首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(11):1604-1620
Macroautophagy is an important process for removing misfolded and aggregated protein in cells, the dysfunction of which has been directly linked to an increasing number of neurodegenerative disorders. However, the details of macroautophagy in prion diseases remain obscure. Here we demonstrated that in the terminal stages of scrapie strain 263K-infected hamsters and human genetic prion diseases, the microtubule-associated protein 1 light chain 3 (LC3) was converted from the cytosolic form to the autophagosome-bound membrane form. Macroautophagy substrate sequestosome 1 (SQSTM1) and polyubiquitinated proteins were downregulated in the brains of sick individuals, indicating enhanced macroautophagic protein degradation. The levels of mechanistic target of rapamycin (MTOR) and phosphorylated MTOR (p-MTOR) were significantly decreased, which implies that this enhancement of the macroautophagic response is likely through the MTOR pathway which is a negative regulator for the initiation of macroautophagy. Dynamic assays of the autophagic system in the brains of scrapie experimental hamsters after inoculation showed that alterations of the autophagic system appeared along with the deposits of PrPSc in the infected brains. Immunofluorescent assays revealed specific staining of autophagosomes in neurons that were not colocalized with deposits of PrPSc in the brains of scrapie infected hamsters, however, autophagosome did colocalize with PrPSc in a prion-infected cell line after treatment with bafilomycin A1. These results suggest that activation of macroautophagy in brains is a disease-correlative phenomenon in prion diseases.  相似文献   

2.
Macroautophagy is an important process for removing misfolded and aggregated protein in cells, the dysfunction of which has been directly linked to an increasing number of neurodegenerative disorders. However, the details of macroautophagy in prion diseases remain obscure. Here we demonstrated that in the terminal stages of scrapie strain 263K-infected hamsters and human genetic prion diseases, the microtubule-associated protein 1 light chain 3 (LC3) was converted from the cytosolic form to the autophagosome-bound membrane form. Macroautophagy substrate sequestosome 1 (SQSTM1) and polyubiquitinated proteins were downregulated in the brains of sick individuals, indicating enhanced macroautophagic protein degradation. The levels of mechanistic target of rapamycin (MTOR) and phosphorylated MTOR (p-MTOR) were significantly decreased, which implies that this enhancement of the macroautophagic response is likely through the MTOR pathway which is a negative regulator for the initiation of macroautophagy. Dynamic assays of the autophagic system in the brains of scrapie experimental hamsters after inoculation showed that alterations of the autophagic system appeared along with the deposits of PrPSc in the infected brains. Immunofluorescent assays revealed specific staining of autophagosomes in neurons that were not colocalized with deposits of PrPSc in the brains of scrapie infected hamsters, however, autophagosome did colocalize with PrPSc in a prion-infected cell line after treatment with bafilomycin A1. These results suggest that activation of macroautophagy in brains is a disease-correlative phenomenon in prion diseases.  相似文献   

3.
The aberrant alterations of calmodulin (CaM) and its downstream substrates have been reported in some neurodegenerative diseases, but rarely described in prion disease. In this study, the potential changes of Ca2+/CaM and its associated agents in the brains of scrapie agent 263K-infected hamsters and the prion infected cell line SMB-S15 were evaluated by various methodologies. We found that the level of CaM in the brains of 263K-infected hamsters started to increase at early stage and maintained at high level till terminal stage. The increased CaM mainly accumulated in the regions of cortex, thalamus and cerebellum of 263K-infected hamsters and well localization of CaM with NeuN positive cells. However, the related kinases such as total and phosphorylated forms of CaMKII and CaMKIV, as well as the downstream proteins such as CREB and BDNF in the brain of 263K-infected hamsters were decreased. Further analysis showed a remarkable increase of S-nitrosylated (SNO) form of CaM in the brains of 263K-infected hamsters. Dynamic analysis of S-nitrosylated CaM showed the SNO form of CaM abnormally increases in a time-dependent manner during prion infection. Compared with that of the normal partner cell line SMB-PS, the CaM level in SMB-S15 cells was increased, meanwhile, the downstream proteins, such as CaMKII, p-CaMKII, CREB, as well as BDNF, were also increased, especially in the nucleic fraction. No SNO-CaM was detected in the cell lines SMB-S15 and SMB-PS. Our data indicate an aberrant increase of CaM during prion infection in vivo and in vitro.  相似文献   

