β activation among transfectants of WT, IKKβ−/− and IKKβ−/− (IKKβ), and the utilization of GSKβ shRNA, demonstrated that IKKβ regulation of p27 protein degradation was mediated by GSK3β following arsenite exposure.  相似文献   

9.
10.
The neurohypophyseal hormone arginine vasopressin (AVP) is a classic mitogen in many cells. In K-Ras-dependent mouse Y1 adrenocortical malignant cells, AVP elicits antagonistic responses such as the activation of the PKC and the ERK1/2 mitogenic pathways to down-regulate cyclin D1 gene expression, which induces senescence-associated β-galactosidase (SA-βGal) and leads to cell cycle arrest. Here, we report that in the metabolic background of Y1 cells, PKC activation either by AVP or by PMA inhibits the PI3K/Akt pathway and stabilises the p27Kip1 protein even in the presence of the mitogen fibroblast growth factor 2 (FGF2). These results suggest that p27Kip1 is a critical signalling node in the mechanisms underlying the survival of the Y1 cells. In Y1 cells that transiently express wild-type p27Kip1, AVP caused a severe reduction in cell survival, as shown by clonogenic assays. However, AVP promoted the survival of Y1 cells transiently expressing mutant p27-S10A or mutant p27-T187A, which cannot be phosphorylated at Ser10 and Thr187, respectively. In addition, PKC activation by PMA mimics the toxic effect caused by AVP in Y1 cells, and inhibition of PKC completely abolishes the effects caused by both PMA and AVP in clonogenic assays. The vulnerability of Y1 cells during PKC activation is a phenotype conditioned upon K-ras oncogene amplification because K-Ras down-regulation with an inducible form of the dominant-negative mutant H-RasN17 has resulted in Y1 cells that are resistant to AVP's deleterious effects. These data show that the survival destabilisation of K-Ras-dependent Y1 malignant cells by AVP requires large quantities of the p27Kip1 protein as well as phosphorylation of the p27Kip1 protein at both Ser10 and Thr187.  相似文献   

11.
Superfusion of heart cells with hyperosmotic solution causes cell shrinkage and inhibition of membrane ionic currents, including delayed-rectifer K+ currents. To determine whether osmotic shrinkage also inhibits inwardly-rectifying K+ current (IK1), guinea-pig ventricular myocytes in the perforated-patch or ruptured-patch configuration were superfused with a Tyrodes solution whose osmolarity (T) relative to isosmotic (1T) solution was increased to 1.3–2.2T by addition of sucrose. Hyperosmotic superfusate caused a rapid shrinkage that was accompanied by a negative shift in the reversal potential of Ba2+-sensitive IK1, an increase in the amplitude of outward IK1, and a steepening of the slope of the inward IK1-voltage (V) relation. The magnitude of these effects increased with external osmolarity. To evaluate the underlying changes in chord conductance (GK1) and rectification, GK1-V data were fitted with Boltzmann functions to determine maximal GK1 (GK1max) and voltage at one-half GK1max (V0.5). Superfusion with hyperosmotic sucrose solutions led to significant increases in GK1max (e.g., 28±2% with 1.8T), and significant negative shifts in V0.5 (e.g., –6.7±0.6 mV with 1.8T). Data from myocytes investigated under hyperosmotic conditions that do not induce shrinkage indicate that GK1max and V0.5 were insensitive to hyperosmotic stress per se but sensitive to elevation of intracellular K+. We conclude that the effects of hyperosmotic sucrose solutions on IK1 are related to shrinkage-induced concentrating of intracellular K+.  相似文献   

12.
13.
Glutamine-free culture of Vero cells has previously been shown to cause higher cell yield and lower ammonia accumulation than that in glutamine-containing culture. Nitrogen metabolism of asparagine and glutamate as glutamine replacer was studied here using nuclear magnetic resonance (NMR) spectroscopy. 15N-labelled glutamate or asparagine was added and their incorporation into nitrogenous metabolites was monitored by heteronuclear multiple bond coherence (HMBC) NMR spectroscopy. In cells incubated with l-[15N]glutamate, the 15N label was subsequently found in a number of metabolites including alanine, aspartate, proline, and an unidentified compound. No detectable signal occurred, indicating that glutamate was utilized by transamination rather than by oxidative deamination. In cells incubated with l-[2-15N]asparagine, the 15N label was subsequently found in aspartate, the amine group of glutamate/glutamine, and in two unidentified compounds. Incubation of cells with l-[4-15N]asparagine showed that the amide nitrogen of asparagine was predominantly transferred to glutamine amide. There was no detectable production of , showing that most of the asparagine amide was transaminated by asparagine synthetase rather than deaminated by asparaginase. Comparing with a glutamine-containing culture, the activities of phosphate-activated glutaminase (PAG), glutamate dehydrogenase (GDH) and alanine aminotransferase (ALT) decreased significantly and the activity of aspartate aminotransferase (AST) decreased slightly.  相似文献   

