首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In this work, a recycled paper-derived feedstock was used to produce ethanol by the simultaneous saccharification and fermentation (SSF) process using the thermotolerant yeast Kluyveromyces marxianus CECT 10875. At standard SSF conditions, the highest yield (about 80% of theoretical) was obtained at low substrate concentration and high enzyme loading. With increasing substrate concentration, mixing difficulties appeared which prevented an adequate SSF process performance and limited ethanol production. An SSF fed-batch procedure was then used which permitted an increase in substrate concentrations while maintaining SSF yields similar to that obtained at standard SSF, thus allowing an increased final ethanol production (about 18 g/l).  相似文献   

2.
The processes of separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) were employed using Saccharomyces cerevisiae for the production of ethanol from cassava pulp without any pretreatment. A combination of amylase, cellulase, cellobiase, and glucoamylase produced the highest levels of ethanol production in both the SHF and the SSF method. A temperature of 37 °C, a pH of 5.0, and an inoculum size of 6% were the optimum conditions for SSF. For the batch process at a pulp concentration of 20%, ethanol production levels from SHF and SSF were the highest, at 23.51 and 34.67 g L(-1) respectively, but in the fed-batch process, the levels of ethanol production from SHF and SSF rose to 29.39 and 43.25 g L(-1) respectively, which were 25% and 24.7% higher than those of the batch process. Thus SSF using the fed-batch provided a more efficient method for the utilization of cassava pulp.  相似文献   

3.
Aims: To study fuel ethanol fermentation with Kluyveromyces marxianus ATCC8554 from Jerusalem artichoke (Helianthus tuberosus) grown in salina and irrigated with a mixture of seawater and freshwater. Methods and Results: The growth and ethanol fermentation of K. marxianus ATCC8554 were studied using inulin as substrate. The activity of inulinase, which attributes to the hydrolysis of inulin, the main carbohydrate in Jerusalem artichoke, was monitored. The optimum temperatures were 38°C for growth and inulinase production, and 35°C for ethanol fermentation. Aeration was not necessary for ethanol fermentation with the K. marxianus from inulin. Then, the fresh Jerusalem artichoke tubers grown in salina and irrigated with 25% and 50% seawater were further examined for ethanol fermentation with the K. marxianus, and a higher ethanol yield was achieved for the Jerusalem artichoke tuber irrigated with 25% seawater. Furthermore, the dry meal of the Jerusalem artichoke tubers irrigated with 25% seawater was examined for ethanol fermentation at three solid concentrations of 200, 225 and 250 g l?1, and the highest ethanol yield of 0·467, or 91·5% of the theoretical value of 0·511, was achieved for the slurry with a solid concentration of 200 g l?1. Conclusions: Halophilic Jerusalem artichoke can be used for fuel ethanol production. Significance and Impact of the Study: Halophilic Jerusalem artichoke, not competing with grain crops for arable land, is a sustainable feedstock for fuel ethanol production.  相似文献   

4.
Huang J  Cai J  Wang J  Zhu X  Huang L  Yang ST  Xu Z 《Bioresource technology》2011,102(4):3923-3926
Butyric acid is an important specialty chemical with wide industrial applications. The feasible large-scale fermentation for the economical production of butyric acid requires low-cost substrate and efficient process. In the present study, butyric acid production by immobilized Clostridium tyrobutyricum was successfully performed in a fibrous-bed bioreactor using Jerusalem artichoke as the substrate. Repeated-batch fermentation was carried out to produce butyric acid with a high butyrate yield (0.44 g/g), high productivity (2.75 g/L/h) and a butyrate concentration of 27.5 g/L. Furthermore, fed-batch fermentation using sulfuric acid pretreated Jerusalem artichoke hydrolysate resulted in a high butyric acid concentration of 60.4 g/L, with the yield of 0.38 g/g and the selectivity of ∼85.1 (85.1 g butyric acid/g acetic acid). Thus, the production of butyric acid from Jerusalem artichoke on a commercial scale could be achieved based on the system developed in this work.  相似文献   