4.
Polo-like kinases (PLKs) family has long been known to be critical for cell cycle and recent studies have pointed to new dimensions of PLKs function in the nervous system. Our previous study has verified that the levels of PLK3 in the brain are severely downregulated in prion-related diseases. However, the associations of PLKs with prion protein remain unclear. In the present study, we confirmed that PrP protein constitutively interacts with PLK3 as determined by both in vitro and in vivo assays. Both the kinase domain and polo-box domain of PLK3 were proved to bind PrP proteins expressed in mammalian cell lines. Overexpression of PLK3 did not affect the level of wild-type PrP, but significantly decreased the levels of the mutated PrPs in cultured cells. The kinase domain appeared to be responsible for the clearance of abnormally aggregated PrPs, but this function seemed to be independent of its kinase activity. RNA-mediated knockdown of PLK3 obviously aggravated the accumulation of cytosolic PrPs. Moreover, PLK3 overexpression in a scrapie infected cell line caused notable reduce of PrPSc level in a dose-dependent manner, but had minimal effect on the expression of PrPC in its normal partner cell line. Our findings here confirmed the molecular interaction between PLK3 and PrP and outlined the regulatory activity of PLK3 on the degradation of abnormal PrPs, even its pathogenic isoform PrPSc. We, therefore, assume that the recovery of PLK3 in the early stage of prion infection may be helpful to prevent the toxic accumulation of PrPSc in the brain tissues.  相似文献   

5.
Previous studies showed that the histopathological changes found in the brains of scrapie-infected animals included amyloid plaque formation, vacuolation, gliosis and neuronal and neurite degeneration. There were differences in the histopathological findings as a function of the scrapie strain-host combination. NADPH-diaphorase (NADPH-d) has been shown to be a selective histochemical marker for neurons containing nitric oxide (NO) synthase. Neuronal cell damage caused by NOS in brain has been reported to be associated with many neurodegenerative diseases. In this study, we used NADPH-d histostaining to investigate changes in the NOS system in brains of 139H- and 263K-infected hamsters and compared the results to normal hamster brain (NHB) injected animals. We observed that some of the NADPH-d histostaining neurons in the cortex of scrapie-infected hamsters appeared to be atrophic: the neurons were smaller and had fewer neurites. The NADPH-d histostaining intensity of neurons or astrocytes in septum, thalamus, hypothalamus and amygdala of 139H- and 263K-infected hamsters was greater than in control hamsters. Astrocytes in the thalamus, hypothalamus and lower part of the cortex (layers 4 to 6) in 263K-infected hamsters were more intensely stained for NADPH-d than in either 139H-infected hamsters or controls. Our results suggest that changes in NADPH-d system might play a role in the diversity of scrapie induced neurodegenerative changes.  相似文献   

6.
α1-Antichymotrypsin (α1-ACT) belongs to a kind of acute-phase inflammatory protein. Recently, such protein has been proved exist in the amyloid deposits which is the hallmark of Alzheimer's disease, but limitedly reported in prion disease. To estimate the change of α1-ACT during prion infection, the levels of α1-ACT in the brain tissues of scrapie agents 263K-, 139A- and ME7-infected rodents were analyzed, respectively. Results shown that α1-ACT levels were significantly increased in the brain tissues of the three kinds of scrapie-infected rodents, displaying a time-dependent manner during prion infection. Immunohistochemistry assays revealed the increased α1-ACT mainly accumulated in some cerebral regions of rodents infected with prion, such as cortex, thalamus and cerebellum. Immunofluorescent assays illustrated ubiquitously localization of α1-ACT with GFAP positive astrocytes, Iba1-positive microglia and NeuN-positive neurons. Moreover, double-stained immunofluorescent assays and immunohistochemistry assays using series of brain slices demonstrated close morphological colocalization of α1-ACT signals with that of PrP and PrPSc in the brain slices of 263K-infected hamster. However, co-immunoprecipitation does not identify any detectable molecular interaction between the endogenous α1-ACT and PrP either in the brain homogenates of 263K-infected hamsters or in the lysates of prion-infected cultured cells. Our data here imply that brain α1-ACT is increased abnormally in various scrapie-infected rodent models. Direct molecular interaction between α1-ACT and PrP seems not to be essential for the morphological colocalization of those two proteins in the brain tissues of prion infection.  相似文献   

