首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
在高功率毫米波辐照新鲜皮肤组织加热时,实验测得的表面温升比表面绝热Pennes模型计算温升低很多,提出对于含水量较大且易从皮肤表面蒸发的组织,生物传热的Pennes方程必须考虑水分蒸发失热的因素.我们将蒸发失热项加入Pennes传热方程中,并对这样的理论模型作了一些探讨,在长时间毫米波辐照加热时,表面温度最终会趋于饱和平衡.  相似文献   

2.
激光针灸对穴位组织温度和血流灌注率的影响   总被引:3,自引:0,他引:3  
本文在Pennes方程的基础上研究了激光针灸治疗对穴位组织的温度和血流灌注率的影响。结果显示,连续激光与脉冲激光针灸都能使穴位组织的温度和血流灌注率升高,随着激光的功率密度升高则穴位组织的温度和血流灌注率亦升高。通过这些研究为激光针灸的临床实际应用提供了理论基础。  相似文献   

3.
电针对小鼠肝脏血流灌注量影响的激光散斑成像显示   总被引:1,自引:0,他引:1  
目的:应用激光散斑成像技术连续监测电针过程小鼠肝脏表面血流灌注图像,研究电针不同穴位对肝脏血流灌注量的影响,探讨激光散斑技术在针灸效应研究中的应用价值。方法:采用Moor.FLPI激光散斑血流成像系统分别对足三里组、曲泉组、非经非穴组正常小鼠电针30min以及不电针对照组连续观察30min过程中肝脏表面血流灌注量变化进行观察,分析电针不同穴位、各个时点肝脏血流变化的规律。结果:(1)肝脏激光散斑图显示电针后各电针组肝脏表面整体血流灌注均增加,肝门附近区域灌注量增加幅度大于肝脏边缘区域;(2)电针各时点各电针组肝脏血流灌注量均出现增加,电针0~20min灌注量增加率为足三里组〉曲泉组〉非经非穴组;电针25~30min为足三里组〉非经非穴组〉曲泉组。结论:激光散斑血流成像技术能够精确记录显示电针过程肝脏表面的微循环变化情况,电针可以增强正常小鼠肝脏血流灌注量,电针增加肝脏血流灌注的效应存在穴位特异性。  相似文献   

4.
目的:通过物理诱变提高氧化亚铁硫杆菌(T.f)的活性。方法:利用紫外线对高氧化亚铁硫杆菌进行诱变,对比紫外线辐照120s、240s和300s后培养的氧化亚铁硫杆菌的活性,得到最佳的辐照时间。结果:紫外线诱变氧化亚铁硫杆菌的最佳时间为240s,超过该值后T.f菌很难培养。结论:经过240s的紫外线辐照后,利用Leathen培养基培养的氧化亚铁硫杆菌与对照组相比,浓度为对照组的1.21倍,pH值低0.28,氧化还原电位的绝对值比值为1.13,在同样时间条件下,培养液中Fe2+浓度的曲线变化斜率分别为0.683和0.236。  相似文献   

5.
采用同一剂量不同功率和时间组合的Nd:YAP激光(波长1 341nm)辐照亚心形扁藻,辐照组分为8W 69 s、10 W 55 s和12 W 46 s三个组合,通过藻细胞生长速率和叶绿素含量测定研究激光对扁藻的影响.实验结果表明,即使同一照射剂量,不同的辐照时间与辐照功率的组合,辐照效果仍不相同,本实验中以辐照时间55 s,辐照功率10 W 为最佳组合.  相似文献   

6.
目的:利用正置双光子显微镜系统和荧光探针标记技术,观察活体小鼠脑内血管的三维立体分布,建立测量单根毛细血管血流速度的新方法。方法:麻醉小鼠,制作活体小鼠颅骨开窗样本,尾静脉注射血浆标记物Texas-Red dextran,利用双光子显微镜z序列扫描检测脑内微循环系统的三维分布;利用线扫描测量毛细血管的血流速度。结果:通过双光子显微镜可以探测到脑内500μm处的血管分布和走向,图像清晰且信噪比高;通过计算单位时间内红细胞的运动距离测得毛细血管(直径≤6μm)的血流速度为(0.59±0.12)mm/s。结论:利用双光子显微镜观察脑内微循环系统技术平台初步建立,为基础研究和医药应用提供了在体实验依据。  相似文献   

