首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An immune-enhancing strain, Lactobacillus plantarum Pi06, isolated from a healthy infant was used for biomass production following optimization of the medium in shake-flask culture. Preliminary studies showed that commercial MRS medium and cultivation under static conditions generated higher biomass production than four other tested media with or without a shaking condition. The selected medium composition, consisting of glucose, yeast extract, soy peptone, ammonium citrate, and corn steep liquor, was further optimized using a systematic method that integrated the Taguchi array design and the Box-Behnken method. The response effects of these factors were first investigated using Taguchi design under an L 16 (45) array. The suggested medium composition, derived from Statistica 7.1 using the Taguchi design, was applied to cultivate cells and a biomass of 7.16 g dry cell weight (DCW)/L was obtained. Response surface methodology based on the Box-Behnken method for the three response variables of glucose, yeast extract, and corn steep liquor was then used to further increase the biomass level to 8.94 g DCW/L. The resulting optimum medium consisted of 35 g/L glucose, 35 g/L yeast extract, and 40 mL/L corn steep liquor. Compared with the initial medium, the biomass yield was improved from 4.31 to 8.94 g DCW/L, an enhancement of approximately 107%.  相似文献   

3.
The use of date juice as a substrate for lactic acid production was investigated. Various nitrogen sources were compared with yeast extract for efficient lactic acid production by Lactobacillus casei subsp. rhamnosus. Among different nitrogen sources added to date juice (yeast extract, ammonium sulfate, tryptic soy, urea, peptone, and casein hydrolysate), yeast extract was the most efficient. The effect of yeast extract could have been due to its B vitamin content. The addition of five B vitamins at less than 25 mg/l to date juice with any nitrogen source enhanced lactic acid production to some extent, except for date juice with yeast extract or urea or peptone. The most significant increase was obtained with ammonium sulfate. Half of the yeast extract content (10 g/l) in a supplemented date juice could be replaced by a mixture of B vitamins at less than 25 mg/l, and ammonium sulfate at 2.6 g/l with no significant decrease in lactic acid production.  相似文献   

4.
AIMS: Development of cost-effective production medium by applying statistical designs for single-step fermentation of starch (corn flour - CF) to L-(+) lactic acid, using inexpensive nitrogen sources as substitutes for peptone and yeast extract in MRS medium by amylolytic Lactobacillus amylophilus GV6. METHODS AND RESULTS: A two-level Plackett-Burman design was employed for screening various available crude starches (flours) for L-(+) lactic acid production by Lact. amylophilus GV6 using red lentil flour (RL) and bakers yeast cells (YC) as substitutes for commercial peptone and yeast extract in MRS medium in anaerobic submerged fermentation. Of all the tested flours, CF was found to be the most significant. Central composite rotatable design was employed to determine maximum production of L-(+) lactic acid at optimum values of process variables, CF, RL, YC, CaCO(3) and incubation period (IP). minitab analyses showed that lactic acid production was significantly affected by the linear terms CF, RL, CaCO(3) and IP. The interactions of CF-RL, CF-YC, CF-CaCO(3), RL-YC and RL-CaCO(3) and the square terms CF and IP were significant. The maximum lactic acid production of 29 g/37 g of starch present in 50 g of CF was obtained at optimized concentrations of CF 5%, RL 0.7%, YC 0.8%, CaCO(3) 0.8% and IP 2.9 days. CONCLUSIONS: Successful application of Plackett-Burman design helped in identifying CF as the best carbon source among the tested flours for L-(+) lactic acid production using inexpensive nitrogen sources. Further optimization of the process variables by response surface methods (RSMs) led to maximum production of lactic acid (29 g lactic acid from 37 g of starch present in 50 g of flour). SIGNIFICANCE AND IMPACT OF THE STUDY: Lactobacillus amylophilus GV6 showed 78.4% lactic acid production efficiency (g lactic acid produced/g starch taken) and 96% lactic acid yield efficiency (g lactic acid produced/g starch utilized). Information from the present studies provides a better understanding on production of L-(+) lactic acid on fermentation of CF using inexpensive nitrogen sources and on changes in the production as a response from interaction of factors. Use of inexpensive nitrogen sources and starch as substrate in MRS medium for single-step fermentation of lactic acid can become an efficient, economic and viable process. This report is on optimization of inexpensive nitrogen sources completely replacing peptone and yeast extract in single-step submerged fermentation of starch (present in CF) to lactic acid with high production efficiency.  相似文献   

