首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 864 毫秒
1.
Summary. Plants are able to synthesise all amino acids essential for human and animal nutrition. Because the concentrations of some of these dietary constituents, especially methionine, lysine, and threonine, are often low in edible plant sources, research is being performed to understand the physiological, biochemical, and molecular mechanisms that contribute to their transport, synthesis and accumulation in plants. This knowledge can be used to develop strategies allowing a manipulation of crop plants, eventually improving their nutritional quality. This article is intended to serve two purposes. The first is to provide a brief review on the physiology of methionine synthesis in higher plants. The second is to highlight some recent findings linked to the metabolism of methionine in plants due to its regulatory influence on the aspartate pathway and its implication in plant growth. This information can be used to develop strategies to improve methionine content of plants and to provide crops with a higher nutritional value. Received January 28, 2000 Accepted March 3, 2000  相似文献   

2.
Noji M  Saito K 《Amino acids》2002,22(3):231-243
Summary. Serine acetyltransferase (SATase) and cysteine synthase (O-acetylserine (thiol)-lyase) (CSase) are committed in the final step of cysteine biosynthesis. Six cDNA clones encoding SATase have been isolated from several plants, e.g. watermelon, spinach, Chinese chive and Arabidopsis thaliana. Feedback-inhibition pattern and subcellular localization of plant SATases were evaluated. Two types of SATase that differ in their sensitivity to the feedback inhibition by l-cysteine were found in plants. In Arabidopsis, cytosolic SATase was inhibited by l-cysteine at a physiological concentration in an allosteric manner, but the plastidic and mitochondrial forms were not subjected to this feedback regulation. These results suggest that the regulation of cysteine biosynthesis through feedback inhibition may differ depending on the subcellular compartment. The allosteric domain responsible for l-cysteine inhibition was characterized, using several SATase mutants. The single change of amino acid residue, glycine-277 to cysteine, in the C-terminal region of watermelon SATase caused a significant decrease of the feedback-inhibition sensitivity of watermelon SATase. We made the transgenic Arabidopsis overexpressing point-mutated watermelon SATase gene whose product was not inhibited by l-cysteine. The contents of OAS, cysteine, and glutathione in transgenic Arabidopsis were significantly increased as compared to the wild-type Arabidopsis. Transgenic tobacco (Nicotiana tabacum) (F1) plants with enhanced CSase activities both in the cytosol and in the chloroplasts were generated by cross-fertilization of two transgenic tobacco expressing either cytosolic CSase or chloroplastic CSase. Upon fumigation with 0.1 μL L−1 sulfur dioxide, both the cysteine and glutathione contents in leaves of F1 plants were increased significantly, but not in leaves of non-transformed control plants. These results indicated that both SATase and CSase play important roles in cysteine biosynthesis and its regulation in plants. Received November 27, 2001 Accepted December 21, 2001  相似文献   

3.
Threonine, lysine, methionine, and tryptophan are essential amino acids for humans and monogastric animals. Many of the commonly used diet formulations, particularly for pigs and poultry, contain limiting amounts of these amino acids. One approach for raising the level of essential amino acids is based on altering the regulation of their biosynthetic pathways in transgenic plants. Here we describe the first production of a transgenic forage plant, alfalfa (Medicago sativa L.) with modified regulation of the aspartate-family amino acid biosynthetic pathway. This was achieved by over-expressing the Escherichia coli feedback-insensitive aspartate kinase (AK) in transgenic plants. These plants showed enhanced levels of both free and protein-bound threonine. In many transgenic plants the rise in free threonine was accompanied by a significant reduction both in aspartate and in glutamate. Our data suggest that in alfalfa, AK might not be the only limiting factor for threonine biosynthesis, and that the free threonine pool in this plant limits its incorporation into plant proteins.  相似文献   