5.
Jerusalem artichoke extract or powder was used for astaxanthin production using Phaffia rhodozyma without acidic or enzymatic inulin hydrolysis. The culture medium containing Jerusalem artichoke as carbon source was optimized, and feeding strategies, including constant, exponential, pH-stat, and substrate feedback fed-batch fermentations, were also compared for enhancing the cell biomass and astaxanthin synthesis by P. rhodozyma. Substrate-feedback fed-batch fermentation resulted in the highest dry cell weight of 83.60 g/L, with a carotenoid concentration and yield of 982.50 mg/L and 13.30 mg/g, respectively, under optimized medium components using Jerusalem artichoke extract as carbon source in a 3-L stirred-tank bioreactor. Moreover, 482.50 mg/L of carotenoids and 253.10 mg/L of astaxanthin were obtained by continuous feeding of Jerusalem artichoke powder, which was used as carbon source. Astaxanthin essence with high DPPH-scavenging activity was obtained from the extracted astaxanthin, and the DPPH free radical scavenging rate of 40 ppm astaxanthin essence reached 76.29%. When stored at 4 °C, astaxanthin essence showed the highest stability, with a minimum k value of 0.0099 week−1 and maximum half-life (t1/2) value of 70 weeks.  相似文献   

6.
Ethanol production by a recombinant bacterium from wheat straw (WS) at high solid loading by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) was studied. The yield of total sugars from dilute acid pretreated WS (150 g/L) after enzymatic saccharification was 86.3 ± 1.5 g/L. The pretreated WS was bio-abated by growing a fungal strain aerobically in the liquid portion for 16 h. The recombinant Escherichia coli strain FBR5 produced 41.1 ± 1.1 g ethanol/L from non-abated WS hydrolyzate (total sugars, 86.6 ± 0.3 g/L) in 168 h at pH 7.0 and 35 °C. The bacterium produced 41.8 ± 0.0 g ethanol/L in 120 h from the bioabated WS by SHF. It produced 41.6 ± 0.7 g ethanol/L in 120 h from bioabated WS by fed-batch SSF. This is the first report of the production of above 4% ethanol from a lignocellulosic hydrolyzate by the recombinant bacterium.  相似文献   

7.
一步法发酵菊芋生产乙醇   总被引:12,自引:0,他引:12  
利用马克斯克鲁维酵母(Kluyveromyces marxianus)YX01具有菊粉酶生产能力且乙醇发酵性能良好的特点,直接发酵菊粉生成乙醇.在摇瓶中考察了该菌株最适发酵温度,进而在2.5L发酵罐中考察了通气量和底物浓度的影响.实验结果表明:该菌株最适发酵温度为35℃;在通气量为50 mL/min和100 mL/min时菌体生长加快,发酵时间缩短,但在不通气条件下糖醇转化率明显提高;在菊粉浓度235 g/L时,发酵终点乙醇浓度达到92.2 g/L,乙醇对糖的得率为0.436,为理论值的85.5%.在此基础上,使用近海滩涂种植海水灌溉收获的菊芋为底物,以批式补料方式直接发酵菊芋干粉浓度为280 g/L的底物,发酵终点乙醇浓度为84.0 g/L,乙醇对糖的得率为0.405,为理论值的80.0%.这些研究工作,为以菊芋为原料的燃料乙醇技术开发奠定了基础.  相似文献   

8.
The production of 1,3-propanediol, 2,3-butanediol and ethanol was studied, during cultivations of strain Klebsiella oxytoca FMCC-197 on biodiesel-derived glycerol based media. Different kinds of glycerol feedstocks and experimental conditions had an important impact upon the distribution of metabolic products; production of 1,3-propanediol was positively influenced by stable pH conditions and by the absence of N2 gas infusions throughout the fermentation. Thus, during batch bioreactor fermentations conducted at increasing glycerol concentrations, 1,3-propanediol at 41.3 g/L and yield ~47% (w/w) was achieved at initial glycerol concentration ~120 g/L. At even higher initial glycerol media (150 and 170 g/L), growth was not ceased, but 1,3-propanediol production declined. During fed-batch fermentation under optimal experimental conditions, 126 g/L of glycerol were converted into 50.1 g/L of 1,3-propanediol. In this experiment, also 25.2 g/L of ethanol (conversion yield ~20%, w/w) were formed. A batch-bioreactor culture was performed under non-sterilized conditions and the 1,3-propanediol production was almost equivalent to the sterilized process. Concerning 2,3-butanediol formation, the most detrimental parameter was the absence of N2 sparging and as a result, no 2,3-butanediol was produced. The presence of glucose as co-substrate seriously enhanced 2,3-butanediol production; when commercial glucose was employed as sole substrate, 32.1 g/L of 2,3-butanediol were formed.  相似文献   

