首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nisin is a lanthionine-containing antimicrobial peptide produced by Lactococcus lactis. Its (methyl)lanthionines are introduced by two posttranslational enzymatic steps involving the dehydratase NisB, which dehydrates serine and threonine residues, and the cyclase NisC, which couples these dehydrated residues to cysteines, yielding thioether-bridged amino acids called lanthionines. The prenisin is subsequently exported by the ABC transporter NisT and extracellularly processed by the peptidase NisP. L. lactis expressing the nisBTC genes can modify and secrete a wide range of nonlantibiotic peptides. Here we demonstrate that in the absence of NisT and NisC, the Sec pathway of L. lactis can be exploited for the secretion of dehydrated variants of therapeutic peptides. Furthermore, posttranslational modifications by NisB and NisC still occur even when the nisin leader is preceded by a Sec signal peptide or a Tat signal peptide 27 or 44 amino acids long, respectively. However, transport of fully modified prenisin via the Sec pathway is impaired. The extent of NisB-mediated dehydration could be improved by raising the intracellular concentration NisB or by modulating the export efficiency through altering the signal sequence. These data demonstrate that besides the traditional lantibiotic transporter NisT, the Sec pathway with an established broad substrate range can be utilized for the improved export of lantibiotic enzyme-modified (poly)peptides.  相似文献   

2.
Nisin is a lanthionine-containing antimicrobial peptide produced by Lactococcus lactis. Its (methyl)lanthionines are introduced by two posttranslational enzymatic steps involving the dehydratase NisB, which dehydrates serine and threonine residues, and the cyclase NisC, which couples these dehydrated residues to cysteines, yielding thioether-bridged amino acids called lanthionines. The prenisin is subsequently exported by the ABC transporter NisT and extracellularly processed by the peptidase NisP. L. lactis expressing the nisBTC genes can modify and secrete a wide range of nonlantibiotic peptides. Here we demonstrate that in the absence of NisT and NisC, the Sec pathway of L. lactis can be exploited for the secretion of dehydrated variants of therapeutic peptides. Furthermore, posttranslational modifications by NisB and NisC still occur even when the nisin leader is preceded by a Sec signal peptide or a Tat signal peptide 27 or 44 amino acids long, respectively. However, transport of fully modified prenisin via the Sec pathway is impaired. The extent of NisB-mediated dehydration could be improved by raising the intracellular concentration NisB or by modulating the export efficiency through altering the signal sequence. These data demonstrate that besides the traditional lantibiotic transporter NisT, the Sec pathway with an established broad substrate range can be utilized for the improved export of lantibiotic enzyme-modified (poly)peptides.  相似文献   

3.
4.
Nisin is a pentacyclic peptide antibiotic produced by some Lactococcus lactis strains. Nisin contains dehydroresidues and thioether rings that are posttranslationally introduced by a membrane-associated enzyme complex, composed of a serine and threonine dehydratase NisB and the cyclase NisC. In addition, the transporter NisT is necessary for export of the modified peptide. We studied the potential of L. lactis expressing NisB and NisT to produce peptides whose serines and threonines are dehydrated. L. lactis containing the nisBT genes and a plasmid coding for a specific leader peptide fusion construct efficiently produced peptides with a series of non-naturally occurring multiple flanking dehydrobutyrines. We demonstrated NisB-mediated dehydration of serines and threonines in a C-terminal nisin(1-14) extension of nisin, which implies that also residues more distant from the leader peptide than those occurring in prenisin or any other lantibiotic can be modified. Furthermore, the feasibility and efficiency of generating a library of peptides containing dehydroresidues were demonstrated. In view of the particular shape and reactivity of dehydroamino acids, such a library provides a novel source for screening for peptides with desired biological and physicochemical properties.  相似文献   

5.
Nisin is a posttranslationally modified antimicrobial peptide containing the cyclic thioether amino acids lanthionine and methyllanthionine. Although much is known about its antimicrobial activity and mode of action, knowledge about the nisin modification process is still rather limited. The dehydratase NisB is believed to be the initial interaction partner in modification. NisB dehydrates specific serine and threonine residues in prenisin, whereas the cyclase NisC catalyzes the (methyl)lanthionine formation. The fully modified prenisin is exported and the leader peptide is cleaved off by the extracellular protease NisP. Light scattering analysis demonstrated that purified NisB is a dimer in solution. Using size exclusion chromatography and surface plasmon resonance, the interaction of NisB and prenisin, including several of its modified derivatives, was studied. Unmodified prenisin binds to NisB with an affinity of 1.05 ± 0.25 μm, whereas the dehydrated and the fully modified derivatives bind with respective affinities of 0.31 ± 0.07 and 10.5 ± 1.7 μm. The much lower affinity for the fully modified prenisin was related to a >20-fold higher off-rate. For all three peptides the stoichiometry of binding was 1:1. Active nisin, which is the equivalent of fully modified prenisin lacking the leader peptide did not bind to NisB, nor did prenisin in which the highly conserved FNLD box within the leader peptide was mutated to AAAA. Taken together our data indicate that the leader peptide is essential for initial recognition and binding of prenisin to NisB.  相似文献   

