首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A synthetic medium SM-3 has been elaborated for growth of Streptococcus lactis strain 51, which contains the minimal number of organic components required for the growth of this strain and nisin production. This medium contains 9 amino acids, 4 vitamins from B group, glucose and mineral salts. Addition of biotin to the medium stimulated the growth of the strain, while the addition of purines and/or pyrimidines had no effect. Hitherto biotin has been considered to be necessary for the growth of S. lactis and purines and pyrimidines were believed to stimulate the growth of these bacteria. In strain 51 the minimal requirements for growth were also the minimal requirements for nisin biosynthesis. Strain 51 produced 3-4 times less nisin in medium SM-3 than in a complex medium. The addition of one of four amino acids (serine, proline, cysteine or cystine) to SM-3 medium increased the amount of antibiotic produced. The addition of all four amino acids simultaneously, caused formation of nisin amounts similar to those produced in complex medium.  相似文献   

2.
Engineering of cysteine and methionine biosynthesis in potato   总被引:10,自引:0,他引:10  
Summary. Methionine and cysteine, two amino acids containing reduced sulfur, are not only an important substrate of protein biosynthesis but are also precursors of various other metabolites such as glutathione, phytochelatines, S-adenosylmethionine, ethylene, polyamines, biotin, and are involved as methyl group donor in numerous cellular processes. While methionine is an essential amino acid due to an inability of monogastric animals and human beings to synthesise this metabolite, animals are still able to convert methionine consumed with their diet into cysteine. Thus, a balanced diet containing both amino acids is necessary to provide a nutritionally favourable food or feed source. Because the concentrations of methionine and cysteine are often low in edible plant sources, e.g. potato, considerable efforts in plant breeding and research have been and are still performed to understand the physiological, biochemical, and molecular mechanisms that contribute to their synthesis, transport, and accumulation in plants. During the last decade molecular tools have enabled the isolation of most of the genes involved in cysteine and methionine biosynthesis, and the efficient plant transformation technology has allowed the creation of transgenic plants that are altered in the activity of individual genes. The physiological analysis of these transgenic plants has contributed considerably to our current understanding of how amino acids are synthesised. We focused our analysis on potato (Solanum tuberosum cv. Désirée) as this plant provides a clear separation of source and sink tissues and, for applied purposes, already constitutes a crop plant. From the data presented here and in previous work we conclude that threonine synthase and not cystathionine gamma-synthase as expected from studies of Arabidopsis constitutes the main regulatory control point of methionine synthesis in potato. This article aims to cover the current knowledge in the area of molecular genetics of sulfur-containing amino acid biosynthesis and will provide new data for methionine biosynthesis in solanaceous plants such as potato. Received December 19, 2001 Accepted January 7, 2002  相似文献   

3.
Aspartate kinase (EC 2.7.2.4.) has been purified from 7 day etiolated wheat (Triticum aestivum L. var. Maris Freeman) seedlings and from embryos imbibed for 8 h. The enzyme was 50% inhibited by 0.25 mM lysine. In this study wheat aspartate kinase was not inhibited by threonine alone or cooperatively with lysine; these results contrast with those published previously. In vivo regulation of the synthesis of aspartate-derived amino acids was examined by feeding [14C]acetate and [35S]sulphate to 2–3 day germinating wheat embryos in culture in the presence of exogenous amino acids. Lysine (1 mM) inhibited lysine synthesis by 86%. Threonine (1 mM) inhibited threonine synthesis by 79%. Lysine (1 mM) plus threonine (1 mM) inhibited threonine synthesis by 97%. Methionine synthesis was relatively unaffected by these amino acids, suggesting that there are important regulatory sites other than aspartate kinase and homoserine dehydrogenase. [35S]sulphate incorporation into methionine was inhibited 50% by lysine (2 mM) plus threonine (2 mM) correlating with the reported 50% inhibition of growth by these amino acids in this system. The synergistic inhibition of growth, methionine synthesis and threonine synthesis by lysine plus threonine is discussed in terms of lysine inhibition of aspartate kinase and threonine inhibition of homoserine dehydrogenase.Abbreviations AEC S-(2-aminoethyl) cysteine  相似文献   