9.
Chemical 2,3-butanediol is an important platform compound possessing diverse industrial applications. So far, it is mainly produced by using petrochemical feedstock which is associated with high cost and adverse environmental impacts. Hence, finding alternative routes (e.g., via fermentation using renewable carbon sources) to produce 2,3-butanediol are urgently needed. In this study, we report a wild-type Klebsiella sp. strain XRM21, which is capable of producing 2,3-butanediol from a wide variety of carbon sources including glucose, sucrose, xylose, and glycerol. Among them, fermentation of sucrose leads to the highest production of 2,3-butanediol. To maximize the production of 2,3-butanediol, fermentation conditions were first optimized for strain XMR21 by using response surface methodology (RSM) in batch reactors. Subsequently, a fed-batch fermentation strategy was designed based on the optimized parameters, where 91.2 g/L of 2,3-butanediol could be produced from substrate sucrose dosing in 100 g/L for three times. Moreover, random mutagenesis of stain XMR21 resulted in a highly productive mutant strain, capable of producing 119.4 and 22.5 g/L of 2,3-butanediol and ethanol under optimized fed-batch fermentation process within 65 h with a total productivity of 2.18 g/L/h, which is comparable to the reported highest 2,3-butanediol concentration produced by previous strains. This study provides a potential strategy to produce industrially important 2,3-butanediol from low-cost sucrose.  相似文献   

10.
《Process Biochemistry》2010,45(4):613-616
Corncob acid hydrolysate, detoxed by sequently boiling, overliming and activated charcoal adsorption, was used for 2,3-butanediol production by Klebsiella oxytoca ACCC 10370. The effects of acetate in hydrolysate and pH on 2,3-butanediol production were investigated. It was found that acetic acid in hydrolysate inhibited the growth of K. oxytoca while benefited the 2,3-butanediol yield. With the increase in acetic acid concentration in medium from 0 to 4 g/l, the lag phase was prolonged and the specific growth rate decreased. The acetic acid inhibition on cell growth can be alleviated by adjusting pH to 6.3 prior to fermentation and a substrate fed-batch strategy with a low initial acetic acid concentration. Under the optimum condition, a maximal 2,3-butanediol concentration of 35.7 g/l was obtained after 60 h of fed-batch fermentation, giving a yield of 0.5 g/g reducing sugar and a productivity of 0.59 g/h l.  相似文献   

11.
《Process Biochemistry》2007,42(5):834-839
Two different process configurations, simultaneous saccharification and fermentation (SSF) and separate hydrolysis and fermentation (SHF), were compared, at 8% water-insoluble solids (WIS), regarding ethanol production from steam-pretreated corn stover. The enzymatic loading in these experiments was 10 FPU/g WIS and the yeast concentration in SSF was 1 g/L (dry weight) of a Saccharomyces cerevisiae strain. When the whole slurry from the pretreatment stage was used as it was, diluted to 8% WIS with water and pH adjusted, SSF gave a 13% higher overall ethanol yield than SHF (72.4% versus 59.1% of the theoretical). The impact of the inhibitory compounds in the liquid fraction of the pretreated slurry was shown to affect SSF and SHF in different ways. The overall ethanol yield (based on the untreated raw material) decreased when SSF was run in absence on inhibitors compared to SSF with inhibitors present. On the contrary, the presence of inhibitors decreased the overall ethanol yield in the case of SHF. However, the SHF yield achieves in the absence of inhibitors was still lower than the SSF yield achieves with inhibitors present.  相似文献   

12.
Bermudagrass, reed and rapeseed were pretreated with phosphoric acid–acetone and used for ethanol production by means of simultaneous saccharification and fermentation (SSF) with a batch and fed-batch mode. When the batch SSF experiments were conducted in a 3% low effective cellulose, about 16 g/L of ethanol were obtained after 96 h of fermentation. When batch SSF experiments were conducted with a higher cellulose content (10% effective cellulose for reed and bermudagrass and 5% for rapeseed), higher ethanol concentrations and yields (of more than 93%) were obtained. The fed-batch SSF strategy was adopted to increase the ethanol concentration further. When a higher water-insoluble solid (up to 36%) was applied, the ethanol concentration reached 56 g/L of an inhibitory concentration of the yeast strain used in this study at 38 °C. The results show that the pretreated materials can be used as good feedstocks for bioethanol production, and that the phosphoric acid–acetone pretreatment can effectively yield a higher ethanol concentration.  相似文献   