7.
高强度聚焦超声换能器温度场的数值仿真   总被引:2,自引:0,他引:2  
相控阵高强度聚焦超声换能器可以通过换能器上不同阵元发射超声波的时间不同来实现变焦、多焦点。该论文应用Westervelt方程的近似式,结合Pennes热传导方程,以人体乳房为例,FDTD(finite difference time domain)仿真对比研究平面阵列相控聚焦换能器与曲面阵列相控聚焦换能器形成温度场的特性,同时数值仿真研究不同占空比的正弦激励函数、不同治疗频率、声强对曲面阵列相控聚焦换能器超声温度场的影响。研究结果表明曲面阵列相控聚焦换能器能有效地减少皮肤处的温升,对皮肤的伤害较小;对于曲面阵列相控聚焦换能器,不同占空比的正弦激励函数形成的可治疗区域(60℃以上)大小差别不大,但最高温度不同;随着频率升高,形成的可治疗区域体积减小;随着输入声强的增大,可治疗区域变大,但焦距不变。  相似文献   

8.
目的:探讨激光多普勒对糖尿病小鼠微循环自律运动功能的评估价值。方法:20只BALB/c小鼠随机分为糖尿病组(n=10)和对照组(n=10)。连续5天腹腔注射40 mg/kg STZ诱导糖尿病模型;应用Moor LDLS检测糖尿病小鼠皮肤微循环血流灌注水平;应用Moor VMS-LDF检测糖尿病小鼠胰腺微循环血流灌注及微血管自律运动功能。结果:糖尿病小鼠皮肤微循环血流灌注显著降低,皮肤总血流灌注量(P=0.009)、胰腺微血管自律运动频率(P0.001)和振幅(P0.001)均显著低于对照组小鼠。结论:联合应用Moor LDLS激光多普勒扫描成像系统及Moor VMS-LDF激光多普勒血流灌注监测系统可作为糖尿病小鼠微循环功能状态的评估手段。  相似文献   

9.
尚为进  胡争  李彬 《生物磁学》2009,(14):2724-2727
目的:探讨多普勒彩色血流成像中流速估计的方法。方法:对多普勒彩色血流成像中流速估计的两种算法-相域自相关和时域互相关进行了理论分析,在FieldII软件平台上对两种算法进行仿真。分别在中心流速为0.5m/s(中低速)和0.5m/s(高速)时进行血流速度仿真,得出了各自不同中心流速的血流速度分布曲线,并对其进行了对比分析。结果:相域自相关方法对中低速血流进行流速传计的精确度和稳健性都强于时域互相关方法;对于高速血流相域方法估计结果产生了混叠,但时域方法可以通过加大最值的搜索范围仍然能够得到正确的估计结果。结论:两种方法各有优缺点,互为补充。在实际应用中可以考虑结合使用两种方法,充分利用二者的优点。  相似文献   

10.
为探讨最大持续能量收支限制的因素和生理机理,本文测定了增加胎仔数和背部剃毛的KM 小鼠的哺乳
期摄食量和繁殖输出。基础代谢率(BMR)以封闭式流体压力呼吸计测定。结果发现,增加胎仔数对哺乳期体
重、摄食量、热传导率、BMR 和胎仔重的影响不显著;与非剃毛对照组相比,剃毛使哺乳高峰期日平均摄食量
增加了13.8% (P<0.001)、BMR 增加了18.1% (P< 0.01)、热传导增加了30.8% (P< 0.01),但剃毛对体
重、胎仔数和胎仔重的影响不显著;胎仔数与断乳时胎仔重显著正相关,与幼体平均体重显著负相关。BMR 与
母体体重和胎仔重显著正相关。这些结果表明,KM 小鼠哺乳期能量收支受到了限制,剃毛显著增强了KM 小鼠
的散热能力,但未影响繁殖输出;支持“外周限制假说”,不符合“热耗散限制假说”。  相似文献   

11.
Specifying exact geometry of vessel network and its effect on temperature distribution in living tissues is one of the most complicated problems of the bioheat field. In this paper, the effects of blood vessels on temperature distribution in a skin tissue subjected to various thermal therapy conditions are investigated. Present model consists of counter-current multilevel vessel network embedded in a three-dimensional triple-layered skin structure. Branching angles of vessels are calculated using the physiological principle of minimum work. Length and diameter ratios are specified using length doubling rule and Cube law, respectively. By solving continuity, momentum and energy equations for blood flow and Pennes and modified Pennes bioheat equations for the tissue, temperature distributions in the tissue are measured. Effects of considering modified Pennes bioheat equation are investigated, comprehensively. It is also observed that blood has an impressive role in temperature distribution of the tissue, especially at high temperatures. The effects of different parameters such as boundary conditions, relaxation time, thermal properties of skin, metabolism and pulse heat flux on temperature distribution are investigated. Tremendous effect of boundary condition type at the lower boundary is noted. It seems that neither insulation nor constant temperature at this boundary can completely describe the real physical phenomena. It is expected that real temperature at the lower levels is somewhat between two predicted values. The effect of temperature on the thermal properties of skin tissue is considered. It is shown that considering temperature dependent values for thermal conductivity is important in the temperature distribution estimation of skin tissue; however, the effect of temperature dependent values for specific heat capacity is negligible. It is seen that considering modified Pennes equation in processes with high heat flux during low times is significant.  相似文献   

