首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed at determining food processing wastewater composition factors that regulate their carbon and nitrogen mineralization when added to soil. Twenty three different wastewaters from various food processing industries were characterized by C and N concentrations, liquid and solid physical separation and acid solubility. They were also incubated in a calcareous soil during six months at 28 degrees C. The C and N concentrations were low but covered a wide range. Carbon and nitrogen were variously distributed in the liquid and solid fractions and much C was present in the acid-soluble fraction in which C to N ratios were low. The C and N mineralization measured during soil incubation covered a wide range of decomposition pathways. Carbon mineralization was linked significantly (p=0.05) with the C to N ratio of the acid soluble fraction and C present in the liquid fraction. N mineralization was significantly correlated (p=0.05) with the organic C to organic N ratio and the C to N ratio of the acid soluble fraction. Multiple factor analysis and clustering also enabled defining clusters which partially overlap the various origins of the wastewaters.  相似文献   

2.
刘姝萱  安慧  张馨文  杜忠毓  刘小平 《生态学报》2022,42(21):8773-8783
为明确植物、凋落物和土壤养分含量及化学计量比对土壤中添加多种限制性养分的响应,阐明"植物-凋落物-土壤"连续体化学计量动态及各组分之间的协同作用,以宁夏荒漠草原为研究对象,于2018年开始进行氮(N)、磷(P)养分添加控制试验。试验处理包括对照(CK)、N添加、P添加、NP共同添加4个处理。结果表明:(1) NP共同添加显著增加了荒漠草原植物N和P含量、以及凋落物和土壤P含量,显著降低了荒漠草原植物C:N和C:P、以及土壤和凋落物C:P和N:P。P添加显著增加了荒漠草原植物、凋落物和土壤P含量,显著降低了植物、凋落物、土壤C:P和N:P。N添加分别增加了植物、凋落物N含量和N:P,但对植物N含量影响未达到显著水平。(2) C、N、P含量和N:P大小均表现为植物 > 凋落物 > 土壤,C:N和C:P均表现为凋落物 > 植物。(3) N添加提高了荒漠草原植物对P再吸收效率,降低了荒漠草原植物对N利用效率;P添加提高荒漠草原植物对N再吸收效率,降低荒漠草原对P的利用效率;NP共同添加提高了荒漠草原植物对N和P再吸收效率,降低了荒漠草原植物对N和P利用效率。(4)植物-凋落物-土壤的N、P含量和化学计量比之间显著相关,其中植物N、P、N:P与凋落物和土壤N、P、N:P显著正相关,凋落物P、C:N与植物和土壤C:P、N:P显著负相关。(5)荒漠草原植物和凋落物N较稳定(1/H=0.45和1/H=0.48),而植物和凋落物P、N:P较敏感(1/H=0.80、0.73和1/H=0.81、0.78)。荒漠草原植物生长受N限制,N添加缓解荒漠草原植物N限制,P添加和NP添加加剧荒漠草原植物N限制,荒漠草原植物通过改变养分利用策略和再吸收利用效率适应土壤中N、P含量的变化。  相似文献   

3.
中亚热带丘陵红壤区森林演替典型阶段土壤氮磷有效性   总被引:5,自引:0,他引:5  
在中亚热带典型丘陵红壤区选取裸露地、马尾松(Pinus massoniana)林地、针阔混交林地、常绿阔叶林地为研究对象,开展土壤氮(N)、磷(P)供应、有效性及其耦合过程的研究.结果表明,土壤有机C、全N、净矿化速率、中性磷酸酶活性表现为随森林演替进展呈现逐步提高的变化趋势;而土壤全P、C/N、C/P、氨化速率、硝化速率、树脂P、NaHCO3-P、NaOH-P、声波P、酸性P、总有效P、酸性磷酸酶活性未表现出此趋势;但反映N、P有效供应的指标,除氨化速率、树脂P和酸性磷酸酶外,在常绿阔叶林中均为最高.相关分析表明大部分N、P供应指标之间存在显著相关性(P<0.05).丘陵红壤区森林演替初级阶段P的限制性明显强于N,土壤N、P供应在森林演替进展过程中可以逐步得到优化而实现协调供应.以常绿阔叶林为中亚热带丘陵红壤区植被恢复的最终目标是可行和理想的.  相似文献   