4.
5.
Synthesis of the sulfur amino acids: cysteine and methionine   总被引:2,自引:0,他引:2  
This review will assess new features reported for the molecular and biochemical aspects of cysteine and methionine biosynthesis in Arabidopsis thaliana with regards to early published data from other taxa including crop plants and bacteria (Escherichia coli as a model). By contrast to bacteria and fungi, plant cells present a complex organization, in which the sulfur network takes place in multiple sites. Particularly, the impact of sulfur amino-acid biosynthesis compartmentalization will be addressed in respect to localization of sulfur reduction. To this end, the review will focus on regulation of sulfate reduction by synthesis of cysteine through the cysteine synthase complex and the synthesis of methionine and its derivatives. Finally, regulatory aspects of sulfur amino-acid biosynthesis will be explored with regards to interlacing processes such as photosynthesis, carbon and nitrogen assimilation.  相似文献   

6.
Summary Plants are the primary source of protein for man and livestock, however, not all plants produce proteins which contain a balance of amino acids for the diet to ensure proper growth of livestock and humans. Alteration of the amino acid composition of plants may be accomplished using techniques of molecular biology and genetic engineering. Genes encoding key enzymes regulating the synthesis of lysine and threonine have been cloned from plants andE. coli and are available for modification and transformation into plants. Genes encoding seed storage proteins have been cloned and modified to encode more lysine residues for developing transgenic plants with higher seed lysine. Genes encoding seed storage proteins naturally higher in methionine have been cloned and expressed in transgenic plants, increasing methionine levels of the seed. These and other approaches hold great promise in their application to increasing the content of essential amino acids in plants.Abbreviations: AK = aspartokinase; HSDH = homoserine dehydrogenase; DS = dihydrodipicolinic acid synthase; AEC = S-(2-aminoethyl)-L-cysteineMention of trademark, proprietary product or vendor does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may be suitable.  相似文献   

7.
8.
9.
The amino acids that limit the nutritive value of potato are the sulfur containing amino acids methionine and cysteine. Manipulation of the targeted amino acid biosynthesis is a way to circumvent this problem. Cysteine is synthesised from O-acetyl-l-serine formed by serine acetyltransferase (SAT). To increase the cysteine content of the commercial potato cultivar White Lady the chimeric SAT-coding cysE gene from Escherichia coli under the control of the constitutive CaMV 35S promoter and fused to the chloroplast targeting rbcS 5'-transit peptide sequence was introduced into the White Lady genome. Novelty of the approach was the application of marker-free transformation. Two transgenic lines were obtained that accumulated the cysE mRNA in high amounts. Crude leaf extracts of these plants exhibited up to 80- and 20-fold higher SAT activity in leaves and tubers, respectively, than those prepared from non-transformed plants. Levels of cysteine and glutathione both in leaves and tubers were 1.5-fold higher in average than in control plants. The alterations observed had no effect on tuber yield and sprouting behaviour. Gas chromatography coupled to mass spectrometry showed that all other amino acids than cysteine were unaffected. Here we demonstrate for the first time that the cysteine content of tubers can be enhanced by metabolic engineering.  相似文献   

10.
氨基酸是植物体内必不可少的物质,在植物的生长代谢中发挥着重要作用。与动物不同,植物的氨基酸供给全部靠自身来合成,一旦植物的氨基酸合成受阻,植物便难以继续生存。因此,植物氨基酸合成中的关键酶一直是新型除草剂研发中重要的靶标酶。在目前已经商品化的除草剂中,通过抑制植物氨基酸生物合成中的关键酶活性而发生作用的除草剂占很大比重;与此同时,随着植物转基因技术的不断发展完善,大批耐氨基酸生物合成抑制剂类除草剂转基因植物相继问世,成为了耐除草剂类转基因植物的主体。本文综述了常用的耐氨基酸生物合成抑制剂类除草剂、作用机理及耐除草剂转基因植物的研究进展。  相似文献   