5.
The cultivation conditions for Rhizopus oryzae grown in synthetic medium and paper pulp spent sulfite liquor (SSL) were investigated to achieve high biomass and ethanol yields using shake flasks and bioreactors. The fungus assimilated the hexoses glucose, mannose and galactose, and the pentoses xylose and arabinose as well as acetic acid which are present in SSL. The assimilation of hexoses was faster than pentoses during cultivation in a synthetic medium. However, all sugars were assimilated concomitantly during growth in SSL supplemented with ammonium, magnesium, calcium, phosphate, sulfate and trace amounts of some other metal ions (SSL-S). The medium composition had an important influence on biomass yield. The highest biomass yields, viz. 0.18 and 0.43 g biomass/g sugar were obtained, when the cells were cultivated in shake flasks with a synthetic medium containing glucose as carbon and energy source and SSL-S, respectively. The corresponding yields in a bioreactor with more efficient aeration were 0.22 and 0.55 g/g. In addition to the biomass, ethanol, lactic acid, and glycerol were important extracellular metabolites of the cultivation with maximum yields of 0.37, 0.30 and 0.09 g/g, respectively. When the source of sugars in the medium was exhausted, the fungus consumed the metabolites produced, such that the liquid medium was depleted of potential oxidizable nutrients. In general, there was a direct competition between lactic acid and ethanol among the metabolites. Poor medium compositions and cultivation conditions resulted in higher yields of lactic acid, whereas the ethanol and biomass yields were higher in rich media. SSL-S supported good growth of mycelium and a high ethanol yield.  相似文献   

6.
Summary Lactic acid was produced by Rhizopus arrhizus using waste potato starch as the substrate. The aim of this study was to identify the role of nitrogen sources and their impact on the formation of lactic acid and associated byproducts. Ammonium sulphate, ammonium nitrate, urea, yeast extract and peptone were assessed in conjunction with various ratios of carbon to nitrogen (C:N). Fermentation media with a low C:N ratio enhanced the production of lactic acid, biomass and ethanol, while a high C:N ratio favoured the production of fumaric acid. Ammonium nitrate appeared to be the most suitable nitrogen source for achieving a high and stable lactic acid yield, and minimizing the production of byproducts such as biomass and ethanol, while urea proved to be the least favourable nitrogen source. Yeast extract and peptone appeared to improve fungal cell growth. The kinetics data revealed that a high concentration of ammonium nitrate enhanced the lactic acid productivity. The maximum lactic acid concentration of 36.4 g/l, representing a yield of 91%, was obtained with addition of 0.909 g/l ammonium nitrate in 32 h.  相似文献   

7.
Fishmeal wastewater, a seafood processing waste, was utilized for production of lactic acid and fungal biomass by Rhizopus oryzae AS 3.254 with the addition of sugars. The 30 g/l exogenous glucose in fishmeal wastewater was superior to starch in view of productivities of lactic acid and fungal biomass, and COD reduction. Fishmeal wastewater can be a replacement for peptone which was the most suitable nitrogen source for lactic acid production among the tested organic or inorganic nitrogen sources. Exogenous NaCl (12 g/l) completely inhibited the production of lactic acid and fungal growth. In the medium of COD 5,000 mg/l fishmeal wastewater with the addition of 30 g/l glucose, the maximum productivity of lactic acid was 0.723 g/l h corresponding to productivity of fungal biomass 0.0925 g/l h, COD reduction 84.9% and total nitrogen removal 50.3% at a fermentation time of 30 h.  相似文献   