14.
15.
Summary Calcium binding protein-1 (CaBP1) is a calmodulin like protein shown to modulate Ca2+ channel activities. Here, we explored the functions of long and short spliced CaBP1 variants (L- and S-CaBP1) in modulating stimulus-secretion coupling in primary cultured bovine chromaffin cells. L- and S-CaBP1 were cloned from rat brain and fused with yellow fluorescent protein at the C-terminal. When expressed in chromaffin cells, wild-type L- and S-CaBP1s could be found in the cytosol, plasma membrane and a perinuclear region; in contrast, the myristoylation-deficient mutants were not found in the membrane. More than 20 and 70% of Na+ and Ca2+ currents, respectively, were inhibited by wild-type isoforms but not myristoylation-deficient mutants. The [Ca2+] i response evoked by high K+ buffer and the exocytosis elicited by membrane depolarizations were inhibited only by wild-type isoforms. Neuronal Ca2+ sensor-1 and CaBP5, both are calmodulin-like proteins, did not affect Na+, Ca2+ currents, and exocytosis. When expressed in cultured cortical neurons, the [Ca2+] i responses elicited by high-K+ depolarization were inhibited by CaBP1 isoforms. In HEK293T cells cotransfected with N-type Ca2+ channel and L-CaBP1, the current was reduced and activation curve was shifted positively. These results demonstrate the importance of CaBP1s in modulating the stimulus-secretion coupling in excitable cells. M.-L. Chen and Y.-C. Chen contributed equally to this study  相似文献   

16.
p27Kip1 is a key cell-cycle regulator whose level is primarily regulated by the ubiquitin–proteasome degradation pathway. Its β1 subunit is one of seven β subunits that form the β-ring of the 20S proteasome, which is responsible for degradation of ubiquitinated proteins. We report here that the β1 subunit is up-regulated in oesophageal cancer tissues and some ovarian cancer cell lines. It promotes cell growth and migration, as well as colony formation. β1 binds and degrades p27Kip1directly. Interestingly, the lack of phosphorylation at Ser158 of the β1 subunit promotes degradation of p27Kip1. We therefore propose that the β1 subunit plays a novel role in tumorigenesis by degrading p27Kip1.  相似文献   

17.
Ubiquitin-mediated degradation of the cyclin-dependent kinase inhibitor p27Kip1 was shown to be required for the activation of key cyclin-dependent kinases, thereby triggering the onset of DNA replication and cell cycle progression. Although the SCFSkp2 ubiquitin ligase has been reported to mediate p27Kip1 degradation, the nature of the human ubiquitin-conjugating enzyme involved in this process has not yet been determined at the cellular level. Here, we show that antisense oligonucleotides targeting the human ubiquitin-conjugating enzyme Cdc34 downregulate its expression, inhibit the degradation of p27Kip1, and prevent cellular proliferation. Elevation of p27Kip1 protein level is found to be the sole requirement for the inhibition of cellular proliferation induced upon downregulation of Cdc34. Indeed, reducing the expression of p27Kip1 with a specific antisense oligonucleotide is sufficient to reverse the anti-proliferative phenotype elicited by the Cdc34 antisense. Furthermore, downregulation of Cdc34 is found to specifically increase the abundance of the SCFSkp2) ubiquitin ligase substrate p27Kip1, but has no concomitant effect on the level of IkBalpha and beta-catenin, which are known substrates of a closely related SCF ligase.  相似文献   