4.
A minor low-sulphated dermatan sulphate proteoglycan was isolated from ray skin by extraction with 2% sodium dodecyl sulphate, followed with ion-exchange chromatography, gel chromatography and density gradient centrifugation. The proteoglycan with a relative molecular mass (Mr) ranging from 70 to 120 kDa is composed of about two dermatan sulphate chains (Mr 33 kDa) bound on a protein core of Mr 27 kDa, and oligosaccharides consisting of uronic acids, hexosamines and neutral sugars. The major amino acids of the protein core were glycine (corresponding to about one-fourth of the total amino acids), serine, threonine, glutamic acid/glutamine, leucine and cysteine, together amounting to 56% of the total. The isolated proteoglycan does not interact with hyaluronic acid and does not form self-aggregates. Dermatan sulphate was rich in iduronic acid (62% of total uronic acid) and composed of non-sulphated (44%), and mono-sulphated disaccharides bearing esterified sulphate groups at positions C-4 (53%) or C-6 (3%) of the N-acetyl galactosamine. HPLC analysis of a pure preparation of dermatan sulphate, showed the presence of galactose and glucose possibly as branches on the dermatan sulphate chain.  相似文献   

5.
6.
Craciun A  Jacobs M  Vauterin M 《FEBS letters》2000,487(2):234-238
In plants, the amino acids lysine, threonine, methionine and isoleucine have L-aspartate-beta-semialdehyde (ASA) as a common precursor in their biosynthesis pathways. How this ASA precursor is dispersed among the different pathways remains vague knowledge. The proportional balances of free and/or protein-bound lysine, threonine, isoleucine and methionine are a function of protein synthesis, secondary metabolism and plant physiology. Some control points determining the flux through the distinct pathways are known, but an adequate explanation of how the competing pathways share ASA in a fine-tuned amino acid biosynthesis network is yet not available. In this article we discuss the influence of lysine biosynthesis on the adjacent pathways of threonine and methionine. We report the finding of an Arabidopsis thaliana dihydrodipicolinate synthase T-DNA insertion mutant displaying lower lysine synthesis, and, as a result of this, a strongly enhanced synthesis of threonine. Consequences of these cross-pathway regulations are discussed.  相似文献   

7.
Anaerobic thermophilic degradation of several amino acids was studied in batch cultures using an inoculum from a steady-state semicontinuous enrichment culture. Experiments were done in the presence and absence of methanogenesis and known electron acceptors in the Stickland reaction. Methanogenesis was found to be crucial for the degradation of amino acids known to be oxidatively deaminated (leucine, valine and alanine). Other amino acids (serine, threonine, cysteine and methionine) were degraded under both methanogenic and non-methanogenic conditions. Degradation rates for these four amino acids were 1.3 to 2.2 times higher in cases where methanogenesis was active. The degradation rates of serine, threonine, cysteine and methionine were about twice as high as the rates of leucine, valine and alanine under methanogenic conditions. Inclusion of different electron acceptors, known to work in the Stickland reaction, did not enhance the degradation rates of any amino acid used nor did they alter the degradation patterns. Glycine was oxidatively deaminated to acetate, carbon dioxide, hydrogen and ammonium.  相似文献   

8.
A program implementing a flux model of Escherichia coli metabolism was used to analyze the effects of the addition of amino acids (tryptophan, tyrosine, phenylalanine, leucine, isoleucine, valine, histidine, lysine, threonine, cysteine, methionine, arginine, proline) to minimal medium or media lacking nitrogen, carbon, or both. The overall response of the metabolic system to the addition of various amino acids to the minimal medium is similar. Glycolysis and the synthesis of pyruvate with its subsequent degradation to acetate via acetyl-CoA become more efficient, whereas the fluxes through the pentose phosphate pathway and the TCA cycle decrease. If amino acids are used as the sole source of carbon, nitrogen, or both, the changes in the flux distribution are determined mainly by the carbon limitation. The phosphoenolpyruvate to glucose-6-phosphate flux increases; the flux through the pentose phosphate path is directed towards ribulose-5-phosphate. Other changes are determined by the compounds that are the primary products of catabolism of the added amino acid.  相似文献   

9.
Chemotaxis toward amino acids in Escherichia coli   总被引:64,自引:34,他引:30       下载免费PDF全文
Escherichia coli cells are shown to be attracted to the l-amino acids alanine, asparagine, aspartate, cysteine, glutamate, glycine, methionine, serine, and threonine, but not to arginine, cystine, glutamine, histidine, isoleucine, leucine, lysine, phenylalanine, tryptophan, tyrosine, or valine. Bacteria grown in a proline-containing medium were, in addition, attracted to proline. Chemotaxis toward amino acids is shown to be mediated by at least two detection systems, the aspartate and serine chemoreceptors. The aspartate chemoreceptor was nonfunctional in the aspartate taxis mutant, which showed virtually no chemotaxis toward aspartate, glutamate, or methionine, and reduced taxis toward alanine, asparagine, cysteine, glycine, and serine. The serine chemoreceptor was nonfunctional in the serine taxis mutant, which was defective in taxis toward alanine, asparagine, cysteine, glycine, and serine, and which showed no chemotaxis toward threonine. Additional data concerning the specificities of the amino acid chemoreceptors with regard to amino acid analogues are also presented. Finally, two essentially nonoxidizable amino acid analogues, alpha-aminoisobutyrate and alpha-methylaspartate, are shown to be attractants for E. coli, demonstrating that extensive metabolism of attractants is not required for amino acid taxis.  相似文献   