4.
为探究根系分泌物C∶N对土壤养分循环及微生物活性的影响,本研究以黄土高原人工刺槐林为对象,在生境条件基本一致的15、25、35、45 a刺槐林地取原位土壤,通过模拟不同C∶N的根系分泌物(只添加N、C∶N=10、C∶N=50、C∶N=100和只添加C)添加至土壤,以去离子水作为对照,分析根系分泌物C∶N对土壤碳、氮、磷、pH值等理化特征和土壤呼吸的影响。结果表明: 1)有机碳含量与根系分泌物C∶N呈正相关,根系分泌物C∶N=10时土壤有机碳(SOC)分解较快,高根系分泌物C∶N(C∶N=100)能延缓SOC分解,而只添加C处理对SOC无显著影响。2)不同C∶N根系分泌物处理对全氮的影响不明显,碳添加能促进微生物对铵态氮的吸收,氮添加能促进铵态氮的硝化,随着根系分泌物C∶N增加,土壤中铵态氮含量下降。3)氮添加会导致土壤pH值下降,增加土壤全磷含量。4)刺槐林地土壤呼吸值与根系分泌物C∶N呈正相关,随着C∶N增加,根系分泌物对25和35 a人工刺槐林土壤呼吸的促进作用更显著。综上,根系分泌物C∶N值越高,对人工刺槐林土壤呼吸的促进作用越显著。研究结果进一步加深了对森林根系-土壤-微生物互作过程的认识。  相似文献   

5.
有机物料在维持土壤微生物体氮库中的作用   总被引:51,自引:2,他引:49  
李世清  李生秀 《生态学报》2001,21(1):136-142
采用室内和田间培养试验,研究了有机物料矿化过程中土壤微生物体氮的变化,测定结果表明,有机物料对矿化过程和微生物体氮的影响,既与有机物料本身性质和组成有关,也与土壤肥力水平和施氮与否有关。加入C/N比高的有机物料后,微生物对矿质氮的净固定持续时间长,而加入C/N比小的则固定时间短;高肥力土壤上的固定时间比低肥力土壤短。不同有机物料对土壤微生物体氮的影响不同。从加绿豆茎叶、小麦茎叶、未腐解马粪、腐熟马粪、腐熟猪粪到厩肥,土壤微生物体氮依次减小,提供的有效能源物质丰富(如绿豆茎叶)或C/N比较高(如小麦茎叶)时影响效果突出。土壤肥力不同,有机物料对微生物体的影响效果不同,在低肥力土壤的效果突出,约为高肥力土壤的4倍,因此,在评价有机物料对土壤微生物体氮的影响时,既考虑有有机物料的性质和组成,也考虑土壤力水平、矿质氮含量和培养时期。  相似文献   

6.
The usefulness of the C/N ratio as an indicator of the decomposability of organic matter in forest soil was assessed. The assessment was based on the relationship between the C/N ratio and the contents of soil organic carbon (SOC), soil nitrogen (total N), dissolved total organic carbon (DTOC) and dissolved inorganic nitrogen (DIN). SOC, total N, DTOC and DIN were determined in soils sampled in coniferous and coniferous–deciduous forest sites from genetic horizons of 48 soil profiles. The variability of the above soil parameters was determined and the correlation between these parameters and the C/N values were calculated. It was found that the C/N ratio in soil was shaped by the difference in the mobility of both elements, whereas the decrease in the C content in subsequent horizons was mostly higher than the decrease in the N content, which means that the C/N value decreased with the depth of a soil profile. When the loss of SOC and total N contents occurs at a similar rate, the C/N ratio is maintained at a more or less stable level despite the advancing SOM mineralization. When the rate of the carbon release from SOM differs from that of nitrogen or when there is an N input from external sources, the C/N ratio does not adequately describe the process of SOM mineralization as well. The correlation coefficients between the C/N ratio and other parameters indicate that the relationships between them are not significant or that there is no correlation at all. It was found that the percentage of DTOC in SOC seemed to be a better indicator of SOM mineralization than the C/N ratio.  相似文献   