7.
Prion is a unique nucleic acid-free pathogen that causes human and animal fatal neurodegenerative diseases. Brain-derived neurotrophic factor (BDNF) is a prototypic neurotrophin that helps to support the survival of existing neurons, and encourage the growth and differentiation of new neurons and synapses through axonal and dendritic sprouting. There are two distinct classes of glycosylated receptors, neurotrophin receptor p75 (p75NTR) and tropomyosin-related kinase (Trk), that can bind to BDNF. To obtain insights into the possible alterations of brain BDNF and its signaling pathway in prion disease, the levels of BDNF and several molecules in the BDNF pathway in the brain tissues of scrapie agents 263K-infected hamsters were separately evaluated. Western blots and/or immunohistochemical (IHC) assays revealed that BDNF, TrkB, GRB2 and p75NTR, were significantly downregulated in the brain tissues of scrapie-infected rodents at terminal stage. Double-stained immunofluorescent assay (IFA) demonstrated that BDNF and phospho-TrkB predominately expressed in neurons. Dynamic analyses of the brain samples collected at the different time-points during the incubation period illustrated continuous decreases of BDNF, TrkB, phospho-TrkB, GRB2 and p75NTR, which correlated well with neuron loss. However, these proteins remained almost unchanged in the prion infected cell line SMB-S15 compared with those of its normal cell line SMB-PS. These data suggest that the BDNF signaling pathway is severely hindered in the brains of prion disease, which may contribute, at least partially, to the neuron death.  相似文献   

8.
Guo Y  Gong HS  Zhang J  Xie WL  Tian C  Chen C  Shi Q  Wang SB  Xu Y  Zhang BY  Dong XP 《PloS one》2012,7(1):e30163
Microtubule-associated protein 2 (MAP2) belongs to the family of heat stable MAPs, which takes part in neuronal morphogenesis, maintenance of cellular architecture and internal organization, cell division and cellular processes. To obtain insight into the possible alteration and the role of MAP2 in transmissible spongiform encephalopathies (TSEs), the MAP2 levels in the brain tissues of agent 263K-infected hamsters and human prion diseases were evaluated. Western blots and IHC revealed that at the terminal stages of the diseases, MAP2 levels in the brain tissues of scrapie infected hamsters, a patient with genetic Creutzfeldt-Jakob disease (G114V gCJD) and a patient with fatal familial insomnia (FFI) were almost undetectable. The decline of MAP2 was closely related with prolonged incubation time. Exposure of SK-N-SH neuroblastoma cell line to cytotoxic PrP106-126 peptide significantly down-regulated the cellular MAP2 level and remarkably disrupted the microtubule structure, but did not alter the level of tubulin. Moreover, the levels of calpain, which mediated the degradation of a broad of cytoskeletal proteins, were significantly increased in both PrP106-126 treated SK-N-SH cells and brain tissues of 263K prion-infected hamsters. Our data indicate that the decline of MAP2 is a common phenomenon in TSEs, which seems to occur at an early stage of incubation period. Markedly increased calpain level might contribute to the reduction of MAP2.  相似文献   