13.
Serrawettin W1 produced by Serratia marcescens is a surface-active exolipid resulting in a lot foam formation during the 2,3-butanediol (2,3-BD) fermentation process. In order to avoid excessive addition of antifoam agent and microbial contamination, S. marcescens mutants deficient in serrawettin W1 formation were successfully constructed through insertional inactivation of the swrW gene coding for serrawettin W1 synthase. The shake flask and batch experiments suggested that disruption of the swrW gene led to significant reduction of the foam formation and improved 2,3-BD production a little. Ultimately, fed-batch culturing of the mutant afforded a maximum 2,3-BD concentration of 152 g l−1 with a productivity of 2.67 g l−1 h−1 and a yield of 92.6% at 57 h.  相似文献   

14.
End-product conversion, low product concentration and large volumes of fermentation broth, the requirements for large bioreactors, in addition to the high cost involved in generating the steam required to distil fermentation products from the broth largely contributed to the decline in fermentative products. These considerations have motivated the study of organic extractants as a means to remove the product during fermentation and minimize downstream recovery. The aim of this study is to assess the practical applicability of liquid–liquid extraction in 2,3-butanediol fermentations. Eighteen organic solvents were screened to determine their biocompatibility, and bioavailability for their effects on Klebsiella pneumoniae growth. Candidate solvents at first were screened in shake flasks for toxicity to K. pneumoniae. Cell density and substrate consumption were used as measures of cell toxicity. The possibility of employing oleyl alcohol as an extraction solvent to enhance end product in 2,3-butanediol fermentation was evaluated. Fermentation was carried out at an initial glucose concentration of 80 g/l. Oleyl alcohol did not inhibit the growth of the fermentative organism. 2,3-Butanediol production increased from 17.9 g/l (in conventional fermentation) to 23.01 g/l (in extractive fermentation). Applying oleyl alcohol as the extraction solvent, about 68% of the total 2,3-butanediol produced was extracted. An erratum to this article can be found at  相似文献   

15.
Production of 2,3-butanediol by Bacillus subtilis takes place in late-log or stationary phase, depending on the expression of bdhA gene encoding acetoin reductase, which converts acetoin to 2,3-butanediol. The present work focuses on the development of a strain of B. subtilis for enhanced production of 2,3-butanediol in early log phase of growth cycle. For this, the bdhA gene was expressed under the control of P alsSD promoter of AlsSD operon for acetoin fermentation which served the substrate for 2,3-butanediol production. Addition of acetic acid in the medium induced the production of 2,3-butanediol by 2-fold. Two-step aerobic–anaerobic fermentation further enhanced 2,3-butanediol production by 4-fold in comparison to the control parental strain. Thus, addition of acetic acid and low dissolved oxygen in the medium are involved in activation of bdhA gene expression from P alsSD promoter in early log phase. Under the conditions tested in this work, the maximum production of 2,3-butanediol, 2.1 g/l from 10 g/l glucose, was obtained at 24 h. Furthermore, under the optimized microaerophilic condition, the production of 2,3-butanediol improved up to 6.1 g/l and overall productivity increased by 6.7-fold to 0.4 g/l h in the engineered strain compared to that in the parental control.  相似文献   

16.
A fed-batch fermentation process for the production of organophosphorus hydrolase (OPH) (EC 3.1.8.1) by E. coli pET812 was developed in this research. With batch fermentation, the maximum OPH concentrations attained by batch fermentation were as low as 4 × 105 U/l because cell growth and OPH production were inhibited by a high initial concentration of glucose. To develop a fed-batch fermentation process for obtaining higher concentrations of OPH, highly concentrated glucose solution (500 g/l) was added intermittently or continuously to increase the carbon source concentration. Eventually, 3.2 × 106 U/l of OPH was produced with fed-batch fermentation in 24 h. This was eight times higher than the yield with conventional batch fermentation. A total concentration of 399–441 mg of OPH was produced/l, which was four times higher than that reported when using E. coli. Nearly half (44%) of the produced OPH was secreted into the culture solution.  相似文献   