11.
The biosynthesis pathways of the essential amino acids methionine and threonine diverge from O-phosphohomoserine, an intermediate metabolite in the aspartate family of amino acids. Thus, the enzymes cystathionine-γ-synthase (CGS) in the methionine pathway and threonine synthase (TS), the last enzyme in the threonine pathway, compete for this common substrate. To study this branching point, we overexpressed TS in sense and antisense orientation in Arabidopsis plants with the aim to study its effect on the level of threonine but more importantly on the methionine content. Positive correlation was found not only between TS expression level and threonine content, but also between TS/threonine and CGS expression level. Plants expressing the sense orientation of TS showed a higher level of threonine, increased expression level of CGS, and a significantly higher level of S-methylmethionine, the transport form of methionine. By contrast, plants expressing the antisense form of TS showed lower levels of threonine and of CGS expression level. In these antisense plants, the methionine level increased up to 47-fold compared to wild-type plants. To study further the effect of threonine on CGS expression level, wild-type plants were irrigated with threonine and control plants were irrigated with methionine or water. While threonine increased the expression level of CGS but reduced that of TS, methionine reduced the expression level of CGS but increased that of TS. This data demonstrate that both methionine and threonine affect the two enzymes at the branching point, thus controlling not only their own level, but also the level of each other. This mechanism probably aids in keeping the levels of these two essential amino acids sufficiently high to support plant growth.  相似文献   

12.
Methionine biosynthesis has taken different evolutionary pathways in bacteria, fungi and plants. To gain insight into these differences and to search for new ways of manipulating methionine biosynthesis in plants, the yeast (Saccharomyces cerevisiae) Met2 gene and the bacteria (Leptospira meyeri) MetX gene, both encoding homoserine O-acetyltransferase, were expressed in tobacco plants. We found protein aggregates in extracts of these transgenic plants, whose levels were much higher in plants grown at 35 °C than at 25 °C. It appears that the yeast and the bacterial proteins are heat labile and tend to change their intracellular conformation. These conformational changes of the transgenic proteins were more prominent at high temperature and most probably triggered aggregation of the yeast and the bacterial proteins. Moreover, plants expressing the yeast gene that grew at 35 °C over-accumulated stress-associated metabolites, such as phenolic compounds, including tannins, as well as the amino acid arginine. In addition, the transgenic plants expressing high levels of the foreign genes show growth retardation, which further suggests that, these plants suffer from internal stress. The changes in protein conformation and the consequent triggering of stress response may account for the ability of these transgenic plants to tolerate more extreme heat stress (60 °C) than the wild-type plants.  相似文献   

13.
Lysine and methionine are two essential amino acids whose levels affect the nutritional quality of cereals and legume plants. Both amino acids are synthesized through the aspartate family biosynthesis pathway. Within this family, lysine and methionine are produced by two different branches, the lysine branch and the threonine-methionine branch, which compete for the same carbon/amino substrate. To elucidate the relationship between these biosynthetic branches, we crossed two lines of transgenic tobacco plants: one that overexpresses the feedback-insensitive bacterial enzyme dihydrodipicolinate synthase (DHPS) and contains a significantly higher level of lysine, and a second that overexpresses Arabidopsis cystathionine gamma-synthase (AtCGS), the first unique enzyme of methionine biosynthesis. Significantly higher levels of methionine and its metabolite, S-methylmethionine (SMM), accumulated in the newly produced plants compared with plants overexpressing AtCGS alone, while the level of lysine remained the same as in those overexpressing DHPS alone. The increased levels of methionine and SMM were correlated with increases in the mRNA and protein levels of AtCGS and a reduced mRNA level for the genes encoding S-adnosylmethionine (SAM) synthase, which converts methionine to SAM. Reduction in SAMS expression level leads most probably to the reduction of SAM found in plants that feed with lysine. As SAM is a negative regulator of CGS, this reduction leads to higher expression of CGS and consequently to an increased level of methionine. Elucidating the relationship between lysine and methionine synthesis may lead to new ways of producing transgenic crop plants containing increased methionine and lysine levels, thus improving their nutritional quality.  相似文献   

