首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diving response in marine mammals results in bradycardia and peripheral vasoconstriction, with blood flow redistributing preferentially to nervous and cardiac tissues. Therefore, some tissues are rendered ischemic during a dive; with the first breath after a dive, blood flow to all tissues is reestablished. In terrestrial mammals, reactive oxygen species (ROS) production increases in response to ischemia/reperfusion and oxidative damage can occur. The capacity of marine mammals to tolerate repeated ischemia/reperfusion cycles associated with diving appears to be due to an enhanced antioxidant system. However, it is not known if diving depth and/or duration elicit differences in tissue capacity to produce ROS and antioxidant defenses in marine mammals. The objective of this study was to analyze ROS production, antioxidant defenses and oxidative damage in marine mammal species that perform shallow/short vs. deep/long dives. We measured production of superoxide radical (O2??), oxidative damage to lipids and proteins, activity of antioxidant enzymes, and glutathione levels in tissues from shallow/short divers (Tursiops truncatus) and deep/long divers (Kogia spp.). We found that differences between the diving capacity of dolphins and Kogia spp. are reflected in O2?? production and antioxidant levels. These differences suggest that shallow/short and deep/long divers have distinct mechanisms to successfully maintain redox balance.  相似文献   

2.
Cellular oxidative stress responses are caused in many ways, but especially by disease and environmental stress. After the initial burst of reactive oxygen species (ROS), the effective elimination of ROS is crucial for the survival of organisms and is mediated by antioxidant defense mechanisms. In this paper, we investigate the possible antioxidant function of Penaeus monodon Receptor for Activated C Kinase-1 (Pm-RACK1). When Pm-RACK1 was over-expressed in Escherichia coli cells or Spodoptera frugiperda (Sf9) insect cells exposed to H2O2, it significantly protected the cells from oxidative damage induced by H2O2. When recombinant Pm-RACK1 protein was expressed as a histidine fusion protein in E. coli and purified with a Ni2+-column it possessed antioxidant functions that protected DNA from metal-catalyzed oxidation. Shrimp (Penaeus vannamei) held at an alkaline pH had a much higher hepatopancreatic expression of Pm-RACK1 than in those held at pH 7.4. The exposure of shrimp to alkaline pH is also known to increase ROS production. These results provide strong evidence that Pm-RACK1 can participate in the shrimp antioxidant response induced by the formation of ROS.  相似文献   

3.
4.
5.
《Process Biochemistry》2007,42(2):134-140
Rock bream iridovirus (RBIV) is a causative agent of epizootics among cultured rock bream (Oplegnathus fasciatus) in Korea. The structure of the isolated RBIV was observed by an electron microscope, and the virus particles were icosahedral and 120–130 nm in diameter. From the complete genomic DNA sequence of RBIV, the protein encoded in ORF 049L (RBIV-049L) was selected and the property of protein was evaluated with the transmembrane sequence TMHMM 2.0 tool. The ORF 049L gene of RBIV (RBIV-049L) was cloned into pGEX-4T-1 expression vector. The recombinant RBIV-049L was overexpressed in Escherichia coli BL21 (DE3) as a fusion protein (GST-049L, 42 kDa) with a glutathione S-transferase. Antiserum against this recombinant GST-049L protein was prepared in mouse. Dot blot analysis was carried out to identify the reaction abilities and sensitivity of anti-RBIV-049L polyclonal antibody to RBIV-infected rock bream with enzyme linked immunosorbent assay (ELISA) and one-step PCR. These novel RBIV-049L protein and anti-RBIV-049L polyclonal antibody will facilitate the development of more specific and standardized diagnostic techniques.  相似文献   

6.
7.
Chemokines are chemoattractant cytokines defined by the presence of four conserved cysteine residues. In mammals, these cytokines can be divided into four subfamilies depending on the arrangement of the first two conserved cysteines in the sequence, and include the CXC(α), CC(β), C(γ), and CX3C(δ) classes. We identified CXC chemokine cDNA, designated RbCXC, isolated using expressed sequence tag analysis of a lipopolysaccharide (LPS)-stimulated rock bream liver cDNA library. The full-length RbCXC cDNA (742 bp) contained an open reading frame of 342 bp encoding 114 amino acids. Results from phylogenetic analysis showed that RbCXC was strictly separated into a distinct clade compared to other known CXC chemokine subgroups. RbCXC was significantly expressed in the trunk kidney, liver, spleen, gill, peripheral blood leukocytes (PBLs), and head kidney. Rock bream PBLs were stimulated with several mitogens, including LPS and polyinosinic-polycytidylic acid (poly I:C), which significantly induced the expression of RbCXC mRNA. RbCXC mRNA expression was examined in several tissues under conditions of bacterial and viral challenge. Experimental challenges revealed that all examined tissues from fish infected with Edwardsiella tarda and red sea bream iridovirus showed significant increases in RbCXC expression compared to the control. In the case of Streptococcus iniae infection, RbCXC mRNA expression was markedly upregulated in the kidney, spleen, and liver. In addition, a maltose binding protein fusion recombinant RbCXC (~53 kDa) was produced in an Escherichia coli expression system and purified. Subsequently, the addition of purified recombinant RbCXC (rRbCXC) to kidney leukocytes was examined to investigate the impact of proliferative and chemotactic activity. The rRbCXC induced significant kidney leukocyte proliferation and attraction at concentrations ranging from 10 to 300 μg/mL, suggesting that it can be utilised as an immune stimulant and/or molecular adjuvant to enhance the immunological effects of vaccines.  相似文献   