10.
The contents of glutathione S-transferase (GST) subunits, carbonic anhydrase III (CAIII), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a 230 kDa protein are affected by protein deprivation in mouse liver. In order to know if particular amino acids control these contents, the effects of feeding for 5 days with diets containing different amino acids were examined. After an exploration using SDS-PAGE analysis, the action of selected diets was further examined by distinct techniques. The 230 kDa protein was identified as fatty acid synthase (FAS) by both mass spectrometry and amino acid sequence analyses. Dietary tests showed that: (1) a protein-free diet (PFD) increased the content of glutathione S-transferases P1 and M1, and glyceraldehyde-3-phosphate dehydrogenase, while the content of glutathione S-transferase A3, fatty acid synthase and carbonic anhydrase III decreased; (2) a protein-free diet having either methionine or cysteine preserved the normal contents of glutathione S-transferases P1, A3, M1 and carbonic anydrase III; (3) a protein-free diet having threonine preserved partially the normal contents of glutathione S-transferases P1, A3, M1 and carbonic anhydrase III; (4) a protein-free diet having methionine, threonine and cysteine prevented in part the loss of fatty acid synthase; and (5) the glyceraldehyde-3-phosphate dehydrogenase content was controlled by increased carbohydrate level and/or by lower amino acid content of diets, but not by any specific amino acid. These data indicate that methionine and cysteine exert a main role on the control of liver glutathione S-transferases A3 and P1, and carbonic anhydrase III. Thus, they emerge necessary to prevent unsafe alterations of liver metabolism caused by protein deprivation.  相似文献   

11.
12.
13.
14.
The lantibiotic nisin is an antimicrobial peptide produced by Lactococcus lactis. As with all lantibiotics, nisin contains a number of dehydro-residues and thioether amino acids that introduce five lanthionine rings into the target peptide. These atypical amino acids are introduced by post-translational modification of a ribosomally synthesized precursor peptide. In certain cases, the serine residue, at position 33 of nisin, does not undergo dehydration to Dha33. With native nisin this partially processed form represents about 10% of the total peptide, whereas with the engineered variants, [Trp30]nisin A and [Lys27,Lys31]nisin A, the proportion of peptide that escapes full processing was found to be to approximately 50%. This feature of nisin biosynthesis was exploited in an investigation of the role of the NisB protein in pre-nisin maturation. Manipulation of the level of NisB was achieved by cloning and overexpressing the plasmid-encoded nisB gene in a range of different nisin-producing strains. The resulting fourfold increase in the level of NisB significantly increased the efficiency of the dehydration reaction at Ser33. The final secreted product of biosynthesis by these strains was the homogenous form of the fully processed nisin (or nisin variant) molecule. The results presented represent the first experimental evidence for the direct involvement of the NisB protein in the maturation process of nisin.  相似文献   

15.
The third member of the nisin variant, nisin Q, produced by Lactococcus lactis 61-14, is a ribosomally-synthesized antimicrobial peptide, the so-called lantibiotic containing post-translationally modified amino acids such as lanthionine and dehydroalanine. Here, we determined the complete covalent structure of nisin Q, consisting of 34 amino acids, by two-dimensional (1)H nuclear magnetic resonance (NMR) spectroscopy. Sequential assignment of nisin Q containing the unusual amino acids was performed by total correlation spectroscopy (TOCSY) and nuclear Overhauser enhancement spectroscopy (NOESY). The observed long range nuclear Overhauser effect (NOE) in nisin Q indicated assignment of all five sets of lanthionines that intramolecularly bridge residues 3-7, 8-11, 13-19, 23-26, and 25-28. Consequently, the covalent structure of nisin Q was determined to hold the same thioether linkage formation as the other two nisins, but to harbor the four amino acid substitutions, in contrast with nisin A.  相似文献   