7.
鄱阳湖湿地优势植物叶片-凋落物-土壤碳氮磷化学计量特征   总被引:35,自引:20,他引:15  
聂兰琴  吴琴  尧波  付姗  胡启武 《生态学报》2016,36(7):1898-1906
2013年11月初在鄱阳湖南矶湿地国家级自然保护区,采集芦苇(Phragmites australis)、南荻(Triarrhena lutarioriparia)、菰(Zizania latifolia(Griseb.))、灰化苔草(Carex cinerascens)、红穗苔草(Carex argyi)和水蓼(Polygonum hydropiper)等6种优势植物新鲜叶片、凋落物及表层0—15cm土壤样品测定了碳(C)、氮(N)、磷(P)含量,以阐明不同物种、不同生活型间C、N、P化学计量差异,探讨化学计量垂直分异。结果表明:1)C、N、P含量变化范围分别为:叶片380.6—432.2 mg/g,15.3—32.6 mg/g和1.3—2.0 mg/g;凋落物345.4—416.1 mg/g,10.8—20.8 mg/g和1.1—1.7 mg/g;土壤15.0—38.1 mg/g,1.2—3.1 mg/g和0.7—1.1mg/g,不同物种间叶片、凋落物及土壤C、N、P含量差异显著,且叶片C、N、P含量显著高于凋落物与土壤。2)土壤C∶N、C∶P及N∶P值显著低于叶片与凋落物,且土壤C、N、P化学计量关系与凋落物更为密切,凋落物的C∶N、N∶P分别能解释土壤C∶N、N∶P变异的35%、18%。3)挺水植物与湿生植物之间叶片C∶N、N∶P值差异显著,C∶P则差异不显著,凋落物C∶N、C∶P与N∶P均未达到显著性差异。  相似文献   

8.
研究西南喀斯特峰丛洼地人工林、次生林、原生林3个不同森林类型的6个代表性植物群落C、N、P化学计量特征及其与土壤的关系.结果表明: 不同森林类型植物和土壤C、N、P含量均存在显著差异.土壤C和N含量均为次生林最高,人工林最低,土壤P含量为人工林最高,原生林最低;植物C和P含量变化趋势为人工林>原生林>次生林,植物N含量为次生林最高,原生林最低.土壤C∶P、N∶P以及植物C∶P均为原生林显著高于次生林和人工林,土壤C∶N在不同森林类型间差异不显著;植物N∶P为次生林最高,人工林最低,植物C∶N为原生林>人工林>次生林.在不同森林类型中,乔木叶片N含量与P含量、C∶N与C∶P以及C∶P与N∶P之间均呈显著线性正相关,除了植物叶片C∶N与N∶P以及土壤C∶N与N∶P之间呈显著线性负相关外,植物和土壤的C、N、P、C∶P均无显著相关性,说明土壤C、N、P供应量对乔木叶片C、N、P含量影响不大.  相似文献   

9.
Organic carbon (C) and nitrogen (N) are essential for heterotrophic soil microorganisms, and their bioavailability strongly influences ecosystem C and N cycling. We show here that the natural 15N abundance of the soil microbial biomass is affected by both the availability of C and N and ecosystem N processing. Microbial 15N enrichment correlated negatively with the C : N ratio of the soil soluble fraction and positively with net N mineralization for ecosystems spanning semiarid, temperate and tropical climates, grassland and forests, and over four million years of ecosystem development. In addition, during soil incubation, large increases in microbial 15N enrichment corresponded to high net N mineralization rates. These results support the idea that the N isotope composition of an organism is determined by the balance between N assimilation and dissimilation. Thus, 15N enrichment of the soil microbial biomass integrates the effects of C and N availability on microbial metabolism and ecosystem processes.  相似文献   