17.
d ‐Lactic acid production is gaining increasing attention due to the thermostable properties of its polymer, poly‐d ‐lactic acid . In this study, Lactobacillus coryniformis subsp. torquens, was evaluated for its ability to produce d ‐lactic acid using Dried Distiller's Grains with Solubles (DDGS) hydrolysate as the substrate. DDGS was first subjected to alkaline pretreatment with sodium hydroxide to remove the hemicellulose component and the generated carbohydrate‐rich solids were then subjected to enzymatic hydrolysis using cellulase mixture Accellerase® 1500. When comparing separate hydrolysis and fermentation and simultaneous saccharification and fermentation (SSF) of L. coryniformis on DDGS hydrolysate, the latter method demonstrated higher d ‐lactic acid production (27.9 g/L, 99.9% optical purity of d ‐lactic acid), with a higher glucose to d ‐lactic acid conversion yield (84.5%) compared to the former one (24.1 g/L, 99.9% optical purity of d ‐lactic acid). In addition, the effect of increasing the DDGS concentration in the fermentation system was investigated via a fed‐batch SSF approach, where it was shown that the d ‐lactic acid production increased to 38.1 g/L and the conversion yield decreased to 70%. In conclusion, the SSF approach proved to be an efficient strategy for the production of d ‐lactic acid from DDGS as it reduced the overall processing time and yielded high d ‐lactic acid concentrations.  相似文献   

18.
Summary Optimization of d-(-)-2,3-butanediol production from the Jerusalem artichoke, Helianthus tuberosus, by Bacillus polymyxa ATCC 12 321 is described. The effects of initial sugar concentration and oxygen transfer rate were examined. The latter appears to be the most important parameter affecting the kinetics of the process. The best results (44 g·l-1 2,3-butanediol, productivity of 0.79 g·l-1·h-1) were obtained by setting an optimal k L a profile during batch culture.  相似文献   

19.
Aims: Developing an innovative process for ethanol fermentation from Jerusalem artichoke tubers under very high gravity (VHG) conditions. Methods and Results: A consolidated bioprocessing (CBP) strategy that integrated inulinase production, saccharification of inulin contained in Jerusalem artichoke tubers and ethanol production from sugars released from inulin by the enzyme was developed with the inulinase‐producing yeast Kluyveromyces marxianus Y179 and fed‐batch operation. The impact of inoculum age, aeration, the supplementation of pectinase and nutrients on the ethanol fermentation performance of the CBP system was studied. Although inulinase activities increased with the extension of the seed incubation time, its contribution to ethanol production was negligible because vigorously growing yeast cells harvested earlier carried out ethanol fermentation more efficiently. Thus, the overnight incubation that has been practised in ethanol production from starch‐based feedstocks is recommended. Aeration facilitated the fermentation process, but compromised ethanol yield because of the negative Crabtree effect of the species, and increases the risk of contamination under industrial conditions. Therefore, nonaeration conditions are preferred for the CBP system. Pectinase supplementation reduced viscosity of the fermentation broth and improved ethanol production performance, particularly under high gravity conditions, but the enzyme cost should be carefully balanced. Medium optimization was performed, and ethanol concentration as high as 94·2 g l?1 was achieved when 0·15 g l?1 K2HPO4 was supplemented, which presents a significant progress in ethanol production from Jerusalem artichoke tubers. Conclusions: A CBP system using K. marxianus is suitable for efficient ethanol production from Jerusalem artichoke tubers under VHG conditions. Significance and Impact of the Study: Jerusalem artichoke tubers are an alternative to grain‐based feedstocks for ethanol production. The high ethanol concentration achieved using K. marxianus with the CBP system not only saves energy consumption for ethanol distillation, but also significantly reduces the amount of waste distillage discharged from the distillation system.  相似文献   

20.
Fan  Xiaoguang  Wu  Heyun  Jia  Zifan  Li  Guoliang  Li  Qiang  Chen  Ning  Xie  Xixian 《Applied microbiology and biotechnology》2018,102(20):8753-8762

In this study, a uridine and acetoin co-production pathway was designed and engineered in Bacillus subtilis for the first time. A positive correlation between acetoin and uridine production was observed and investigated. By disrupting acetoin reductase/2,3-butanediol dehydrogenasegenebdhA, the acetoin and uridine yield was increased while 2,3-butanediol formation was markedly reduced. Subsequent overexpression of the alsSD operon further improved acetoin yield and abolished acetate formation. After optimization of fermentation medium, key supplementation strategies of yeast extract and soybean meal hydrolysate were identified and applied to improve the co-production of uridine and acetoin. With a consumption of 290.33 g/L glycerol, the recombinant strain can accumulate 40.62 g/L uridine and 60.48 g/L acetoin during 48 h of fed-batch fermentation. The results indicate that simultaneous production of uridine and acetoin is an efficient strategy for balancing the carbon metabolism in engineered Bacillus subtilis. More importantly, co-production of value-added products is a possible way to improve the economics of uridine fermentation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号