12.
13.
Vascular reactivity (VR) is considered as an effective index to predict the risk of cardiovascular events. A cost-effective alternative technique used to evaluate VR called digital thermal monitoring (DTM) is based on the response of finger temperature to vessel occlusion and reperfusion. In this work, a simulation has been developed to investigate hand temperature in response to vessel occlusion and perfusion. The simulation consists of image-based mesh generation and finite element analysis of blood flow and heat transfer in tissues. In order to reconstruct a real geometric model of human hand, a computer programme including automatic image processing for sequential MR data and mesh generation based on the transfinite interpolation method is developed. In the finite element analysis part, blood flow perfused in solid tissues is considered as fluid phase through porous media. Heat transfer in tissues is described by Pennes bioheat equation and blood perfusion rate is obtained from Darcy velocities. Capillary pressure, blood perfusion and temperature distribution of hand are obtained. The results reveal that fingertip temperature is strongly dependent on larger arterial pressure. This simulation is of potential to quantify the indices used for evaluating the VR in DTM test if it is integrated with the haemodynamic model of blood circulation in upper limb.  相似文献   

14.
A computational approach is adopted to predict the temperature distribution in the biliary tissue during hyperthermic treatments in biliary tumors. Two different models are developed: an axisymmetric model and a three-dimensional model. In the first model the Pennes bioheat transfer equation is applied. It is aimed at simulating the thermoregulatory effect of the capillary bed and it can also give a pressure criterion to determine whether the blood perfusion term should be included in the mathematical model. The second model is aimed at simulating the convective effect of the large hepatic vessels: A constant Nusselt number is assumed on the sides of the vessels. The simulations of the three-dimensional model have been carried out with and without capillary perfusion in the tissue, i.e., respectively in the worst case and in the best case that may occur during heating. The results show that it is possible to obtain therapeutic temperature values in the tissue for time intervals considered acceptable by physicians. Moreover, the model is able to give more precise information about the volumes of tumoral tissue heated above therapeutic temperatures with the hyperthermic technique considered.  相似文献   

15.
Jing Liu   《Journal of biomechanics》2001,34(12):1535-1642
An analytical solution to the Pennes bioheat transfer equation in three-dimensional geometry with practical hyperthermia boundary conditions and random heating was obtained in this paper. Uncertainties for the predicted temperatures of tissues due to approximate parameters were studied based on analyzing one-dimensional heat transfer in the biological bodies subject to a spatially decay heating. Contributions from each of the thermal parameters such as heat conductivity, blood perfusion rate, and metabolic rate of the tissues, the scattering coefficient and the surface power flux of the heating apparatus were compared and the uncertainty limit for temperature distribution in this case was estimated. The results are useful in a variety of clinical hyperthermia and biological thermal parameter measurement.  相似文献   

16.

Background

Pennes Bio Heat Transfer Equation (PBHTE) has been widely used to approximate the overall temperature distribution in tissue using a perfusion parameter term in the equation during hyperthermia treatment. In the similar modeling, effective thermal conductivity (Keff) model uses thermal conductivity as a parameter to predict temperatures. However the equations do not describe the thermal contribution of blood vessels. A countercurrent vascular network model which represents a more fundamental approach to modeling temperatures in tissue than do the generally used approximate equations such as the Pennes BHTE or effective thermal conductivity equations was presented in 1996. This type of model is capable of calculating the blood temperature in vessels and describing a vasculature in the tissue regions.

Methods

In this paper, a countercurrent blood vessel network (CBVN) model for calculating tissue temperatures has been developed for studying hyperthermia cancer treatment. We use a systematic approach to reveal the impact of a vasculature of blood vessels against a single vessel which most studies have presented. A vasculature illustrates branching vessels at the periphery of the tumor volume. The general trends present in this vascular model are similar to those shown for physiological systems in Green and Whitmore. The 3-D temperature distributions are obtained by solving the conduction equation in the tissue and the convective energy equation with specified Nusselt number in the vessels.