10.
Summary Fresh leguminous plant residues were incorporated into soil columns and incubated at 23°C for up to 20 weeks. The N released from specific fractions (foliage, stems, and roots) of each residue were monitored at specific time intervals. Relationships between organic carbon, total nitrogen, CN ratio, lipids, and lignin content of the plant materials and the cumulative amount of N mineralized in soil were investigated. Statistical analyses indicated that the rates of N mineralized were not significantly correlated with the organic C nor lipid content of the residues. However, the cumulative amount of N released was significantly correlated with the total N content of the plant material (r=0.93***). The percentage of organic N of the legumes mineralized in soil ranged from 15.9 to 76.0%. The relationship between the percentage of N released and the CN ratio of the plant material showed an inverse cuvilinear response (r= 0.88***). It was also evident that the composition of lignin in the residue influenced N mine-ralization rates of the leguminous organs incorporated into soil.There was a curvilinear relationship between the cumulative amount of N released from the residues and time of incubation. Nitrogen mineralization rates were described by first-order kinetics to estimate the N mineralization potential (N0), mineralization rate constant (k), and the time of incubation required to mineralize one-half of N0 (t1/2). The kinetic parameters were calculated by both the linear least squares (LLS) and nonlinear least squares (NLLS) transformations. The N0 values among the crop residues varied from –35 to 510 g Ng–1 soil. Statistical analyses revealed that the N0 values obtained by both LLS and NLLS methods were significantly correlated (r=0.93***). The mineralization rate constants (k) of the residues ranged from 0.045 to 0.325 week–1. The time of incubation required to mineralize one-half the nitrogen mineralization potential (t1/2) of the legumes incorporated into soil ranged from 2.1 to 15.4 weeks.  相似文献   

11.
不同施肥处理对玉米秸秆碳氮比及其矿化特性的影响   总被引:17,自引:0,他引:17  
以两个长期定位试验不同施肥处理玉米秸秆为对象,采用室内培养试验研究了其碳、氮养分在土壤中的矿化特性.结果表明:与未施肥处理相比,施用化肥(NPK)或化肥与有机肥配施(MNPK)处理明显增加了玉米秸秆的氮素含量,降低了其C/N.不同处理秸秆碳、氮矿化量和被微生物固持的碳、氮量因培养时期不同而异,NPK、MNPK和240 kg N·hm-2处理秸秆在培养期间碳的矿化率显著高于相应不施肥处理;60 d培养期结束后,NPK处理秸秆的有机碳矿化量最大,占加入总有机碳的13.24%.各施肥处理玉米秸秆施入土壤后引起的土壤矿质氮固持量均较不施肥秸秆低,其中MNPK处理最低.施用秸秆增加了土壤微生物的代谢熵(qCO2),但不同处理间qCO2的差异较小;各处理土壤微生物生物量碳、氮含量因培养时期不同而异.因此,生产中利用秸秆时应考虑不同施肥处理秸秆养分含量的差异.  相似文献   

12.
Douglas A. Frank 《Oikos》2008,117(4):591-601
Although the link between the nitrogen (N): phosphorus (P) stoichiometry of biota and availability has received considerable attention in aquatic systems, there has been relatively little effort to compare the elemental composition of biota and supply in terrestrial habitats. In this study, I explored the effects of a prominent topo-edaphic gradient, from dry hilltop to wet slope-base, and native ungulates on N and P of soils, plants, and rates of in situ net mineralization in grasslands of Yellowstone National Park. Nitrogen and P measurements were made May–September, 2000, in paired, grazed and 38–42 year fenced, ungrazed grassland at five topographically variable sites. Similar to findings from other grassland ecosystems, several site factors associated with organic activity, including soil moisture, C, and plant biomass, covaried with soil N concentration and/or net N mineralization. Soil P concentration and net P mineralization, however, were unrelated to those factors. Instead, net P mineralization was negatively related to soil pH, which is known to control the form of inorganic P and its availability, and soil P was uncorrelated with any soil or plant variable measured in the study. Because of being influenced by different soil properties, N and P net mineralization were unrelated among grasslands. Furthermore, supply and plant N:P ratios were uncorrelated in this grassland system. Based on critical N:P ratios reflecting nutritional limitation of plants, Yellowstone grassland vegetation ranged from being N limited to N-P co-limited. Grazers increased N-P co-limitation by enhancing plant N concentrations and the soil pH gradient across grassland sites regulated plant nutritional limitation by affecting plant-available P. These findings showed how ungulates and a landscape factor, i.e. soil pH, determined plant nutrient status among YNP grasslands differently by influencing plant N concentration versus plant P concentration, respectively.  相似文献   