8.
Lactic acid is a green chemical that can be used as a raw material for biodegradable polymer. To produce lactic acid through microbial fermentation, we previously screened a novel lactic acid bacterium. In this work, we optimized lactic acid fermentation using a newly isolated and homofermentative lactic acid bacterium. The optimum medium components were found to be glucose, yeast extract, (NH4)2HPO4, and MnSO4. The optimum pH and temperature for a batch culture ofLactobacillus sp. RKY2 was found to be 6.0 and 36°C, respectively. Under the optimized culture conditions, the maximum lactic acid concentration (153.9 g/L) was obtained from 200 g/L of glucose and 15 g/L of yeast extract, and maximum lactic acid productivity (6.21 gL−1h−1) was obtained from 100 g/L of glucose and 20 g/L of yeast extract. In all cases, the lactic acid yields were found to be above 0.91 g/g. This article provides the optimized conditions for a batch culture ofLactobacillus sp. RKY2, which resulted in highest productivity of lactic acid.  相似文献   

9.
The yeast Candida tropicalis, Candida utilis, Trichosporon cutaneum were cultivated on the synthetic medium containing additions of group B vitamins (biotin, thiamin) and glucose, glycerol of lactic acid as the sole source. The protein content, amino acid composition, nucleic acids and complex B vitamins were identified in the resultant biomass. The carbon source in the medium affected these indices. The protein and nucleic acid content also depended on the yeast strain.  相似文献   

10.
Summary Cheese whey ultrafiltrate (WU) was used as the carbon source for the production of lactic acid by batch fermentation with Lactobacillus helveticus strain milano. The fermentation was conducted in a 400 ml fermentor at an agitation rate of 200 rpm and under conditions of controlled temperature (42° C) and pH. In the whey ultrafiltrate-corn steep liquor (WU-CSL) medium, the optimal pH for fermentation was 5.9. Inoculum propagated in skim milk (SM) medium or in lactose synthetic (LS) medium resulted in the best performance in fermentation (in terms of growth, lactic acid production, lactic acid yield and maximum productivity of lactic acid), as compared to that propagated in glucose synthetic (GS) medium. The yeast extract ultrafiltrate (YEU) used as the nitrogen/growth factor source in the WU medium at 1.5% (w/v) gave the highest maximum productivity of lactic acid of 2.70 g/l-h, as compared to the CSL and the tryptone ultrafiltrate (TU). L. helveticus is more advantageous than Streptococcus thermophilus and Lactobacillus delbrueckii for the production of lactic acid from WU. The L. helveticus process will provide an alternative solution to the phage contamination in dairy industries using Lactobacillus bulgaricus.  相似文献   

11.
Production of lactic acid from glucose by immobilized cells of Lactococcus lactis IO-1 was investigated using cells that had been immobilized by either entrapment in beads of alginate or encapsulation in microcapsules of alginate membrane. The fermentation process was optimized in shake flasks using the Taguchi method and then further assessed in a production bioreactor. The bioreactor consisted of a packed bed of immobilized cells and its operation involved recycling of the broth through the bed. Both batch and continuous modes of operation of the reactor were investigated. Microencapsulation proved to be the better method of immobilization. For microencapsulated cells at immobilized cell concentration of 5.3 g l−1, the optimal production medium had the following initial concentrations of nutrients (g l−1): glucose 45, yeast extract 10, beef extract 10, peptone 7.5 and calcium chloride 10 at an initial pH of 6.85. Under these conditions, at 37 °C, the volumetric productivity of lactic acid in shake flasks was 1.8 g l−1 h−1. Use of a packed bed of encapsulated cells with recycle of the broth through the bed, increased the volumetric productivity to 4.5 g l−1 h−1. The packed bed could be used in repeated batch runs to produce lactic acid.  相似文献   

