首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial secondary metabolites are widely used as antibiotics, anticancer drugs, insecticides and food additives. Attempts to engineer their biosynthetic gene clusters (BGCs) to produce unnatural metabolites with improved properties are often frustrated by the unpredictability and complexity of the enzymes that synthesize these molecules, suggesting that genetic changes within BGCs are limited by specific constraints. Here, by performing a systematic computational analysis of BGC evolution, we derive evidence for three findings that shed light on the ways in which, despite these constraints, nature successfully invents new molecules: 1) BGCs for complex molecules often evolve through the successive merger of smaller sub-clusters, which function as independent evolutionary entities. 2) An important subset of polyketide synthases and nonribosomal peptide synthetases evolve by concerted evolution, which generates sets of sequence-homogenized domains that may hold promise for engineering efforts since they exhibit a high degree of functional interoperability, 3) Individual BGC families evolve in distinct ways, suggesting that design strategies should take into account family-specific functional constraints. These findings suggest novel strategies for using synthetic biology to rationally engineer biosynthetic pathways.  相似文献   

2.
3.
The Burkholderiales are an emerging source of bioactive natural products. Their genomes contain a large number of cryptic biosynthetic gene clusters (BGCs), indicating great potential for novel structures. However, the lack of genetic tools for the most of Burkholderiales strains restricts the mining of these cryptic BGCs. We previously discovered novel phage recombinases Redαβ7029 from Burkholderiales strain DSM 7029 that could help in efficiently editing several Burkholderiales genomes and established the recombineering genome editing system in Burkholderialse species. Herein, we report the application of this phage recombinase system in another species Paraburkholderia megapolitana DSM 23488, resulting in activation of two silent non-ribosomal peptide synthetase/polyketide synthase BGCs. A novel class of lipopeptide, haereomegapolitanin, was identified through spectroscopic characterization. Haereomegapolitanin A represents an unusual threonine-tagged lipopeptide which is longer than the predicted NRPS assembly line. This recombineering-mediated genome editing system shows great potential for genetic manipulation of more Burkholderiales species to activate silent BGCs for bioactive metabolites discovery.  相似文献   

4.
5.
The rapid increase of publicly available microbial genome sequences has highlighted the presence of hundreds of thousands of biosynthetic gene clusters (BGCs) encoding valuable secondary metabolites. The experimental characterization of new BGCs is extremely laborious and struggles to keep pace with the in silico identification of potential BGCs. Therefore, the prioritisation of promising candidates among computationally predicted BGCs represents a pressing need. Here, we propose an output ordering and prioritisation system (OOPS) which helps sorting identified BGCs by a wide variety of custom-weighted biological and biochemical criteria in a flexible and user-friendly interface. OOPS facilitates a judicious prioritisation of BGCs using G+C content, coding sequence length, gene number, cluster self-similarity and codon bias parameters, as well as enabling the user to rank BGCs based upon BGC type, novelty, and taxonomic distribution. Effective prioritisation of BGCs will help to reduce experimental attrition rates and improve the breadth of bioactive metabolites characterized.  相似文献   

6.
【目的】分析洛伐他汀工业生产菌株土曲霉HZ01的次级代谢产物合成能力,为后期的遗传改造、次级代谢产物及其基因簇挖掘提供指导。【方法】对洛伐他汀发酵条件下的样品进行了转录组分析,同时运用色谱分离技术及波谱学方法对主要次级代谢产物进行了分离和结构鉴定。【结果】洛伐他汀合成相关基因转录水平非常高,还有4个聚酮合酶(PKS)、6个非核糖体多肽合成酶(NRPS)和1个PKS-NRPS杂合酶基因进行了转录,其他PKS和NRPS基因都处于沉默状态。此外,从该菌的发酵产物中分离鉴定了10个主要副产物并确定了其结构。【结论】土曲霉HZ01是一株优良的洛伐他汀生产菌株,在构建次级代谢产物异源合成细胞工厂和鉴定次级代谢产物生物合成途径方面具有很好的应用潜力。  相似文献   