9.
Analyses of human phosphoproteome based on primary structure of the aminoacids surrounding the phosphor Ser/Thr suggest that a significant proportion of phosphosites is generated by a restricted number of acidophilic kinases, among which protein kinase CK2 plays a prominent role. Recently, new acidophilic kinases belonging to the Polo like kinase family have been characterized, with special reference to PLK1, PLK2, and PLK3 kinases. While some progress has been made in deciphering the PLK1-dependent phosphoproteome, very little is known about the targets of PLK2 and PLK3 kinases. In this report by using an in vitro approach, consisting of cell lysate phosphorylation, phosphoprotein separation by 2D gel electrophoresis and mass spectrometry, we describe the identification of new potential substrates of PLK2 and PLK3 kinases. We have identified and validated as in vitro PLK2 and PLK3 substrates HSP90, GRP-94, β-tubulin, calumenin, and 14-3-3 epsilon. The phosphosites generated by PLK3 in these proteins have been identified by mass spectrometry analysis to get new insights about PLKs specificity determinants. These latter have been further corroborated by an in silico analysis of the PLKs substrate binding region.  相似文献   

10.
The infections of prion agents may cause progressive and fatal neurodegenerative diseases in humans and a serial of animal species. Previous studies have proposed that the levels of nitric oxide (NO) and nitric oxide synthase (NOS) in the brains of some neurodegeneration diseases changed, while S-nitrosylation (SNO) of many brain proteins altered in prion diseases. To elucidate the potential changes of brain NO levels during prion infection, the NO levels and NOS activities in the brain tissues of three scrapie experimental rodents were measured, including scrapie agent 263 K-infected hamsters and 139A- and ME7-infected mice. Both NO levels and NOS activities, including total NOS (TNOS) and inducible NOS (iNOS), were increased at the terminal stages of scrapie-infected animals. Assays of the brain samples collected at different time points during scrapie infection showed that the NO levels and NOS activities started to increase at early stage, reached to the peak in the middle stage, and dropped down at late stage. Western blots for brain iNOS revealed increased firstly and decreased late, especially in the brains of 139A- and ME7-infected mice. In line with those alterations, the levels of the SNO forms of several selected brain proteins such as aquaporin-1 (AQP1), calcium/calmodulin-dependent protein kinase II (CaMKII), neurogranin, and opalin, underwent similar changing trends, while their total protein levels did not change obviously during scrapie infection. Our data here for the first time illustrate the changing profile of brain NO and NOS during prion infection. Time-dependent alterations of brain NO level and the associated protein S-nitrosylation process may contribute greatly to the neuropathological damage in prion diseases.  相似文献   

11.
Cell-cycle control: POLO-like kinases join the outer circle   总被引:1,自引:0,他引:1  
Named after the polo gene of Drosophila, POLO-like kinases (PLKs) constitute a novel, evolutionarily conserved family of essential cell-cycle regulators. As emphasized in this review, recent studies identify important roles for vertebrate PLKs at the onset of mitosis: Plx1, a Xenopus PLK, has been implicated in the activation of Cdc25 phosphatase (and hence the activation of Cdc2), while human Plk1 is required for the proper maturation of the poles of mitotic spindles. These studies suggest a major role for Plk1/Plx1 in coordinating spindle assembly with the activation of Cdc2-cyclin complexes, and they establish a direct link between PLKs and the core cell-cycle-regulatory machinery. Genetic and biochemical studies in yeasts and Drosophila point to additional roles for PLKs at later stages of mitosis. Finally, mammals express multiple PLKs, suggesting that different family members might function at distinct cell-cycle transitions, reminiscent of cyclin-dependent kinases.  相似文献   

12.
Fourier -transform infrared microscopic spectra of scrapie-infected nervous tissue measured at high spatial resolution (approximately 6 microm) were compared with those obtained from the purified, partly proteinase K digested scrapie isoform of the prion protein isolated from nervous tissue of hamsters infected with the same scrapie strain (263K) to elucidate similarities/dissimilarities between prion structure investigated in situ and ex vivo. A further comparison is drawn to the recombinant Syrian hamster prion protein SHaPrP(90-232) after in vitro conformational transition from the predominantly alpha-helical isoform to beta-sheet-rich structures. It is shown that prion protein structure can be investigated within tissue and that detectability of regions with elevated beta-sheet content as observed in microspectra of prion-infected tissue strongly depends on spatial resolution of the experiment.  相似文献   