14.
As sulfur constitutes one of the macronutrients necessary for the plant life cycle, sulfur uptake and assimilation in higher plants is one of the crucial factors determining plant growth and vigour, crop yield and even resistance to pests and stresses. Inorganic sulfate is mostly taken up as sulfate from the soil through the root system or to a lesser extent as volatile sulfur compounds from the air. In a cascade of enzymatic steps inorganic sulfur is converted to the nutritionally important sulfur-containing amino acids cysteine and methionine (Hell, 1997; Hell and Rennenberg, 1998; Saito, 1999). Sulfate uptake and allocation between plant organs or within the cell is mediated by specific transporters localised in plant membranes. Several functionally different sulfate transporters have to be postulated and have been already cloned from a number of plant species (Clarkson et al., 1993; Hawkesford and Smith, 1997; Takahashi et al., 1997; Yamaguchi, 1997). Following import into the plant and transport to the final site of reduction, the plastid, the chemically relatively inert sulfate molecule is activated through binding to ATP forming adenosine-5'-phosphosulfate (APS). This enzymatic step is controlled through the enzyme ATP-sulfurylase (ATP-S). APS can be further phosphorylated to form 3'-phosphoadenosine-5'-phosphosulfate (PAPS) which serves as sulfate donor for the formation of sulfate esters such as the biosynthesis of sulfolipids (Schmidt and J?ger, 1992). However, most of the APS is reduced to sulfide through the enzymes APS-reductase (APR) and sulfite reductase (SIR). The carbon backbone of cysteine is provided through serine, thus directly coupling photosynthetic processes and nitrogen metabolism to sulfur assimilation. L-serine is activated by serine acetyltransferase (SAT) through the transfer to an acetyl-group from acetyl coenzyme A to form O-acetyl-L-serine (OAS) which is then sulhydrylated using sulfide through the enzyme O-acetyl-L-serine thiol lyase (OAS-TL) forming cysteine. Cysteine is the central precursor of all organic molecules containing reduced sulfur ranging from the amino acid methionine to peptides as glutathione or phytochelatines, proteines, vitamines, cofactors as SAM and hormones. Cysteine and derived metabolites display essential roles within plant metabolism such as protein stabilisation through disulfide bridges, stress tolerance to active oxygen species and metals, cofactors for enzymatic reactions as e.g. SAM as major methylgroup donor and plant development and signalling through the volatile hormone ethylene. Cysteine and other metabolites carrying free sulfhydryl groups are commonly termed thioles (confer Fig. 1). The physiological control of the sulfate reduction pathway in higher plants is still not completely understood in all details. The objective of this paper is to summarise the available data on the molecular analysis and control of cysteine biosynthesis in plants, and to discuss potentials for manipulating the pathway using transgenic approaches.  相似文献   

15.
16.
Plant infection is accompanied by an oxidative burst that produces free radicals of various natures. The approach that we exploited in this study was to increase the antioxidative potential of flax by genetic engineering. Overexpressing the yeast Met25 gene coding for O-acetylhomoserine-O-acetylserine (OAH-OAS) sulfhydrylase in flax resulted in a significant increase in cysteine and methionine biosynthesis. This overproduction of sulfur amino acids increases the synthesis of glutathione, a tripeptide containing cysteine. The increase in glutathione content in the transgenic plant increases its antioxidative potential, and thus improves the plant's protection against Fusarium infection.  相似文献   

17.
Methionine (Met) is a sulfur-containing amino acid that is essential in mammals and whose low abundance limits the nutritional value of grain legumes. Cystathionine γ-synthase (CGS) catalyzes the first committed step of Met biosynthesis, and the stability of its mRNA is autoregulated by the cytosolic concentration of S-adenosyl-l-methionine (SAM), a direct metabolite of Met. The mto1-1 mutant of Arabidopsis thaliana harbors a mutation in the AtCGS1 gene that renders the mRNA resistant to SAM-dependent degradation and therefore results in the accumulation of free Met to high levels in young leaves. To manipulate Met biosynthesis in soybean and azuki bean, we introduced the AtCGS1 mto1-1 gene into the two grain legumes under the control of a seed-specific glycinin gene promoter. Transgenic seeds of both species accumulated soluble Met to levels at least twice those apparent in control seeds. However, the increase in free Met did not result in an increase in total Met content of the transgenic seeds. In transgenic azuki bean seeds, the amount of cystathionine, the direct product of CGS, was markedly increased whereas the total content of Met was significantly decreased compared with control seeds. Similar changes were not detected in soybean. Our data suggest that the regulation of Met biosynthesis differs between soybean and azuki bean, and that the expression of AtCGS1 mto1-1 differentially affects the metabolic stability of sulfur amino acids and their metabolites in the two grain legumes.  相似文献   