13.
Despite the topic of soil nitrogen (N) mineralization being well-studied, very few studies have addressed the relative contribution of different plant and soil variables in influencing soil N mineralization rates, and thus the supply of inorganic N to plants. Here, we used data from a well-studied N-limited grassland to address the relative effects of six plant and soil variables on net and on gross rates of soil N mineralization. We also addressed whether plant effects on soil N mineralization were mediated by changes in C and N concentrations of multiple soil organic matter (SOM) fractions. Regression analyses show that key plant traits (i.e., plant C:N ratios and total root mass) were more important than total C and N concentrations of bulk soil in influencing N mineralization. This was mainly because plant traits influenced the C and N concentration (and C:N ratios) of different SOM fractions, which in turn were significantly associated with changes in net and gross N mineralization. In particular, C:N ratios of a labile soil fraction were negatively related to net soil N mineralization rates, whereas total soil C and N concentrations of more recalcitrant fractions were positively related to gross N mineralization. Our study suggests that changes in belowground N-cycling can be better predicted by simultaneously addressing how plant C:N ratios and root mass affect the composition and distribution of different SOM pools in N-limited grassland systems.  相似文献   

14.
闫洋洋  王谢  严坤  刘勤  李明  徐佩 《生态学报》2023,43(11):4734-4746
生态化学计量是研究生态系统元素平衡与评价地球化学循环的重要方法,明确泥石流滩地不同景观类型下植物群落与土壤和微生物化学计量特征对揭示泥石流滩脆弱生态系统的物种营建机制与植被生态修复具重要意义。选择泥石流滩地设置撂荒耕地、荒滩地、无水溪沟和有水溪沟4种景观类型,调查其物种组成、植物群落特征以及土壤和微生物量碳(C)、氮(N)、磷(P)及其生态化学计量特征,探讨了泥石流滩地植被分布规律,并通过多样性指数、冗余分析和单因素方差分析等方法对植物群落和土壤因子进行比较分析。研究结果表明:(1)物种数在4种景观类型中表现为荒滩地>无水溪沟>撂荒耕地>有水溪沟,Margalef丰富度指数表现为无水溪沟>荒滩地>撂荒耕地>有水溪沟,Simpson优势度指数表现为撂荒耕地>有水溪沟>无水溪沟>荒滩地,且有水溪沟的植物群落密度、平均高度、盖度以及地上生物量均显著高于其它景观类型。(2)有水溪沟土壤N、P含量显著高于其他景观类型土壤;撂荒耕地土壤C含量最少,显著低于其他景观类型土壤;土壤C∶N、C∶P表现为荒滩地>无水溪沟>有水溪沟>撂...  相似文献   

15.
Summary The production of mineralized carbon and nitrogen by a slightly acid sandy loam soil, in the presence and absence of finely chopped fresh plant material or powdered dry plant material, was followed by determination of the amounts of carbon and nitrogen mineralized at intervals during continuous incubation over a period of twelve weeks. Mineralization of carbon and nitrogen was also followed in parallel soil samples and soil plant material mixtures which were dried at 35°C or 105°C and then rewetted every two weeks during the incubation period.The amounts of carbon and nitrogen mineralized were determined at intervals during the incubation period.Mineralization of the carbon and nitrogen of the humus of the soil was stimulated by periodic drying of the soil and particularly when the soil was dried at 105°C.It was found that more mineral nitrogen was produced from fresh plant material than from dried plant material in all the treatments. Periodic drying of the soil-plant material mixtures did not stimulate the production of mineral nitrogen from the added plant material and reduced it considerably when the drying was carried out at 105°C.Periodic drying at 35°C did not stimulate the mineralization of the carbon of fresh or dried plant material. It is clear therefore that, at temperatures occurring in nature, it is unlikely that the decomposition of plant material added to the soil will be stimulated as a consequence of drying of the soil. Periodic drying of the soil-plant material mixture at 105°C increased the mineralization of the carbon of the dried plant material. The amounts of carbon mineralized in 12 weeks from the dried plant material did not, however, exceed the amounts from fresh plant material incubated continuously in fresh soil or in soil periodically dried at 35°C.  相似文献   

