首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 254 毫秒
1.
真水狼蛛胚胎发育过程中形态和主要化学物质含量的变化   总被引:3,自引:0,他引:3  
彭宇  胡萃  赵敬钊  陈建 《动物学报》2001,47(2):190-195,T001
采用常规石蜡切片和液体石蜡透明卵壳的方法,系统地观察了真水狼蛛的胚胎早期,体节期,胚胎速转期和幼虫期4个发育阶段的形态特征和发育过程,并测定了胚胎发育过程中卵的内主要化学物质含量的变化,在28度时,真水狼蛛的卵从产卵到孵化共需144小时,其中胚胎早期42小时,体节期33小时,胚胎逆转期27小时,在胚胎逆转期后进入前幼虫期,前幼虫期42小时,真水狼蛛的胚胎逆转现象很明显,表明真水狼蛛的进化程度较高,在胚胎发育过程中,卵的含水量,含脂量和卵重在胎发育24hr后开始下降,卵的蛋白质含量在48小时后也开始下降,含糖量下降不明显。  相似文献   

2.
本文报道通过对泽蛙早期胚胎进行截头再生实验的观察,结果发现泽蛙尾芽期、肌肉感应期、孵化期及角膜透明期等不同发育时期的胚胎对截断头部的反应都有着基本相同的方式,即不同程度地出现完全再生、不完全再生及不出现再生的现象。泽蛙胚胎发育早期能再生出头的事实,充分证明某些脊椎动物也和某些无脊椎动物一样是具有头部再生能力的。  相似文献   

3.
以斜带石斑鱼囊胚期胚胎和尾芽期胚胎分别作为检验组和驱动组,构建了石斑鱼囊胚期胚胎和尾芽期胚胎的抑制性差减杂交cDNA文库。以α-tubulin作为检测指标,显示差减效率分别高达28和27。分别取囊胚期胚胎和尾芽期胚胎各192和960个PCR阳性克隆进行斑点杂交,得到15个囊胚期和131个尾芽期的斑点杂交阳性克隆。测序和数据库比对分析表明,囊胚期15个阳性克隆中有11个已知基因的cDNA片段和没有同源性的4个cDNA片段;而在尾芽期的131个阳性克隆中,有123个已知基因的cDNA片段和8个没有同源性的cD-NA片段。用半定量RT-PCR技术分析了部分基因片段在胚胎发育过程中的表达规律和和组织分布情况。这些差异表达片段的呈现为进一步揭示石斑鱼胚胎发育、早期性别决定和性腺分化的分子机制奠定了基础。  相似文献   

4.
李冰杨  那杰  刘岩 《昆虫知识》2008,45(3):441-444
为了从组织胚胎学角度探究昆虫胚胎发育过程,以双斑蟋Gryllus bimaculatus de Geer的卵为实验材料,通过观察、记录蟋蟀胚胎每一天的形态变化并使用显微摄影方法记录胚胎发育过程,对蟋蟀卵胚胎发育全过程进行系统的观察和研究。根据胚胎形态的发育特点,可将整个胚胎发育过程分为7个阶段:卵裂期、囊胚期、原肠胚、无节幼体期Ⅰ、无节幼体期Ⅱ、无节幼体期Ⅲ、无节幼体期Ⅳ。经历14天,蟋蟀的头部、触角、3对足、尾部、腹部及背部都发育完全,整个胚胎发育随之结束。  相似文献   

5.
2022年5—7月,通过野外实地观察,在云南文山国家级自然保护区对蔡氏疣螈Tylototriton ziegleri的成体形态和胚胎发育进行研究,以期了解蔡氏疣螈的成体和胚胎的形态特征。结果显示,蔡氏疣螈雌雄两性的形态特征存在明显差异,雌性整体形态指标更大。雌性全长115.50~135.42 mm,雄性全长102.70~126.79 mm,两性异形指数为0.078。个体的全长、头体长、头长、头宽、吻长和腋至跨距在两性间的差异极显著(P<0.01),躯干长、眼间距、鼻间距、尾长和尾宽在两性间的差异显著(P≤0.05)。胚胎发育共有21个时期,历时(532.49±45.52) h。本研究通过对蔡氏疣螈形态和胚胎发育的详细观察,为有效保护该物种提供了科学依据。  相似文献   