7.
Actinomycetes produce a large variety of pharmaceutically active compounds, yet production titers often require to be improved for discovery, development and large-scale manufacturing. Here, we describe a new technique, multiplexed site-specific genome engineering (MSGE) via the ‘one integrase-multiple attB sites’ concept, for the stable integration of secondary metabolite biosynthetic gene clusters (BGCs). Using MSGE, we achieved five-copy chromosomal integration of the pristinamycin II (PII) BGC in Streptomyces pristinaespiralis, resulting in the highest reported PII titers in flask and batch fermentations (2.2 and 2 g/L, respectively). Furthermore, MSGE was successfully extended to develop a panel of powerful Streptomyces coelicolor heterologous hosts, in which up to four copies of the BGCs for chloramphenicol or anti-tumour compound YM-216391 were efficiently integrated in a single step, leading to significantly elevated productivity (2–23 times). Our multiplexed approach holds great potential for robust genome engineering of industrial actinomycetes and novel drug discovery by genome mining.  相似文献   

8.
Phenazines (Phzs), a family of chemicals with a phenazine backbone, are secondary metabolites with diverse properties such as antibacterial, anti-fungal, or anticancer activity. The core derivatives of phenazine, phenazine-1-carboxylic acid (PCA) and phenazine-1,6-dicarboxylic acid (PDC), are themselves precursors for various other derivatives. Recent advances in genome mining tools have enabled researchers to identify many biosynthetic gene clusters (BGCs) that might produce novel Phzs. To characterize the function of these BGCs efficiently, we performed modular construct assembly and subsequent multi-chassis heterologous expression using chassis-independent recombinase-assisted genome engineering (CRAGE). CRAGE allowed rapid integration of a PCA BGC into 23 diverse γ-proteobacteria species and allowed us to identify top PCA producers. We then used the top five chassis hosts to express four partially refactored PDC BGCs. A few of these platforms produced high levels of PDC. Specifically, Xenorhabdus doucetiae and Pseudomonas simiae produced PDC at a titer of 293 mg/L and 373 mg/L, respectively, in minimal media. These titers are significantly higher than those previously reported. Furthermore, selectivity toward PDC production over PCA production was improved by up to 9-fold. The results show that these strains are promising chassis for production of PCA, PDC, and their derivatives, as well as for function characterization of Phz BGCs identified via bioinformatics mining.  相似文献   

9.
Daptomycin is a lipopeptide antibiotics used to treat Gram-positive pathogens infections, including drug-resistant strains. In-depth exploration of its biosynthesis and regulation is crucial for metabolic engineering improvement of this ever-increasing important antibiotic. The past years have witnessed the significant progresses in the understanding of the molecular mechanisms underlying the biosynthesis and regulation of daptomycin. This information was updated in our review, with special focus on the regulatory network integrating a wide variety of physiological and environmental inputs. This should provide novel insight into the regulatory mechanism of biosynthesis of daptomycin and nodes for strain improvement to increase the yields of daptomycin.  相似文献   

10.
Microbial superhost strains should provide an ideal platform for the efficient homologous or heterologous phenotypic expression of biosynthetic gene clusters (BGCs) of new and novel bioactive molecules. Our aim in the current study was to perform a comparative study at the bioprocess and metabolite levels of the previously designed superhost strain Streptomyces coelicolor M1152 and its derivative strain S. coelicolor M1581 heterologously expressing chloramphenicol BGC. Parent strain M1152 was characterized by a higher specific growth rate, specific CO2 evolution rate, and a higher specific l -glutamate consumption rate as compared with M1581. Intracellular primary central metabolites (nucleoside/sugar phosphates, amino acids, organic acids, and CoAs) were quantified using four targeted LC-MS/MS-based methods. The metabolite pathways in the nonantibiotic producing S. coelicolor host strain were flooded with carbon from both carbon sources, whereas in antibiotic-producing strain, the carbon of l -glutamate seems to be draining out through excreting synthesized antibiotic. The 13C-isotope-labeling experiments revealed the bidirectionality in the glycolytic pathway and reversibility in the non-oxidative part of PPP even with continuous uptake of d -glucose. The change in the primary metabolites due to the insertion of BGC disclosed a clear linkage between the primary and secondary metabolites.  相似文献   