6.
Nisin is a pentacyclic peptide antibiotic produced by some Lactococcus lactis strains. Nisin contains dehydroresidues and thioether rings that are posttranslationally introduced by a membrane-associated enzyme complex, composed of a serine and threonine dehydratase NisB and the cyclase NisC. In addition, the transporter NisT is necessary for export of the modified peptide. We studied the potential of L. lactis expressing NisB and NisT to produce peptides whose serines and threonines are dehydrated. L. lactis containing the nisBT genes and a plasmid coding for a specific leader peptide fusion construct efficiently produced peptides with a series of non-naturally occurring multiple flanking dehydrobutyrines. We demonstrated NisB-mediated dehydration of serines and threonines in a C-terminal nisin(1-14) extension of nisin, which implies that also residues more distant from the leader peptide than those occurring in prenisin or any other lantibiotic can be modified. Furthermore, the feasibility and efficiency of generating a library of peptides containing dehydroresidues were demonstrated. In view of the particular shape and reactivity of dehydroamino acids, such a library provides a novel source for screening for peptides with desired biological and physicochemical properties.  相似文献   

7.
The biosynthetic genes of the nisin-producing strain Lactococcus lactis 6F3 are organized in an operon-like structure starting with the structural gene nisA followed by the genes nisB, nisT, and nisC, which are probably involved in chemical modification and secretion of the prepeptide (G. Engelke, Z. Gutowski-Eckel, M. Hammelmann, and K.-D. Entian, Appl. Environ. Microbiol. 58:3730-3743, 1992). Subcloning of an adjacent 5-kb downstream region revealed additional genes involved in nisin biosynthesis. The gene nisI, which encodes a lipoprotein, causes increased immunity after its transformation into nisin-sensitive L. lactis MG1614. It is followed by the gene nisP, coding for a subtilisin-like serine protease possibly involved in processing of the secreted leader peptide. Adjacent to the 3' end of nisP the genes nisR and nisK were identified, coding for a regulatory protein and a histidine kinase, showing marked similarities to members of the OmpR/EnvZ-like subgroup of two-component regulatory systems. The deduced amino acid sequences of nisR and nisK exhibit marked similarities to SpaR and SpaK, which were recently identified as the response regulator and the corresponding histidine kinase of subtilin biosynthesis. By using antibodies directed against the nisin prepeptide and the NisB protein, respectively, we could show that nisin biosynthesis is regulated by the expression of its structural and biosynthetic genes. Prenisin expression starts in the exponential growth phase and precedes that of the NisB protein by approximately 30 min. Both proteins are expressed to a maximum in the stationary growth phase.  相似文献   

8.
Abstract The biosynthesis, immunity and regulation of nisin, a lanthionine-containing antimicrobial peptide produced by Lactococcus lactis , is encoded by two gene clusters, nisAIZBTCIPRK and nisFEG . The mutant strain LAC46 with a deletion in the translocator gene nisT could not secrete nisin but nisin activity was detected from cell lysates. The nisT mutation was complemented by a NisT-expression plasmid resulting in restored capacity to secrete nisin. These results demonstrate that NisT is the transport protein dedicated to translocate nisin and that dehydration and lanthionine formation in nisin maturation can occur independently of transport.  相似文献   

9.
10.
【背景】乳链菌肽主要是由乳酸乳球菌生产的一类多肽,对革兰氏阳性菌有抑菌作用,是目前联合国粮食及农业组织/世界卫生组织唯一批准使用的天然食品防腐剂。但是其产量低、缺乏简便高效的检测方法,限制了其研究和应用。【目的】构建一种可输出肉眼可见红色荧光的细胞分子传感器,以期能简单方便地检测样品中的乳链菌肽,同时应用该传感器筛选乳链菌肽生产菌株。【方法】用Golden-Gate克隆方法构建含乳链菌肽诱导启动子和下游红色荧光蛋白基因(两种)的载体,转入Lactococcus lactis中。用细胞传感器筛选可能的乳链菌肽生产菌株。【结果】构建的两种乳链菌肽细胞分子传感器都能对2?200 ng/mL乳链菌肽有灵敏的响应,可用于定量测定。两种传感器的最大荧光强度和表型也有所不同。利用细胞传感器确定了Lactococcus lactis ATCC 11454乳链菌肽的产生,同时排除了一个能产其他抗菌化合物的菌株。【结论】构建的细胞分子传感器能特异性地响应乳链菌肽,并能简单快速地筛选乳链菌肽菌株。  相似文献   