Results

This paper investigates effects of size of blood vessels in the CBVN model on total absorbed power in the treated region and blood flow rates (or perfusion rate) in the CBVN on temperature distributions during hyperthermia cancer treatment. Also, the same optimized power distribution during hyperthermia treatment is used to illustrate the differences between PBHTE and CBVN models. Keff (effective thermal conductivity model) delivers the same difference as compared to the CBVN model. The optimization used here is adjusting power based on the local temperature in the treated region in an attempt to reach the ideal therapeutic temperature of 43°C. The scheme can be used (or adapted) in a non-invasive power supply application such as high-intensity focused ultrasound (HIFU). Results show that, for low perfusion rates in CBVN model vessels, impacts on tissue temperature becomes insignificant. Uniform temperature in the treated region is obtained.

Conclusion

Therefore, any method that could decrease or prevent blood flow rates into the tumorous region is recommended as a pre-process to hyperthermia cancer treatment. Second, the size of vessels in vasculatures does not significantly affect on total power consumption during hyperthermia therapy when the total blood flow rate is constant. It is about 0.8% decreasing in total optimized absorbed power in the heated region as γ (the ratio of diameters of successive vessel generations) increases from 0.6 to 0.7, or from 0.7 to 0.8, or from 0.8 to 0.9. Last, in hyperthermia treatments, when the heated region consists of thermally significant vessels, much of absorbed power is required to heat the region and (provided that finer spatial power deposition exists) to heat vessels which could lead to higher blood temperatures than tissue temperatures when modeled them using PBHTE.  相似文献   

17.
Presence of a tumor and its characteristics like location, size and properties are estimated. Estimation is based on the measurement of the skin surface temperature of the breast. Consideration is given to a 2-D breast tissue infected with a tumor. Heat transfer in the breast tissue modeled using the Pennes bioheat equation is solved by the finite volume method. Skin surface temperature profile of the breast is characteristic of the tumor location, its size and grade. In the inverse analysis, the objective function is minimized using the genetic algorithm. Exact estimation is obtained if one parameter is estimated at a time. However, the accuracies are acceptable even when blood perfusion rate, location and size are estimated simultaneously.  相似文献   

18.
The application of laser in ophthalmology and eye surgery is so widespread that hardly can anyone deny its importance. On the other hand, since the human eye is an organ susceptible to external factors such as heat waves, laser radiation rapidly increases the temperature of the eye and therefore the study of temperature distribution inside the eye under laser irradiation is crucial; but the use of experimental and invasive methods for measuring the temperature inside the eye is typically high-risk and hazardous. In this paper, using the three-dimensional finite element method, the distribution of heat transfer inside the eye under transient condition was studied through three different lasers named Nd:Yag, Nd:Yap and ArF. Considering the metabolic heat and blood perfusion rate in various regions of the eye, numerical solution of space–time dependant Pennes bioheat transfer equation has been applied in this study. Lambert–Beer's law has been used to model the absorption of laser energy inside the eye tissues. It should also be mentioned that the effect of the ambient temperature, tear evaporation rate, laser power and the pupil diameter on the temperature distribution have been studied. Also, temperature distribution inside the eye after applying each laser and temperature variations of six optional regions as functions of time have been investigated. The results show that these radiations cause temperature rise in various regions, which will in turn causes serious damages to the eye tissues. Investigating the temperature distribution inside the eye under the laser irradiation can be a useful tool to study and predict the thermal effects of laser radiation on the human eye and evaluate the risk involved in performing laser surgery.  相似文献   

19.
During laser-assisted photo-thermal therapy, the temperature of the heated tissue region must rise to the therapeutic value (e.g., 43 °C) for complete ablation of the target cells. Large blood vessels (larger than 500 micron in diameter) at or near the irradiated tissues have a considerable impact on the transient temperature distribution in the tissue. In this study, the cooling effects of large blood vessels on temperature distribution in tissues during laser irradiation are predicted using finite element based simulation. A uniform flow is assumed at the entrance and three-dimensional conjugate heat transfer equations in the tissue region and the blood region are simultaneously solved for different vascular models. A volumetric heat source term based on Beer–Lambert law is introduced into the energy equation to account for laser heating. The heating pattern is taken to depend on the absorption and scattering coefficients of the tissue medium. Experiments are also conducted on tissue mimics in the presence and absence of simulated blood vessels to validate the numerical model. The coupled heat transfer between thermally significant blood vessels and their surrounding tissue for three different tissue-vascular networks are analyzed keeping the laser irradiation constant. A surface temperature map is obtained for different vascular models and for the bare tissue (without blood vessels). The transient temperature distribution is seen to differ according to the nature of the vascular network, blood vessel size, flow rate, laser spot size, laser power and tissue blood perfusion rate. The simulations suggest that the blood flow through large blood vessels in the vicinity of the photothermally heated tissue can lead to inefficient heating of the target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号