16.
Aim Invasion of nitrogen‐fixing non‐native plant species may alter soil resources and impact native plant communities. Altered soils may be the driving mechanism that provides a suitable environment to facilitate future invasions and decrease native biodiversity. We hypothesized that Melilotus invasion would increase nitrogen availability and produce soil microclimate and biochemical changes, which could in turn alter plant species composition in a montane grassland community. Location Our research addressed the effects of white and yellow sweet clover (Melilotus officinalis and M. alba) invasion on soil characteristics and nitrogen processes in the montane grasslands in Rocky Mountain National Park. Methods We sampled soil in replicate sites of Melilotus‐invaded and control (non‐invaded) patches within disturbed areas in montane grassland habitats. Soil composites were analysed for available nitrogen, net nitrogen mineralization, moisture, carbon/nitrogen (C : N ratio), texture, organic matter and pH. Data were recorded at three sample dates during the growing seasons of 1998 and 1999. Results Contrary to our expectations, we observed lower nitrogen availability and mineralization in invaded patches, and differences in soil moisture content and soil C : N. Soil C : N ratios were higher in invaded plots, in spite of the fact that Melilotus had the lowest C : N ratios of other plant tissue analysed in this study. Main conclusions These findings provide land managers of natural areas with a better perspective on the possibilities of nitrogen‐fixing species impact on soil nutrient levels.  相似文献   

17.
Some factors affecting the mineralization of organic sulphur in soils   总被引:6,自引:0,他引:6  
Summary Factors affecting the release of sulphate from a number of eastern Australian soils were studied.All of the soils released sulphate when dried. The amounts released were influenced by the manner in which the soil was dried. Air-drying in the laboratory at 20°C released least sulphate.Sulphate was mineralized in all soils by incubation at 30°C but the amounts mineralized could not be related to soil type or any single soil property. The ratio of nitrogen mineralized: sulphur mineralized varied widely between soils and was generally appreciably greater than the ratio of total nitrogen: organic sulphur in the soils.A rapid flush of mineralization of both sulphur and nitrogen took place when some of the soils were rewetted and incubated after they had been dried in the laboratory and stored for 4 to 5 months. Following this, the rate of mineralization was similar to that in the original undried soil. During this flush, the enhancement of sulphur mineralization was relatively greater than that of nitrogen so that the ratio of nitrogen mineralized: sulphur mineralized was considerably smaller than that during later phases of the incubation or that of the original moist soil. Soils collected after they had remained dry in the field for a similar period of time did not show this type of mineralization although they had initially done so when collected moist and air-dried in the laboratory.The effects of temperature, soil moisture, toluene and formaldehyde, and the addition of calcium carbonate to soils on the mineralization of sulphur were similar to their effects on the mineralization of nitrogen.  相似文献   