6.
黄喉拟水龟胚胎发育的观察   总被引:4,自引:0,他引:4  
在恒温(29&#177;0.5)℃,相对湿度为80%—93%,沙盘含水量5%—10%的孵化条件下,观察研究了黄喉拟水龟胚胎的发育过程。黄喉拟水龟胚胎孵化周期为67d,根据胚胎日龄、大小及形态特征变化将整个胚胎发育过程划分为22期,其中1—7期以卵黄囊血管区、体节数目、心脏形态变化为主要分期依据;8—22期主要以四肢、背甲、腹甲变化为分期依据。同时在胚胎生长发育过程中对头宽、眼径、背甲长和背甲宽等器官生长数据进行了测量统计,发现头宽、眼径、背甲长、背甲宽与日龄呈显著正相关关系。在胚胎发育过程中观察卵壳外观变化,通过对照各期的胚胎发育状况与卵壳外观变化发现,第1期胚胎时,卵壳中部开始出现白色受精斑;第5—7期时,受精斑绕卵短径一周成环状;第20—21期时受精斑在卵长径的增长停止。  相似文献   

7.
LAP家族蛋白含有特征性的富含亮氨酸的重复序列和PDZ结构域.在脊椎动物和无脊椎动物中,LAP家族基因在细胞极性、上皮组织的动态平衡与肿瘤抑制等的调控中具有重要作用.在脊椎动物中,这一家族基因包括4个成员:densin,erbin,scribble和lano.本研究根据热带爪蟾(Xenopus tropicalis)的基因组与EST序列,推测了其LAP家族的4个基因,克隆了其基因片段并研究了它们在胚胎发育中的表达图式.爪蛙的LAP蛋白在结构上与其他脊椎动物中的同源蛋白相似.这4个基因均有母源性表达,在卵裂期胚胎动物极细胞中表达较强,到原肠胚期在动物帽细胞中可检测到.在胚胎发育晚期,这些基因在上皮细胞中表达较广,包括神经上皮、耳泡、视泡和前肾.上述结果表明,LAP基因可能参与调控爪蛙早期发育中的上皮细胞极性和形态发生.在爪蛙胚胎头部,erbin和lano具有相似的时空表达图式,这表明二者在体内的功能可能是相关的.  相似文献   

8.
通过对三疣梭子蟹胚胎进行连续采样和组织切片,系统研究了三疣梭子蟹胚胎发育过程中卵黄囊和肝胰腺的发生与卵黄物质利用的关系。结果表明:(1)三疣梭子蟹胚胎的卵黄岛和卵黄囊结构分别出现在原肠期和无节幼体期,胚胎从原肠期至卵内第一期溞状幼体期,始终存在卵黄岛结构,且卵黄岛中的卵黄物质不断被分解和利用. (2)卵内第二期溞状幼体后,卵黄囊分为两个区域,卵黄囊壁中出现肝胰腺细胞(柱状上皮细胞),此时肝胰腺前体已开始形成,卵黄岛开始融合. (3)卵内第三期溞状幼体阶段,卵黄囊发育成一双肝胰腺,由于肝胰腺中的卵黄物质互相融合,卵黄岛结构消失。此阶段胚胎对卵黄物质的利用加快, 卵黄物质中存在许多空泡状结构;(4)胚胎发育进入孵化前期后,肝胰腺腔内的卵黄物质极少,而初孵溞状幼体肝胰腺腔内卵黄物质已完全消失,肝胰腺为一对囊状结构。这些结果表明在三疣梭子蟹胚胎发育从原肠期到孵化前的过程中,卵黄岛和肝胰腺细胞对于卵黄物质分解和利用起着十分重要的作用。  相似文献   

9.
中国疣螈属一新亚种   总被引:1,自引:0,他引:1  
对采自河南省大别山区商城县的一种蝾螈科标本进行形态特征比较,发现与文县疣螈Tylototriton wenxianensis 相似,但存在明显差异;经与文县疣螈等4种蝾螈进行12S mt DNA部分序列比对,显示其与文县疣螈的遗传分化已达亚种级水平,因此定为1新亚种,文县疣螈大别亚种Tylototriton wenxianensis dabienicus ssp.nov..新亚种的主要鉴别特征为:头长远大于头宽;4肢较短,前后肢贴体相对指、趾端不相遇;前肢前伸,指末端达眼前角;泄殖腔孔周缘橘红色.  相似文献   