18.
Summary Diploid alfalfa (HG2), capable of plant regeneration from tissue culture, was used to select variant cell lines resistant to growth inhibition due to ethionine (an analog of methionine). Approximately 107 suspension-cultured cells were mutagenized with methane sulfonic acid ethylester and then plated in solid media containing ethionine. Callus colonies formed on media with 0.02 mM ethionine. Of the 124 cell lines recovered, 91 regenerated plants. After six months growth on media without ethionine, 15 of 110 cell lines of callus grew significantly better than HG2 on 1 mM ethionine. Several ethionine-resistant callus cultures were also resistant to growth inhibition due to the addition of lysine + threonine to the media. High concentrations, relative to unselected HG2 callus, of methionine, cysteine, cystathionine, and glutathione were found in some, but not all, ethionine-resistant callus cultures. Cell line R32, which had a ca. tenfold increase in soluble methionine, had a 43% increase in total free amino acids and a 40% increase in amino acids in protein as compared to unselected HG2 callus. Relative amounts of each amino acid in protein were the same in both.Abbreviation LT lysine + threonine in equimolar concentration  相似文献   

19.
Summary. Amino acid levels in plants are regulated by a complex interplay of regulatory circuits at the level of enzyme activities and gene expression. Despite the diversity of precursors involved in amino acid biosynthesis as providing the carbon backbones, the amino groups and, for the amino acids methionine and cysteine, the sulfhydryl group and despite the involvement of amino acids as substrates in various downstream metabolic processes, the plant usually manages to provide relatively constant levels of all amino acids. Here we collate data on how amino acid homeostasis is shifted upon depletion of one of the major biosynthetic constituents, i.e., sulfur. Arabidopsis thaliana seedlings exposed to sulfate starvation respond with a set of adaptation processes to achieve a new balance of amino acid metabolism. First, metabolites containing reduced sulfur (cysteine, glutathione, S-adenosylmethionine) are reduced leading to a number of downstream effects. Second, the relative excess accumulation of N over S triggers processes to dump nitrogen in asparagine, glutamine and further N-rich compounds like ureides. Third, the depletion of glutathione affects the redox and stress response system of the glutathione-ascorbate cycle. Thus, biosynthesis of aromatic compounds is triggered to compensate for this loss, leading to an increased flux and accumulation of aromatic amino acids, especially tryptophan. Despite sulfate starvation, the homeostasis is kept, though shifted to a new state. This adaptation process keeps the plant viable even under an adverse nutritional status.  相似文献   

20.
The essential amino acid lysine is synthesized in higher plants by a complex pathway that is predominantly regulated by feedback inhibition of two enzymes, namely aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS). Although DHPS is thought to play a major role in this regulation, the relative importance of AK is not known. In order to study this regulation, we have expressed in the chloroplasts of transgenic potato plants a DHPS derived from Escherichia coli at a level 50-fold above the endogenous DHPS. The bacterial enzyme is much less sensitive to lysine inhibition than its potato counterpart. DHPS activity in leaves, roots and tubers of the transgenic plants was considerably higher and more resistant to lysine inhibition than in control untransformed plants. Furthermore, this activity was accompanied by a significant increase in level of free lysine in all three tissues. Yet, the extent of lysine overproduction in potato leaves was significantly lower than that previously reported in leaves of transgenic plants expressing the same bacterial enzyme, suggesting that in potato, AK may also play a major regulatory role in lysine biosynthesis. Indeed, the elevated level of free lysine in the transgenic potato plants was shown to inhibit the lysine-sensitive AK activity in vivo. Our results support previous reports showing that DHPS is the major rate-limiting enzyme for lysine synthesis in higher plants, but they suggest that additional plant-specific regulatory factors are also involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号