18.
以现有42年生的马尾松(Pinus massoniana)人工纯林,经过采伐形成4种不同大小有效面积的林窗(100、400、900和1 600 m2)为研究对象,以未经采伐的42年生马尾松人工纯林为对照样地,采用凋落叶分解袋法,研究不同大小有效面积林窗对马尾松凋落叶、土壤C、N、P及化学计量比和养分损失率的影响。研究结果表明:(1)不同大小有效面积林窗下的马尾松凋落叶、土壤C、N、P含量及养分损失率除土壤P含量和马尾松凋落叶P养分损失率外,均存在显著差异。随着林窗有效面积G1~G4的增大,马尾松凋落叶C、N、P含量均呈降低趋势,三者均在G3林窗体现出较小值。马尾松凋落叶C、N、P养分损失率、土壤C、N、P养分含量多呈抛物线趋势,且均在G2或G3林窗体现出最大值。(2)不同大小有效面积林窗下的马尾松凋落叶、土壤C/N/P均存在显著差异。随着林窗有效面积G1~G4的增大,马尾松人工林土壤C/N/P基本呈抛物线变化趋势,土壤C/N在G3林窗出现最大值,土壤C/P、N/P均在G2林窗体现出最大值;土壤C/N、C/P、N/P变异系数分别为13.31%、16.51%、17.21%。马尾松凋落叶C/N、C/P均在G3体现出最小值。(3)马尾松凋落叶C、N含量与土壤C、C/N/P及环境因子的相关性较强,P含量与它们的相关性较弱;C/N与土壤P、C/N/P及环境因子的相关性较强,C/P、N/P与土壤C/P及环境因子的相关性较强;C、N养分损失率与土壤C、C/N、C/P及环境因子的相关性较强,P养分损失率与土壤C、N、P含量及其化学计量比和环境因子的相关性较弱。土壤C、N、P含量及其化学计量比与环境因子的相关性较强。  相似文献   

19.
不同施肥处理对玉米秸秆碳氮比及其矿化特性的影响   总被引:5,自引:0,他引:5  
以两个长期定位试验不同施肥处理玉米秸秆为对象,采用室内培养试验研究了其碳、氮养分在土壤中的矿化特性.结果表明:与未施肥处理相比,施用化肥(NPK)或化肥与有机肥配施(MNPK)处理明显增加了玉米秸秆的氮素含量,降低了其C/N.不同处理秸秆碳、氮矿化量和被微生物固持的碳、氮量因培养时期不同而异,NPK、MNPK和240 kg N·hm-2处理秸秆在培养期间碳的矿化率显著高于相应不施肥处理;60 d培养期结束后,NPK处理秸秆的有机碳矿化量最大,占加入总有机碳的13.24%.各施肥处理玉米秸秆施入土壤后引起的土壤矿质氮固持量均较不施肥秸秆低,其中MNPK处理最低.施用秸秆增加了土壤微生物的代谢熵(qCO2),但不同处理间qCO2的差异较小;各处理土壤微生物生物量碳、氮含量因培养时期不同而异.因此,生产中利用秸秆时应考虑不同施肥处理秸秆养分含量的差异.  相似文献   

20.
探讨长期不同施肥制度对农田土壤、植物生态系统的碳(C)、氮(N)、磷(P)含量及其生态化学计量比的影响,可为揭示该系统能量平衡和养分循环,实现农业生态系统元素平衡及可持续发展提供参考意义。以位于黄土高原半干旱地区的长武国家黄土高原农业生态实验站长期施肥试验为研究对象,选取不施肥(CK)、单施氮肥(N)、单施磷肥(P)、施氮磷肥(NP)、单施有机肥(M)、氮肥配施有机肥(NM)、磷肥配施有机肥(PM)、氮磷肥配施有机肥(NPM)8个处理,分析了黄土旱塬典型农田土壤-微生物-植物生态系统中C、N、P含量及其生态化学计量变化规律。研究结果表明:1)长期单施有机肥和化肥配施有机肥处理可显著提高土壤和有机质C、N、P含量。2)氮、磷肥的输入显著降低了土壤和小麦C∶N、N∶P,施P显著降低了有机态C∶P和小麦C∶P;有机肥配施对微生物生物量和小麦C∶N∶P的影响更为明显。3)长期有机肥配施条件下土壤养分和小麦化学计量比存在较强的相关关系。微生物生物量碳与有机C、N、P呈显著正相关,土壤微生物生物量氮与土壤N、P总量呈显著正相关,微生物生物量磷与土壤C、N、P总量含量呈显著负相关;植株碳含量与微生物...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号