10.
孙仪林  王靖怡  陆迪  张琪 《昆虫学报》2022,65(11):1524-1537
【目的】本研究旨在探究尖唇散白蚁Reticulitermes aculabialis胚胎在不同发育阶段的变化特征。【方法】每日收集尖唇散白蚁的卵,并固定其胚胎发育状态,采用DAPI染剂对白蚁胚胎进行染色,通过激光共聚焦扫描显微镜观察记录尖唇散白蚁胚胎在不同发育阶段的形态特征。【结果】在25℃下尖唇散白蚁胚胎发育过程历经25~30 d,按照发育特征将其划分为12个阶段。胚胎发育早期,卵黄细胞均匀分布在卵内部,卵内细胞核向卵的中间浓缩,在细胞到达卵的后表面时形成浓缩的囊胚细胞作为胚盘;胚胎发育中期,胚胎开始进行“反转型”的囊胚运动,头部和前后轴从后极到前极反转,胚带出现明显的“双弯”结构。胚胎发育中后期,胚胎变宽,内部器官逐渐开始发育,出现明显的伸长与分节;胚胎发育后期,附肢发育明显,内部器官发育成熟。【结论】尖唇散白蚁胚胎发育过程历经12个阶段,属于短胚带型,胚带出现“双弯”结构,发育中期经历两次囊胚反转。本研究为真社会性昆虫白蚁的胚胎发育过程提供了形态学和生物学依据。  相似文献   

11.
Fates of digits in amniotes, i.e., free or webbed digits, are determined by the size of programmed interdigital cell death (ICD) area. However, no (or very few) cell death has thus far been observed in developing limb buds of non-amniotic terrestrial vertebrates including other anuran or urodela amphibians. We speculate that the undetectable situation of amphibian ICD is the result of their less frequency due to slow developmental speed characteristic to most amphibian species. Here, we present three strategies for detecting difficult-to-find ICD in the frog, Xenopus laevis. (1) Addition of triiodo-L-thyronine (T(3)) accelerated two to three times the limb development and increased two to four times the appearance frequency of vital dye-stainable cells in limb buds of the accelerated tadpoles (stage 54 to 55). (2) Application of human bone morphogenetic protein-4 to the autopods of tadpoles at stage 53 to 54 enhanced digital cartilage formation and induced vital dye-stainable cells around the enhanced digital cartilages within 2 d. (3) In cell culture, T(3) increased the chondrogenic and cell death activities of limb mesenchymal cells. The augmentation of both activities by T(3) was stronger in the forelimb cells than in the hindlimb cells. This situation is well coincided with the limb fates of non-webbed forelimbs and webbed hindlimbs in X. laevis adulthood. Collectively, all three approaches showed that it become possible to detect X. laevis ICD with appropriate strategies.  相似文献   

12.
The hindlimbs allow bats to attach to the mother from birth, and roost during independent life. Despite the great morphological diversity in Chiroptera, the hindlimbs morphology and its postnatal development have been poorly studied. Postnatal development of hindlimbs in Noctilio leporinus is described, further comparing the morphology of adults with that of Noctilio albiventris and previously reported species (Desmodus rotundus, Artibeus lituratus, Molossus molossus). The ossification ending sequence at autopodium elements of N. leporinus does not follow the distal to proximal directional sequence described for D. rotundus, exhibiting a heterochronic delayed ossification ending for the digits of N. leporinus regarding other hindlimb elements, associated with the bigger relative autopodium size of this fisher bat regarding other bat species. Noctilionid bats share the same adult hindlimb bone morphology, except for differences at hindlimb proportions and calcar ossification degree. There are differences in the number and position of bony processes, slots and sesamoids of adult noctilionid fisher bats regarding previously reported species; most differences are concentrated at the autopodium and are related to an increased surface for muscular insertion and the structural support of claws. These facts seem to be closely associated with functional demands of the feeding strategy of noctilionid fisher bats.  相似文献   