13.
Previous studies showed that the 139H strain of scrapie injected intra-cerebrally in hamsters caused obesity, and extensive histopathological changes in islets of Langerhans and pituitaries. In the current study, we report that an abnormal granular substance, which stained positively with periodic acid-Schiff (PAS-positive substance; PPS), was found in the islets of Langerhans, pituitaries, adrenal glands, in the lumens of blood vessel cores (BVCs) and in blood vessels in 139H-infected hamsters, but not in either 263K-infected or control hamsters. This substance was found in the endocrine organs, forming grape-like or plaque-like structures, which were small, round to ovoid, and homogenous measuring up to 7 microns in diameter and usually grouped in clusters. PPS was not found in the brains of control or scrapie-infected hamsters. Using immunostaining for amyloid protein (PrP, beta A4), as well as Congo red and thioflavin-S stains, no evidence was found of amyloid plaque formation in the islets of Langerhans, the adrenal glands, or the pituitaries of 139H- or 263K-infected hamsters. PPS might relate to the pathological changes in the endocrine organs in 139H-infected hamsters.  相似文献   

14.
15.
Scrapie-associated fibrils (SAF) are an infection-specific structure observed in the unconventional-agent diseases. Polyclonal antisera raised to scrapie proteins were used to test the antigenic relationship between purified fibrils and SAF isolated from non-protease-treated synaptosomal-mitochondrial preparations. The experimental design utilized fibrils from scrapie strain 263K-infected hamsters, scrapie strain 139A-infected mice, and scrapie strain ME7-infected mice. Preparations were examined by negative-stain immune electron microscopy and Western blot analysis of the polypeptides. Fibrils and polypeptides from each preparation reacted with a rabbit antiserum raised to each of the following: hamster 263K prion protein (PrP 27-30), hamster 263K SAF protein, and mouse ME7 SAF protein. Immune electron microscopy and Western blot analysis revealed similar antigenic relationships among the three scrapie antisera. Thus, fibrils and polypeptides can be considered to be the same in each preparation. No reactivity of the fibrils was observed with antisera raised to Alzheimer neurofibrillary tangles or a synthetic peptide of cerebrovascular amyloid. Thus, the fibrils observed in purified preparations share structural and antigenic similarities plus biochemically related peptides with SAF present in non-protease-treated preparations.  相似文献   

16.
Polo-like kinases (PLKs) control several aspects of eukaryotic cell division and DNA damage response. Remarkably, PLKs are overexpressed in several types of cancer, being therefore a marker of bad prognosis. As such, specific PLK kinase activity inhibitors are already used in clinical trials and the regulation of PLK activation is a relevant topic of cancer research. Phosphorylation of threonine residues in the T-loop of the kinase domain is pivotal for PLKs activation. Here, we show that T238A substitution in the T-loop reduces the kinase activity of Cdc5, the only PLK in Saccharomyces cerevisiae, with minor effect on cell growth in unperturbed conditions. However, the cdc5-T238A cells have increased rate of chromosome loss and gross chromosomal rearrangements, indicating altered genome stability. Moreover, the T238A mutation affects timely localization of Cdc5 to the spindle pole bodies and blocks cell cycle restart after one irreparable double-strand break. In cells responding to alkylating agent metylmethane sulfonate (MMS), the cdc5-T238A mutation reduces the phosphorylation of Mus81-Mms4 resolvase and exacerbates the MMS sensitivity of sgs1Δ cells that accumulate Holliday junctions. Of importance, the previously described checkpoint adaptation defective allele, cdc5-ad does not show reduced kinase activity, defective Mms4 phosphorylation and genetic interaction with sgs1Δ. Our data define the importance of regulating Cdc5 activity through T-loop phosphorylation to preserve genome integrity and respond to DNA damage.  相似文献   

17.
朊病毒病是一类具有致死性、传染性和进行性的神经退行性疾病。目前研究发现许多因子都参与了疾病的发生发展过程,包括细胞因子、激酶和一些离子,其中钙离子及相关激酶在朊病毒病致病机制中的研究报道较少,为了探究朊病毒感染中钙调蛋白相关下游激酶的含量变化情况,本研究利用多种检测方法对朊病毒感染细胞系及小鼠脑组织进行了分析。结果显示朊病毒感染后,钙离子和钙调蛋白(CaM)的表达水平升高,下游Ca2+/CaM复合物依赖性激酶CaMKIα和CaMKIV表达水平下降,同时这些激酶的上游激酶CaMKKα含量降低,提示朊病毒感染后神经元中钙离子和相关激酶稳态失衡,这种异常变化很可能影响下游多种转录因子合成,这些结果为解释朊病毒感染后神经元大量丢失提供了科学依据。  相似文献   