11.
The thioether rings in the lantibiotics lacticin 3147 and nisin are posttranslationally introduced by dehydration of serines and threonines, followed by coupling of these dehydrated residues to cysteines. The prepeptides of the two-component lantibiotic lacticin 3147, LtnA1 and LtnA2, are dehydrated and cyclized by two corresponding bifunctional enzymes, LtnM1 and LtnM2, and are subsequently processed and exported via one bifunctional enzyme, LtnT. In the nisin synthetase complex, the enzymes NisB, NisC, NisT, and NisP dehydrate, cyclize, export, and process prenisin, respectively. Here, we demonstrate that the combination of LtnM2 and LtnT can modify, process, and transport peptides entirely different from LtnA2 and that LtnT can process and transport unmodified LtnA2 and unrelated peptides. Furthermore, we demonstrate a higher extent of NisB-mediated dehydration in the absence of thioether rings. Thioether rings apparently inhibited dehydration, which implies alternating actions of NisB and NisC. Furthermore, certain (but not all) NisC-cyclized peptides were exported with higher efficiency as a result of their conformation. Taken together, these data provide further insight into the applicability of Lactococcus lactis strains containing lantibiotic enzymes for the design and production of modified peptides.  相似文献   

12.
Several Lactococcus lactis strains produce the lantibiotic nisin. The dedicated enzymes NisB and NisC and the transporter NisT modify and secrete the ribosomally synthesized nisin precursor peptide. NisB can function in the absence of the cyclase NisC, yielding the dehydrated prenisin that lacks the thioether rings. A kinetic analysis of nisin production by L. lactis NZ9700 demonstrated that the prenisin was released from the cell into the medium before the processing of the leader sequence occurred. Upon the deletion of nisC, the production of prenisin was reduced by 70%, while in the absence of nisB, the production of prenisin was nearly completely abolished. In cells lacking nisT, no secretion was observed, while the expression of nisABC in these cells resulted in considerable growth rate inhibition caused by the intracellular accumulation of active nisin. Overall, these data indicate that the efficiency of prenisin transport by NisT is markedly enhanced by NisB, suggesting a channeling mechanism of prenisin transfer between the nisin modification enzymes and the transporter.  相似文献   

13.
Nisin A is a pentacyclic peptide antibiotic produced by Lactococcus lactis. The leader peptide of prenisin keeps nisin inactive and has a role in inducing NisB- and NisC-catalyzed modifications of the propeptide and NisT-mediated export. The highly specific NisP cleaves off the leader peptide from fully modified and exported prenisin. We present here a detailed mutagenesis analysis of the nisin leader peptide. For alternative cleavage, we successfully introduced a putative NisP autocleavage site and sites for thrombin, enterokinase, Glu-C, and factor Xa in the C-terminal part of the leader peptide. Replacing residue F-18 with Trp or Thr strongly reduced production. On the other hand, D-19A, F-18H, F-18M, L-16D, L-16K, and L-16A enhanced production. Substitutions within and outside the FNLD box enhanced or reduced the transport efficiency. None of the above substitutions nor even an internal 6His tag from positions -13 to -8 had any effect on the capacity of the leader peptide to induce NisB and NisC modifications. Therefore, these data demonstrate a large mutational freedom. However, simultaneous replacement of the FNLD amino acids by four alanines strongly reduced export and even led to a complete loss of the capacity to induce modifications. Reducing the leader peptide to MSTKDFNLDLR led to 3- or 4-fold dehydration. Taken together, the FNLD box is crucial for inducing posttranslational modifications.  相似文献   

14.
The lantibiotic nisin is produced by Lactococcus lactis. In the biosynthesis of nisin, the enzyme NisB dehydrates nisin precursor, and the enzyme NisC is needed for lanthionine formation. In this study, the nisA gene encoding the nisin precursor, and the genes nisB and nisC of the lantibiotic modification machinery were expressed together in vitro by the Rapid Translation System (RTS). Analysis of the RTS mixture showed that fully modified nisin precursor was formed. By treating the mixture with trypsin, active nisin was obtained. However, no nisin could be detected in the mixture without zinc supplementation, explained by the fact that NisC requires zinc for its function. The results revealed that the modification of nisin precursor, which is supposed to occur at the inner side of the membrane by an enzyme complex consisting of NisB, NisC, and the transporter NisT, can take place without membrane association and without NisT. This in vitro production system for nisin opens up the possibility to produce nisin variants that cannot be producedin vivo. Moreover, the system is a promising tool for utilizing the NisB and NisC enzymes for incorporation of thioether rings into medical peptides and hormones for increased stability.  相似文献   