12.
Production of lactic acid from date juice by fermentation has been studied using Lactobacillus casei subsp. rhamnosus as the producer organism. The optimum substrate concentration, expressed in its glucose content, was 60 g l(-1). Various nitrogen sources were compared with yeast extract in terms of their efficiency for lactic acid production. None of these nitrogen sources gave lactic acid concentrations as high as that obtained with yeast extract. As yeast extract supplementation was not economically attractive, different proportions of (NH4)2SO4 and yeast extract were used. When the elemental nitrogen ratio of(NH4)2SO4 to yeast extract was 4:1, the substrate use and efficiency of lactic acid production were the same as in date juice supplemented with 20 g l(-1) yeast extract (0:5).  相似文献   

13.
Several varieties of peptone supported growth of A. culbertsoni to different extents reaching a maximum cell density of 1-2 X 10(6)/ml. Proteose peptone and tryptone also yielded good growth when combined with thiamine and vitamin B12. A combination of proteose peptone with glucose, yeast extract and salts promoted excellent growth of A. culbertsoni with cell density reaching 1-2 X 10(7) cells/ml; tryptone and one of the indigenous peptones also yielded comparable growth when substituted for proteose peptone in this medium. Casamino acids also supported good growth of amoebae and requirement of yeast extract could be met by a combination of thiamine, vitamin B12 and biotin. Bacto peptone did not support good growth of this amoeba but supplementation of peptone with casamino acids or amino acid mixture improved the growth supporting capacity of the medium. Development of several media with or without glucose will aid in cultivation of A. culbertsoni, studies on its metabolism as well as screening of potential drugs.  相似文献   

14.
海洋红酵母产虾青素培养基优化的初步研究   总被引:8,自引:0,他引:8  
为了提高海洋红酵母发酵虾青素的产量水平,对海洋红酵母的培养基成分进行了初步研究。试验结果表明,海洋红酵母能利用葡萄糖、淀粉水解糖、糖蜜等多种碳源,用淀粉水解糖为碳源培养海洋红酵母所获得的虾青素体积产率最大;用牛肉膏为氮源有利于提高海洋红酵母的生物量,以(NH4)2SO4、NH4Cl和蛋白胨为氮源有利于提高海洋红酵母的虾青素体积产率,用KNO3、草酸铵、蛋白胨、尿素有利于提高海洋红酵母的虾青素细胞产率;在海洋红酵母的培养基中添加Mn2 、Cd2 、Zn2 、Fe2 能增加生物量,添加Zn2 、Fe3 、Mn2 能增加海洋红酵母的虾青素体积产率,添加Fe3 能提高海洋红酵母的虾青素细胞产率。  相似文献   

15.
鼠李糖乳杆菌经实验室耐高糖高酸选育,能够在高糖浓度下高效高产L-乳酸。以酵母粉为氮源和生长因子,葡萄糖初始浓度分别为120 g/L和146 g/L,摇瓶培养120h,L-乳酸产量分别为104g/L和117.5g/L,L-乳酸得率分别为86.7%和80.5%。高葡萄糖浓度对菌的生长和乳酸发酵有一定的抑制。增加接种量,在高糖浓度发酵条件下,可以缩短发酵时间,但对增加乳酸产量效果不明显。乳酸浓度对鼠李糖乳杆菌生长和产酸有显著的影响。初始乳酸浓度到达70g/L以上时,鼠李糖乳杆菌基本不生长和产酸,葡萄糖消耗也被抑制。酵母粉是鼠李糖乳杆菌的优良氮源,使用其它被测试的氮源菌体生长和产酸都有一定程度的下降。用廉价的黄豆粉并补充微量维生素液,替代培养基中的酵母粉,可以使产酸浓度和碳源得率得以基本维持。  相似文献   