11.
胡仿香  李霜 《微生物学报》2018,58(10):1711-1721
表面活性素(Surfactin)是芽胞杆菌属(Bacillussp.)代谢产生的脂肽类生物表面活性剂,是由非核糖体肽合成酶(NRPS)催化而得的一种次级代谢产物。由于surfactin具有稳定性好、可被降解、表面活性好等理化性质以及抑菌、抗肿瘤等生物活性,在医药、农业、食品、化妆品、石油开采等方面都具有很大的应用潜力。但是,天然菌株产率低、生产成本高等特点限制了surfactin的规模化应用。本文对surfactin的合成机理进行了简要阐述,并针对目前提升surfactin产量和改变结构组分的4种定向改造策略(启动子工程、强化外排分泌、改造NRPS结构域和脂肪酸链合成酶系)进行了综述,最后对surfactin的研究方向进行了展望。  相似文献   

12.
Daptomycin is a cyclic lipopeptide antibiotic produced by Streptomyces roseosporus. Cubicin (daptomycin-for-injection) was approved in 2003 by the FDA to treat skin and skin structure infections caused by Gram-positive pathogens. Daptomycin is particularly significant in that it represents the first new natural product antibacterial structural class approved for clinical use in three decades. The daptomycin gene cluster contains three very large genes (dptA, dptBC, and dptD) that encode the nonribosomal peptide synthetase (NRPS). The related cyclic lipopeptide A54145 has four NRPS genes (lptA, lptB, lptC, and lptD), and calcium dependent antibiotic (CDA) has three (cdaPS1, cdaPS2, and cdaPS3). Mutants of S. roseosporus containing deletions of one or more of the NRPS genes have been trans-complemented with dptA, dptBC, and dptD by inserting these genes under the control of the ermEp* promoter into separate conjugal cloning vectors containing phiC31 or IS117 attachment (attP int) sites; delivering the plasmids into S. roseosporus by conjugation from Escherichia coli; and inserting the plasmids site-specifically into the chromosome at the corresponding attB sites. This trans-complementation system was used to generate subunit exchanges with lptD and cdaPS3 and the recombinants produced novel hybrid molecules. Module exchanges at positions D: -Ala(8) and D: -Ser(11) in the peptide have produced additional novel derivatives of daptomycin. The approaches of subunit exchanges and module exchanges were combined with amino acid modifications of Glu at position 12 and natural variations in lipid side chain starter units to generate a combinatorial library of antibiotics related to daptomycin. Many of the engineered strains produced levels of novel molecules amenable to isolation and antimicrobial testing, and most of the compounds displayed antibacterial activities.  相似文献   

13.
14.
Li  Ruixin  Li  ZiXin  Ma  Ke  Wang  Gang  Li  Wei  Liu  Hong-Wei  Yin  Wen-Bing  Zhang  Peng  Liu  Xing-Zhong 《中国科学:生命科学英文版》2019,62(8):1087-1095
Filamentous fungi are excellent sources for the production of a group of bioactive small molecules which are often called secondary metabolites(SMs). The advanced genome sequencing technology combined with bioinformatics analysis reveals a large number of unexplored biosynthetic gene clusters(BGCs) in the fungal genomes. To unlock this fungal SM treasure, many approaches including heterologous expression are being developed and efficient cloning of the BGCs is a crucial step to do this.Here, we present an efficient strategy for the direct cloning of fungal BGCs. This strategy consisted of Splicing by Overlapping Extension(SOE)-PCR and yeast assembly in vivo. By testing 14 BGCs DNA fragments ranging from 7 kb to 52 kb, the average positive rate was over 80%. The maximal insertion size for fungal BGC assembly was 52 kb. Those constructs could be used conveniently for the heterologous expression leading to the discovery of novel natural products. Thus, our results provide an efficient and quick method for the low cost direct cloning of fungal BGCs.  相似文献   