13.
视黄酸合成酶Raldh2基因敲除鼠胚胎没有肢体的发育在胚胎E6.75-E 8.25期间,喂给怀孕母鼠含视黄酸(0.1 mg/g食物)食物后,Raldh2基因敲除鼠E10.75胚胎后肢形态正常,前肢发育较小.原位杂交结果表明,决定肢体近 远端轴发育的标志基因(marker gene)Fgf8,决定前-后轴发育的标志基因Shh以及后肢发育特异性基因Tbx4 和Pitx1在视黄酸挽救的Raldh2基因敲除鼠E10.75胚胎的后肢表达正常.上述结果提示,视黄酸可以挽救Raldh2基因敲除鼠E10.75胚胎后肢的正常发育.  相似文献   

14.
Several types of limb deformities were induced by vitamin A in B. melanostictus. These ranged from total suppression of all the limbs (ectromelia) to partial development of either the forelimb or the hindlimb or both (mesomelia) to reduction or absence of digits in either the forelimbs or hindlimbs or both and absence of long bones in either the forelimbs or hindlimbs or both (phocomelia) or duplication of the hindlimbs (polymelia). All the limb abnormalities were induced in the developing limbs of the tail amputated tadpoles of B. melanostictus following vitamin A treatment, which is all the more interesting. The results suggest that vitamin A induces the above mentioned abnormalities by either switching on or over-expressing or disrupting the limb-specific hox genes by yet unknown mechanisms.  相似文献   

15.
This report documents the development of the autopodium of the common chameleon (Chamaeleo chamaeleo) using light microscopy, scanning electron microscopy, and transmission electron microscopy. Three main periods were distinguished during the morphogenesis of this structure. In the first period (stages 33-35 of chameleon development) the autopodium is paddle-shaped with a prominent apical ectodermal ridge (AER) along the distal margin. During this period the AER has structural features similar to other reptilian and avian vertebrates except for the scarcity or absence of gap junctions. The second period of autopodium morphogenesis (stage 36 of chameleon development) is characterized by the formation of a central cleft which divides this structure into two digital segments. In the forelimb the autopodial cleft occupies the space between digits 3 and 4. In the hindlimb the cleft occupies the space between digits 2 and 3. Mesenchymal cell death constitutes a constant feature during cleft formation. In addition to cell death during this process, we have observed that the AER flattens out in the zone of cleft formation while in the digital portions of the autopodium it takes on a polystratified appearance. In the last period of autopodial morphogenesis (stage 37 of chameleon development) digits become free by means of interdigital mesenchymal cell death.  相似文献   

16.
17.

Background

Tetrapods exhibit great diversity in limb structures among species and also between forelimbs and hindlimbs within species, diversity which frequently correlates with locomotor modes and life history. We aim to examine the potential relation of changes in developmental timing (heterochrony) to the origin of limb morphological diversity in an explicit comparative and quantitative framework. In particular, we studied the relative time sequence of development of the forelimbs versus the hindlimbs in 138 embryos of 14 tetrapod species spanning a diverse taxonomic, ecomorphological and life-history breadth. Whole-mounts and histological sections were used to code the appearance of 10 developmental events comprising landmarks of development from the early bud stage to late chondrogenesis in the forelimb and the corresponding serial homologues in the hindlimb.

Results

An overall pattern of change across tetrapods can be discerned and appears to be relatively clade-specific. In the primitive condition, as seen in Chondrichthyes and Osteichthyes, the forelimb/pectoral fin develops earlier than the hindlimb/pelvic fin. This pattern is either retained or re-evolved in eulipotyphlan insectivores (= shrews, moles, hedgehogs, and solenodons) and taken to its extreme in marsupials. Although exceptions are known, the two anurans we examined reversed the pattern and displayed a significant advance in hindlimb development. All other species examined, including a bat with its greatly enlarged forelimbs modified as wings in the adult, showed near synchrony in the development of the fore and hindlimbs.