15.
A mutant of human insulin-like growth factor II (IGF II) was constructed by site-directed mutagenesis: the nucleotides coding for Ser33 and Ser39 were changed to yield Arg and Lys, respectively, thus creating two pairs of basic residues, Arg-Arg and Lys-Arg, as flanking sequences of the remaining C domain. [Arg33, Lys39]IGF II was expressed in NIH-3T3 cells as a processed two-chain peptide with a deletion of amino acid residues 37-40 and crosslinked by three disulfide bonds. This des(37-40)[Arg33]IGF II showed 3.6-fold and 7.4-fold reduced affinities to the type 1 and type 2 IGF receptor overexpressing cells, respectively, whereas the thymidine incorporation potency was the same as that of wild-type IGF II. We speculate that the discrepancy between the reduced binding to the type 1 IGF receptor and the full thymidine incorporation potency is due to the 6.1-fold reduced affinity of the expressed mutant to the co-expressed IGF binding protein 3 (IGFBP-3). The results suggest that des(37-40)[Arg33]IGF II assumes a conformation very similar to IGF II, and that the entire length of the C domain is not essential for biological activity.  相似文献   

16.
Sequential and random lysine copolymers containing various amounts of different aromatic amino acids were synthesized. The sequential copolypeptides exhibited strong dependence of yield and degree of polymerization on the amino acid sequence of the repeating unit. To elucidate the specific contributions of aromatic side chains to the interaction of these copolymers with DNA, direct-mixed complexes were studied by thermal denaturation and CD. The melting behaviour of peptide-bound DNA was found to be strongly affected by amino acid composition and sequence. The contribution of the different aromatic amino acids to thermal stability decreased in the order: polylysine > [Lys, Tyr]n > [Lys,Phe]n > [Lys,(OMe)Tyr]n. The CD spectrum of DNA was altered by random copolymers, whereas sequential copolymers exhibited no changes. The influence of the random copolymers on the CD spectrum of DNA decreased in the series: polylysine > [Lys,Phe]n > [Lys,(OMe)Tyr]n > [Lys,Tyr]n. The contribution of the different aromatic amino acids to thermal stability is interpreted as stacking tendencies toward denatured and, in the case of Tyr, H-bond formation with native DNA. The differences found for the random and the sequential polypeptides can best be explained by assuming a cooperative action of rather small peptide segments.  相似文献   

17.
Some modified glucagon-like-peptide-1 (GLP-1) analogs are highly important for treating type 2 diabetes. Here we investigated whether GLP-1 analogs expressed in Lactococcus lactis could be substrates for modification and export by the nisin dehydratase and transporter enzyme. Subsequently we introduced a lysinoalanine by coupling a formed dehydroalanine with a lysine and investigated the structure and activity of the formed lysinoalanine-bridged GLP-1 analog. Our data show: (i) GLP-1 fused to the nisin leader peptide is very well exported via the nisin transporter NisT, (ii) production of leader-GLP-1 via NisT is higher than via the SEC system, (iii) leader-GLP-1 exported via NisT was more efficiently dehydrated by the nisin dehydratase NisB than when exported via the SEC system, (iv) individual serines and threonines in GLP-1 are dehydrated by NisB to a significantly different extent, (v) an introduced Ser30 is well dehydrated and can be coupled to Lys34 to form a lysinoalanine-bridged GLP-1 analog, (vi) a lysinoalanine(30-34) variant's conformation shifts in the presence of 25% trifluoroethanol towards a higher alpha helix content than observed for wild type GLP-1 under identical condition, (vii) a lysinoalanine(30-34) GLP-1 variant has retained significant activity. Taken together the data extend knowledge on the substrate specificities of NisT and NisB and their combined activity relative to export via the Sec system, and demonstrate that introducing a lysinoalanine bridge is an option for modifying therapeutic peptides.  相似文献   