16.
Cashew apples are considered agriculture excess in the Brazilian Northeast because cashew trees are cultivated primarily with the aim of cashew nut production. In this work, the use of cashew apple juice as a substrate for Leuconostoc mesenteroides cultivation was investigated. The effect of yeast extract and phosphate addition was evaluated using factorial planning tools. Both phosphate and yeast extract addition were significant factors for biomass growth, but had no significant effect on maximum enzyme activity. The enzyme activities found in cashew apple juice assays were at least 3.5 times higher than the activity found in the synthetic medium. Assays with pH control (pH = 6.5) were also carried out. The pH-controlled fermentation enhanced biomass growth, but decreased the enzyme activity. Crude enzyme free of cells produced using cashew apple juice was stable for 16 h at 30°C at a pH of 5.0.  相似文献   

17.
The production of a novel broad-spectrum antimicrobial peptide enterococcin A 2000, active against Gram-positive and Gram-negative microorganisms includingListeria subsp. andEscherichia coli, byEnterococcus faecium strain A 2000 isolated from the surface of traditional Bulgarian yellow cheese “kash-kaval” is considerably influenced by complex nitrogen sources in the production medium. Medium components, especially peptone and yeast extract, and their concentration contributed to the increase in bacteriocin production during the stationary phase (16–46 h) of cultivation even in the absence of one of the components present in the basal cultivation MRS medium.  相似文献   

18.
Biomass and lactic acid production by a Lactobacillus plantarum strain isolated from Serrano cheese, a microorganism traditionally used in foods and recognized as a potent probiotic, was optimized. Optimization procedures were carried out in submerged batch bioreactors using cheese whey as the main carbon source. Sequential experimental Plackett–Burman designs followed by central composite design (CCD) were used to assess the influence of temperature, pH, stirring, aeration rate, and concentrations of lactose, peptone, and yeast extract on biomass and lactic acid production. Results showed that temperature, pH, aeration rate, lactose, and peptone were the most influential variables for biomass formation. Under optimized conditions, the CCD for temperature and aeration rate showed that the model predicted maximal biomass production of 14.30 g l−1 (dw) of L. plantarum. At the central point of the CCD, a biomass of 10.2 g l−1 (dw), with conversion rates of 0.10 g of cell g−1 lactose and 1.08 g lactic acid g−1 lactose (w/w), was obtained. These results provide useful information about the optimal cultivation conditions for growing L. plantarum in batch bioreactors in order to boost biomass to be used as industrial probiotic and to obtain high yields of conversion of lactose to lactic acid.  相似文献   

19.
Summary The productivity ofEscherichia coli biomass and recombinant beta-galactosidase was increased in Luria broth (LB) enriched with yeast extract. In flask culture under conditions of LB limitation, yeast extract suplementation gave the highest biomass (strain HB101/pRW756) stimulation per unit of component added compared with supplementation by various amounts of amino acids, vitamins, minerals, purines/pyrimidines, tryptone, casamino acids, casein peptone or gelatin peptone. The biomass production ofE. coli HB101/pRW756, XL-1 blue/puc118, XL-1 Blue FF/puc118 and TB-1/p1034 cells was stimulated in fermentor-scale experiments with additional yeast extract in LB. Total beta-galactosidase production from plasmid genes in fermentor-scale experiments was increased 105.4% in XL-1 blue/puc118 cells, 365.5% in XL-1 blue FF/puc118 cells and 421.4% in TB-1/p1034 cells by 0.5%, 1% and 1% weight per volume of additional yeast extract in LB, respectively. Depending on different strains, the increase of the enzyme production was obtained either by increased biomass, or the combination of enhanced gene expression and increased biomass. Neither the biomass nor beta-galactosidase production was stimulated in N4830/p1034 cells by the increase in yeast extract concentration in the medium.  相似文献   

20.
Curvularia lunata could neither grow nor produce rifamycin oxidase in synthetic media without peptone and yeast extract. Mycelia grown on complex media were tested for the ability to produce rifamycin oxidase in synthetic media. The optimum concentrations of peptone and yeast extract were in the range of 7.5–10 g/L. Five percent inoculum size was found to be optimum for good growth and enzyme production. Addition of metal ions to the cultivation medium increased the enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号