Conclusion

Major heterochronic changes in early limb development and chondrogenesis were absent within major clades except Lissamphibia, and their presence across vertebrate phylogeny are not easily correlated with adaptive phenomena related to morphological differences in the adult fore- and hindlimbs. The apparently conservative nature of this trait means that changes in chondrogenetic patterns may serve as useful phylogenetic characters at higher taxonomic levels in tetrapods. Our results highlight the more important role generally played by allometric heterochrony in this instance to shape adult morphology.  相似文献   

18.
We address the developmental and evolutionary mechanisms underlying fore- and hindlimb development and progressive hindlimb reduction and skeletal loss in whales and evaluate whether the genetic, developmental, and evolutionary mechanisms thought to be responsible for limb loss in snakes "explain" loss of the hindlimbs in whales. Limb loss and concurrent morphological and physiological changes associated with the transition from land to water are discussed within the context of the current whale phylogeny. Emphasis is placed on fore- and hindlimb development, how the forelimbs transformed into flippers, and how the hindlimbs regressed, leaving either no elements or vestigial skeletal elements. Hindlimbs likely began to regress only after the ancestors of whales entered the aquatic environment: Hindlimb function was co-opted by the undulatory vertical axial locomotion made possible by the newly evolved caudal flukes. Loss of the hindlimbs was associated with elongation of the body during the transition from land to water. Limblessness in most snakes is also associated with adoption of a new (burrowing) lifestyle and was driven by developmental changes associated with elongation of the body. Parallels between adaptation to burrowing or to the aquatic environment reflect structural and functional changes associated with the switch to axial locomotion. Because they are more fully studied and to determine whether hindlimb loss in lineages that are not closely related could result from similar genetically controlled developmental pathways, we discuss developmental (cellular and genetic) processes that may have driven limb loss in snakes and leg-less lizards and compare these processes to the loss of hindlimbs in whales. In neither group does ontogenetic or phylogenetic limb reduction result from failure to initiate limb development. In both groups limb loss results from arrested development at the limb bud stage, as a result of inability to maintain necessary inductive tissue interactions and enhanced cell death over that seen in limbed tetrapods. An evolutionary change in Hox gene expression--as occurs in snakes--or in Hox gene regulation--as occurs in some limbless mutants--is unlikely to have initiated loss of the hindlimbs in cetaceans. Selective pressures acting on a wide range of developmental processes and adult traits other than the limbs are likely to have driven the loss of hindlimbs in whales.  相似文献   

19.

Background  

Kangaroos and wallabies have specialised limbs that allow for their hopping mode of locomotion. The hindlimbs differentiate much later in development but become much larger than the forelimbs. The hindlimb autopod has only four digits, the fourth of which is greatly elongated, while digits two and three are syndactylous. We investigated the expression of two genes, HOXA13 and HOXD13, that are crucial for digit patterning in mice during formation of the limbs of the tammar wallaby.  相似文献   

20.
The functional status of brachially innervated hindlimbs, produced by transplanting hindlimb buds of chick embryos in place of forelimb buds, was quantified by analyzing the number and temporal distribution of spontaneous limb movements. Brachially innervated hindlimbs exhibited normal motility until E10 but thereafter became significantly less active than normal limbs and the limb movements were more randomly distributed. Contrary to the findings with axolotls and frogs, functional interaction between brachial motoneurons and hindlimb muscles cannot be sustained in the chick embryo. Dysfunction is first detectable at E10 and progresses to near total immobility by E20 and is associated with joint ankylosis and muscular atrophy. Although brachially innervated hindlimbs were virtually immobile by the time of hatching (E21), they produced strong movements in response to electrical stimulation of their spinal nerves, suggesting a central rather than peripheral defect in the motor system. The extent of motoneuron death in the brachial spinal cord was not significantly altered by the substitution of the forelimb bud with the hindlimb bud, but the timing of motoneuron loss was appropriate for the lumbar rather than brachial spinal cord, indicating that the rate of motoneuron death was dictated by the limb. Measurements of nuclear area indicated that motoneuron size was normal during the motoneuron death period (E6-E10) but the nuclei of motoneurons innervating grafted hindlimbs subsequently became significantly larger than those of normal brachial motoneurons. Although the muscle mass of the grafted hindlimb at E18 was significantly less than that of the normal hindlimb (and similar to that of a normal forelimb), electronmicroscopic examination of the grafted hindlimbs and brachial spinal cords of E20 embryos revealed normal myofiber and neuromuscular junction ultrastructure and a small increase in the number of axosomatic synapses on cross-sections of motoneurons innervating grafted hindlimbs compared to motoneurons innervating normal forelimbs. The anatomical data indicate that, rather than being associated with degenerative changes, the motor system of the brachial hindlimb of late-stage embryos is intact, but inactive. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号