18.
We have generated site-specific mutants of the kringle 2 domain of tissue-type plasminogen activator [( K2tPA]) in order to identify directly the cationic center of the protein that is responsible for its interaction with the carboxyl group of important omega-amino acid effector molecules, such as epsilon-amino caproic acid (EACA). Molecular modeling of [K2tPA], docked with EACA, based on crystal structures of the kringle 2 region of prothrombin and the kringle 4 domain of human plasminogen, clearly shows that Lys33 is the only positively charged amino acid in [K2tPA] that is sufficiently proximal to the carboxyl group of the ligand to stabilize this interaction. In order to examine directly the importance of this particular amino acid residue in this interaction, we have constructed, expressed, and purified three recombinant (r) mutants of [K2tPA], viz., Lys33Thr, Lys33Leu, and Lys33Arg, and found that only the last variant retained significant ability to interact with EACA and several of its structural analogues at neutral pH. In addition, another mutated r-[K2tPA], i.e., Lys33His, interacts very weakly with omega-amino acids at neutral pH and much more strongly at lower pH values where His33 would be expected to undergo protonation. This demonstrates that any positively charged amino acid at position 33 satisfies the requirement for mediation of significant bindings to this class of molecules. Since, in other kringles, positively charged residues at amino acid sequence positions homologous to Lys68, Arg70, and Arg71 of [K2tPA] have been found to participate in kringle interactions with EACA-like compounds, we have also examined the binding of EACA, and some of its analogues, to three additional r-[K2tPA] variants, i.e., Lys68Ala, Arg70Ala, and Arg71Ala. In each case, binding of these omega-amino acids to the variant kringles was observed, with only the Lys68Ala variant showing a slightly diminished capacity for this interaction. These investigations provide clear and direct evidence that Lys33 is the principal cationic site in wild-type r-[K2tPA] that directly interacts with the carboxyl group of omega-amino acid effector molecules.  相似文献   

19.
Of several methanogenic bacteria examined only Methanococcus voltae readily incorporated exogenous amino acids into cell protein. This was easily shown, since growth in the presence of exogenous amino acids resulted in a loss of signal intensities from those carbon atoms normally labelled by [13C]acetate during biosynthesis. From 80% to 95% of the Ser, Lys, Pro or Val incorporated into protein could be supplied directly from the growth medium. In contrast, Asp and Glu, if supplied to the medium, accounted for only a small percentage of the total acidic amino acid used in protein synthesis. Constitutive transport systems took up a wide range of amino acids at rates of 0.1-4.1 nmol min-1 mg-1. The transport systems required Na+, with the possible exception of the basic amino acid lysine, and were inhibited by N-ethylmaleimide or 3,3',4',5-tetrachlorosalicylanilide. No interconversion of Ile to other amino acids was detected when cells were given [13C]Ile during growth, whereas the expected labelling of the Asp and Glu families of amino acids resulted when [13C]Asp was provided to the culture. Mc. voltae synthesized its amino acids from acetate via routes fully consistent with those found in Methanospirillum hungatei [Ekiel, I., Smith, I.C.P. & Sprott, G.D. (1983) J. Bacteriol. 156, 316-326]. Propionate could substitute for an auxotrophic requirement for Ile, resulting in the synthesis of Ile with the beta-carbon originating from the carboxyl of acetate and the alpha-carbon from the carboxyl of propionate. No labelling of Ile from [13C]acetate could occur without the fatty acid. These results provide strong evidence for the carboxylation of propionate to form 2-oxobutyrate as intermediate in Ile biosynthesis, and show that the metabolic defect in Ile biosynthesis occurs prior to 2-oxobutyrate synthesis. The presence of constitutive amino acid transport systems and multiple routes for ile biosynthesis make Methanococcus voltae an attractive methanogen for genetic studies.  相似文献   

20.
Nisin is a pentacyclic peptide antibiotic active against Gram-positive bacteria. Its thioether rings are formed by two enzymatic steps: nisin dehydratase (NisB)-mediated dehydration of serines and threonines followed by nisin cyclase (NisC)-catalyzed enantioselective coupling of cysteines to the formed dehydroresidues. Here, we report the in vivo activity of NisC to cyclize a wide array of unrelated and designed peptides that were fused to the nisin leader peptide. To assess the role of NisC, leader peptide fusions, secreted by Lactococcus lactis cells containing NisBT with or without NisC were compared. In hexapeptides, a dehydroalanine could spontaneously react with a more C-terminally located cysteine. In contrast, peptides containing dehydrobutyrines require NisC for cyclization. In agreement with in silico predictions NisC could efficiently cyclize the hexapeptides ADhbVECK and IDhbPGCK, but ADhbVWCE was not cyclized. Interestingly, NisC could efficiently catalyze the synthesis of peptides with intertwined rings and of a designed polyhexapeptide containing four thioether rings. Taken together the data demonstrate that NisC can be widely applied for the cyclization and stabilization of nonlantibiotic peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号