18.
CDC25 (A, B and C) phosphatases control cell cycle progression through the timely dephosphorylation and activation of cyclin-dependent kinases (CDK). At mitosis the CDC25B phosphatase activity is dependent on its phosphorylation by multiple kinases impinging on its localisation, stability and catalytic activity. Here we report that prior phosphorylation of CDC25B by CDK1 enhances its substrate properties for PLK1 in vitro, and we also show that phosphorylated S50 serves as a docking site for PLK1. Using a sophisticated strategy based on the sequential phosphorylation of CDC25B with 16O and 18O ATP prior to nanoLC–MS/MS analysis we identified 13 sites phosphorylated by PLK1. This study illustrates the complexity of the phosphorylation pattern and of the subsequent regulation of CDC25B activity.  相似文献   

19.
Phosphorylation of α-synuclein (α-syn) at Ser-129 is a hallmark of Parkinson disease and related synucleinopathies. However, the identity of the natural kinases and phosphatases responsible for regulating α-syn phosphorylation remain unknown. Here we demonstrate that three closely related members of the human Polo-like kinase (PLK) family (PLK1, PLK2, and PLK3) phosphorylate α-syn and β-syn specifically at Ser-129 and Ser-118, respectively. Unlike other kinases reported to partially phosphorylate α-syn at Ser-129 in vitro, phosphorylation by PLK2 and PLK3 is quantitative (>95% conversion). Only PLK1 and PLK3 phosphorylate β-syn at Ser-118, whereas no phosphorylation of γ-syn was detected by any of the four PLKs (PLK1 to -4). PLK-mediated phosphorylation was greatly reduced in an isolated C-terminal fragment (residues 103–140) of α-syn, suggesting substrate recognition via the N-terminal repeats and/or the non-amyloid component domain of α-syn. PLKs specifically co-localized with phosphorylated Ser-129 (Ser(P)-129) α-syn in various subcellular compartments (cytoplasm, nucleus, and membranes) of mammalian cell lines and primary neurons as well as in α-syn transgenic mice, especially cortical brain areas involved in synaptic plasticity. Furthermore, we report that the levels of PLK2 are significantly increased in brains of Alzheimer disease and Lewy body disease patients. Taken together, these results provide biochemical and in vivo evidence of α-syn and β-syn phosphorylation by specific PLKs. Our results suggest a need for further studies to elucidate the potential role of PLK-syn interactions in the normal biology of these proteins as well as their involvement in the pathogenesis of Parkinson disease and other synucleinopathies.  相似文献   

20.
Several families of protein kinases have been shown to play a critical role in the regulation of cell cycle progression, particularly progression through mitosis. These kinase families include the Aurora kinases, the Mps1 gene product and the Polo Like family of protein kinases (PLKs). The PLK family consists of five members and of these, the role of PLK1 in human cancer is well documented. PLK2 (SNK), which is highly homologous to PLK1, has been shown to play a critical role in centriole duplication and is also believed to play a regulatory role in the survival pathway by physically stabilizing the TSC1/2 complex in tumor cells under hypoxic conditions. As a part of our research program, we have developed a library of novel ATP mimetic chemotypes that are cytotoxic against a panel of cancer cell lines. We show that one of these chemotypes, the 6-arylsulfonyl pyridopyrimidinones, induces apoptosis of human tumor cell lines in nanomolar concentrations. The most potent of these compounds, 7ao, was found to be a highly specific inhibitor of PLK2 when profiled against a panel of 288 wild type, 55 mutant and 12 lipid kinases. Here, we describe the synthesis, structure activity relationship, in vitro kinase specificity and biological activity of the lead compound, 7ao.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号