15.
Combinatorial biosynthesis of novel secondary metabolites derived from nonribosomal peptide synthetases (NRPSs) has been in slow development for about a quarter of a century. Progress has been hampered by the complexity of the giant multimodular multienzymes. More recently, advances have been made on understanding the chemical and structural biology of these complex megaenzymes, and on learning the design rules for engineering functional hybrid enzymes. In this perspective, I address what has been learned about successful engineering of complex lipopeptides related to daptomycin, and discuss how synthetic biology and microbial genome mining can converge to broaden the scope and enhance the speed and robustness of combinatorial biosynthesis of NRPS-derived natural products for drug discovery.  相似文献   

16.
Ca(2+)-dependent cyclic lipodepsipeptides are an emerging class of antibiotics for the treatment of infections caused by Gram-positive pathogens. These compounds are synthesized by nonribosomal peptide synthetase (NRPS) complexes encoded by large gene clusters. The gene cluster encoding biosynthetic pathway enzymes for the Streptomyces fradiae A54145 NRP was cloned from a cosmid library and characterized. Four NRPS-encoding genes, responsible for subunits of the synthetase, as well as genes for accessory functions such as acylation, methylation and hydroxylation, were identified by sequence analysis in a 127 kb region of DNA that appears to be located subterminally in the bacterial chromosome. Deduced epimerase domain-encoding sequences within the NRPS genes indicated a D: -stereochemistry for Glu, Lys and Asn residues, as observed for positionally analogous residues in two related compounds, daptomycin, and the calcium-dependent antibiotic (CDA) produced by Streptomyces roseosporus and Streptomyces coelicolor, respectively. A comparison of the structure and the biosynthetic gene cluster of A54145 with those of the related peptides showed many similarities. This information may contribute to the design of experiments to address both fundamental and applied questions in lipopeptide biosynthesis, engineering and drug development.  相似文献   

17.
18.
【目的】分析刺孢吸水链霉菌北京变种(农抗120产生菌)基因组和次级代谢产物组分,研究并鉴定农抗120产生菌中未被发现的活性组分。【方法】利用antiSMASH在线分析农抗120产生菌Streptomyces hygrospinosusvar.beijingensis基因组信息,锁定可能的制霉菌素和丰加霉素生物合成基因簇。利用HPLC和LC-MS等分析方法对农抗120产生菌发酵产物进行分析,同时利用制霉菌素和丰加霉素标准品作为对照,以鉴定该菌株代谢组分中的次级代谢产物。此外,通过构建目标基因簇大片段缺失突变株,并对所得突变株发酵产物进行检测,以确定生物合成基因簇与目的代谢产物的对应关系。【结果】本研究综合利用基因组序列分析、基因缺失突变株构建以及代谢产物检测方法,鉴定了农抗120产生菌中制霉菌素和丰加霉素两种活性成分,并确定了负责这些化合物合成的基因簇。【结论】本研究所构建的多重基因簇失活突变株为挖掘刺孢吸水链霉菌北京变种更多的天然次级代谢产物奠定了基础。  相似文献   

19.
Fungi produce an abundance of bioactive secondary metabolites which can be utilized as antibiotics and pharmaceutical drugs. The genes encoding secondary metabolites are contiguously arranged in biosynthetic gene clusters (BGCs), which supports co-regulation of all genes required for any one metabolite. However, an ongoing challenge to harvest this fungal wealth is the finding that many of the BGCs are ‘silent’ in laboratory settings and lie in heterochromatic regions of the genome. Successful approaches allowing access to these regions - in essence converting the heterochromatin covering BGCs to euchromatin - include use of epigenetic stimulants and genetic manipulation of histone modifying proteins. This review provides a comprehensive look at the chromatin remodeling proteins which have been shown to regulate secondary metabolism, the use of chemical inhibitors used to induce BGCs, and provides future perspectives on expansion of epigenetic tools and concepts to mine the fungal metabolome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号