16.
The effect of threonine technical sources on the homoserine biosynthesis by the threonine auxotroph Brevibacterium flavum 2T when cultivated on sucrose and acetic acid containing media was investigated. Various threonine sources (corn extract and fodder yeast, microbial biomass and soybean meal hydrolyzates) prepared by means of different hydrolyzing agents (acids, enzymes, autolysis) were used. The most effective substrate was protein--vitamin concentrate hydrolyzate, particularly combined with corn extract in the ratio 1: 0,25-0.5 (with respect to the dry weight of the initial material). The homoserine yield was 16.2 g/l on the sucrose containing medium and 18.4 g/l on the acetic acid containing medium which was in agreement with controls. The medium containing pure threonine was used as a control. With other threonine sources (corn extract, protein-vitamin concentrate autolyzate and enzymolyzate, fodder yeast and soybean meal hydrolyzates), the homoserine production was significantly lower, i.e. 40-70% of the control. The content of amino acids (threonine, isoleucine, methionine) in the initial material and their suitability for the homoserine biosynthesis were found to be correlated. The substrates with a high content of threonine (over 3.5%) and a low content of methionine (below 0.5%) proved most effective. The use of the material in which the ratio threonine: methionine was less than 6.0 caused the homoserine biosynthesis to be partially replaced with that of lysine.  相似文献   

17.
Exponential-phase cells of Neurospora crassa require the continued presence of a protein inducer and nitrogen starvation to induce exocellular protease under conditions where protein is the sole nitrogen source. The nature of the protein inducer appears relatively unimportant, since both soluble proteins (e.g., myoglobin) and insoluble proteins (e.g., corn zein) will effect induction. Nonstarved cells of N. crassa appear to have small nitrogen pools, since nitrogen starvation of exponential cells prior to transfer into a medium where protein is the sole nitrogen source effects starvation-time-dependent decreases in protease biosynthesis. Ammonium ion represses protease synthesis, with apparent specificity at low concentrations. The amino acids arginine, tryptophan, and threonine effect repression of protease biosynthesis under conditions of nitrogen starvation. Under conditions of sulfur starvation, the amino acids cysteine, methionine, and cystine repress protease biosynthesis. In carbon-starved cells, all of the above amino acids, plus histidine, isoleucine, leucine, lysine, phenylalanine, and valine, effect repression. Examination of amino acid pools formed when cells are grown on protein as the sole nitrogen source demonstrated that the amino acids which repress protease biosynthesis under conditions where protein is the sole carbon source accumulate in significant amounts during the course of protease induction, with kinetics consonant with the induction process.  相似文献   

18.
Autonomous ultradian metabolic oscillation (T approximately or =50 min) was detected in an aerobic chemostat culture of Saccharomyces cerevisiae. A pulse injection of GSH (a reduced form of glutathione) into the culture induced a perturbation in metabolic oscillation, with respiratory inhibition caused by H2S burst production. As the production of H2S in the culture was controlled by different amino acids, we attempted to characterize the effects of GSH on amino acid metabolism, particularly with regard to branched chain and sulfur-containing amino acids. During stable metabolic oscillation, concentrations of intracellular glutamate, aspartate, threonine, valine, leucine, isoleucine, and cysteine were observed to oscillate with the same periods of dissolved O2 oscillation, although the oscillation amplitudes and maximal phases were shown to differ. The methionine concentration was stably maintained at 0.05 mM. When GSH (100 microM) was injected into the culture, cellular levels of branched chain amino acids increased dramatically with continuous H2S production, whereas the cysteine and methionine concentrations were noticeably reduced. These results indicate that GSH-dependent perturbation occurs as the result of the promotion of branched chain amino acid synthesis and an attenuation of cysteine and methionine synthesis, both of which activate the generation of H2S. In a low sulfate medium containing 2.5 mM sulfate, the GSH injections did not result in perturbations of dissolved O2, NAD(P)H redox oscillations without burst H2 production. This suggests that GSH-dependent perturbation is intimately linked with the metabolism of branched-chain amino acids and H2 generation, rather than with direct GSH-GSSG redox control.  相似文献   

19.
The general control of amino acid biosynthesis was investigated in Candida spec. EH 15/D, using single and double mutant auxotrophic strains and prototrophic revertants starved for their required amino acids. These experiments show that starvation for lysine, histidine, arginine, leucine, threonine, proline, serine, methionine, homoserine, asparagine, glutamic acid or aspartic acid can result in derepression of enzymes. A correlation was found between the degree of derepression, growth of strains, and concentration of required amino acids. The amino acids pool pattern of mutants and revertants is different from that in the wild type strain.  相似文献   

20.
Lactococcus lactis 61-14 isolated from river water produced a bacteriocin active against a wide range of Gram-positive bacteria. N-terminal amino acid sequencing, mass spectral analysis of the purified bacteriocin, and genetic analysis using nisin-specific primers showed that the bacteriocin was a new natural nisin variant, termed nisin Q. Nisin Q and nisin A differ in four amino acids in the mature peptide and two in the leader sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号