18.
BACKGROUND: Eukaryotic initiation factor 4E (eIF4E) is essential for cap-dependent initiation of translation. Cell proliferation is associated with increased activity of eIF4E and elevated expression of eIF4E leads to tumorigenic transformation. Many tumors express very high levels of eIF4E and this may be a critical factor in progression of the disease. In contrast, overexpression of 4EBP, an inhibitor of eIF4E, leads to cell cycle arrest and phenotypic reversion of some transformed cells. RESULTS: A constitutively active form of 4EBP-1 was inducibly expressed in the human breast cancer cell line MCF7. Induction of constitutively active 4EBP-1 led to cell cycle arrest. This was not associated with a general inhibition of protein synthesis but rather with changes in specific cell cycle regulatory proteins. Cyclin D1 was downregulated while levels of the CDK inhibitor p27Kip1 were increased. The levels of cyclin E and CDK2 were unaffected but the activity of CDK2 was significantly reduced due to increased association with p27Kip1. The increase in p27Kip1 did not reflect changes in p27Kip1 mRNA or degradation rates. Rather, it was associated with enhanced synthesis of the protein, even though 4EBP-1 is expected to inhibit translation. This could be explained, at least in part, by the ability of the p27Kip1 5'-UTR to mediate cap-independent translation, which was also enhanced by expression of constitutively active 4EBP-1. CONCLUSIONS: Expression of active 4EBP-1 in MCF7 leads to cell cycle arrest which is associated with downregulation of cyclin D1 and upregulation of p27Kip1. Upregulation of p27Kip1reflects increased synthesis which corresponds to enhanced cap-independent translation through the 5'-UTR of the p27Kip1 mRNA.  相似文献   

19.
The COP9 signalosome subunit 6 (CSN6), which is involved in ubiquitin-mediated protein degradation, is overexpressed in many types of cancer. CSN6 is critical in causing p53 degradation and malignancy, but its target in cell cycle progression is not fully characterized. Constitutive photomorphogenic 1 (COP1) is an E3 ubiquitin ligase associating with COP9 signalosome to regulate important target proteins for cell growth. p27 is a critical G1 CDK inhibitor involved in cell cycle regulation, but its upstream regulators are not fully characterized. Here, we show that the CSN6-COP1 link is regulating p27Kip1 stability, and that COP1 is a negative regulator of p27Kip1. Ectopic expression of CSN6 can decrease the expression of p27Kip1, while CSN6 knockdown leads to p27Kip1 stabilization. Mechanistic studies show that CSN6 interacts with p27Kip1 and facilitates ubiquitin-mediated degradation of p27Kip1. CSN6-mediated p27 degradation depends on the nuclear export of p27Kip1, which is regulated through COP1 nuclear exporting signal. COP1 overexpression leads to the cytoplasmic distribution of p27, thereby accelerating p27 degradation. Importantly, the negative impact of COP1 on p27 stability contributes to elevating expression of genes that are suppressed through p27 mediation. Kaplan-Meier analysis of tumor samples demonstrates that high COP1 expression was associated with poor overall survival. These data suggest that tumors with CSN6/COP1 deregulation may have growth advantage by regulating p27 degradation and subsequent impact on p27 targeted genes.  相似文献   

20.

Background

Cell division is positively regulated by cyclin-dependent kinases (CDKs) partnered with cyclins and negatively regulated by CDK inhibitors. In the frog, Xenopus laevis, three types of CDK inhibitors have been described: p27Xic1 (Xic1) which shares sequence homology with both p21Cip1 and p27Kip1 from mammals, p16Xic2 (Xic2) which shares sequence homology with p21Cip1, and p17Xic3 (Xic3) which shares sequence homology with p27Kip1. While past studies have demonstrated that during DNA polymerase switching, Xic1 is targeted for protein turnover dependent upon DNA, Proliferating Cell Nuclear Antigen (PCNA), and the ubiquitin ligase CRL4Cdt2, little is known about the processes that regulate Xic2 or Xic3.

Methods

We used the Xenopus interphase egg extract as a model system to examine the regulation of Xic2 by proteolysis and phosphorylation.

Results

Our studies indicated that following primer synthesis during the initiation of DNA replication, Xic2 is targeted for DNA- and PCNA-dependent ubiquitin-mediated proteolysis and that Cdt2 can promote Xic2 turnover. Additionally, during interphase, Xic2 is phosphorylated by CDK2 at Ser-98 and Ser-131 in a DNA-independent manner, inhibiting Xic2 turnover. In the presence of double-stranded DNA ends, Xic2 is also phosphorylated at Ser-78 and Ser-81 by a caffeine-sensitive kinase, but this phosphorylation does not alter Xic2 turnover. Conversely, in the presence or absence of DNA, Xic3 was stable in the Xenopus interphase egg extract and did not exhibit a shift indicative of phosphorylation.

Conclusions

During interphase, Xic2 is targeted for DNA- and PCNA-dependent proteolysis that is negatively regulated by CDK2 phosphorylation. During a response to DNA damage, Xic2 may be alternatively regulated by phosphorylation by a caffeine-sensitive kinase. Our studies suggest that the three types of Xenopus CDK inhibitors, Xic1, Xic2, and Xic3 appear to be uniquely regulated which may reflect their specialized roles during cell division or early development in the frog.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号