8.
9.
We identified the CC chemokine cDNA designated as RbCC1 (CC chemokine 1 in rock bream, Oplegnathus fasciatus), which was isolated using expressed sequence tag (EST) analysis of a lipopolysaccharide (LPS)-stimulated rock bream liver cDNA library. The full-length RbCC1 cDNA (850 bp) contained an open reading frame (ORF) of 366 bp encoding 122 amino acids. Results from our phylogenetic analysis demonstrated that the RbCC1 was closest relationship to the orange-spotted grouper and Mi-iyu croaker CC chemokines located within the fish CC chemokine group. RbCC1 was significantly expressed in the intestine, spleen, liver, and PBLs (peripheral blood leukocytes). Rock bream PBLs were stimulated with several mitogens, LPS and Con A/PMA which significantly induced the expression of RbCC1 mRNA in the PBLs. The RbCC1 mRNA expression in several tissues under conditions of bacterial and viral challenge was examined. The experimental challenge revealed that the kidney and spleen of fish infected with Streptococcus iniae showed the most significant increases in RbCC1 expression compared to the control. In the case of RSIV infection, the RbCC1 mRNA expression was markedly up-regulated in the liver. In this study, recombinant RbCC1 (approximately 53 kDa) was produced using an Escherichia coli expression system followed by purification. Subsequently, the addition of purified rRbCC1 was examined to investigate the impact on the proliferative and chemotactic activity on kidney leukocytes from rock bream. The results demonstrated that the rRbCC1 induces significant biological activity on kidney leukocyte proliferation and attraction at concentrations in the range of 10–300 μg/mL and suggests that rRbCC1 could be utilized as an immune-stimulant and/or molecular adjuvant to enhance the immune effects of vaccines.  相似文献   

10.
Chattonella marina, a red tide or harmful algal bloom species, has caused mass fish kills and serious economic loss worldwide, and yet its toxic actions remain highly controversial. Previous studies have shown that this species is able to produce reactive oxygen species (ROS), and therefore postulated that ROS are the causative agents of fish kills. The present study investigates antioxidant responses and lipid peroxidation in gills and erythrocytes of fish (Rhabdosarga sarba) upon exposure to C. marina, compared with responses exposed to equivalent and higher levels of ROS exposure. Even though C. marina can produce a high level of ROS, gills and erythrocytes of sea bream exposed to C. marina for 1 to 6 h showed neither significant induction of antioxidant enzymes nor lipid peroxidation. Antioxidant responses and oxidative damage did not occur as fish mortality began to occur, yet could be induced upon exposure to artificially supplied ROS levels an order of magnitude higher. The result of this study implies that ROS produced by C. marina is not the principal cause of fish kills.  相似文献   

11.
《Cell calcium》2014,55(5):261-268
Parvalbumin (PA) is a Ca2+-binding protein of vertebrates massively expressed in tissues with high oxygen uptake and respectively elevated level of reactive oxygen species (ROS). To characterize antioxidant properties of PA, antioxidant capacity (AOC) of intact rat α-PA has been explored. ORAC, TEAC and hydrogen peroxide AOC assays evidence conformation-dependent oxidation of the PA. AOC value for the apo-PA 4-11-fold exceeds that for the Ca2+-loaded protein. Despite folded conformation of apo-PA, it has AOC equivalent to that of the proteolized protein. The most populated under resting conditions PA form, Mg2+-bound PA, has AOC similar to that of apo-PA. ROS-induced changes in absorption spectrum of PA evidence an oxidation of PA's phenylalanines in the ORAC assay. Sensitivity of PA oxidation to its conformation enabled characterization of its metal affinity and pH-dependent behavior: a transition with pKa of 7.6 has been revealed for the Ca2+-loaded PA. Since total AOC of PA under in vivo conditions may reach the level of reduced glutathione, we propose that PA might modulate intracellular redox equilibria and/or signaling in a calcium-dependent manner. We speculate that the oxidation-mediated damage of some of PA-GABAergic interneurons observed in schizophrenia is due to a decline in total AOC of the reduced glutathione–PA pair.  相似文献   

12.
The HschiA1 gene of the archaeon Halobacterium salinarum CECT 395 was cloned and overexpressed as an active protein of 66.5 kDa in Escherichia coli. The protein called HsChiA1p has a modular structure consisting of a glycosyl hydrolase family 18 catalytic region, as well as a N-terminal family 5 carbohydrate-binding module and a polycystic kidney domain. The purified recombinant chitinase displayed optimum catalytic activity at pH 7.3 and 40 °C and showed high stability over broad pH (6–8.5) and temperature (25–45 °C) ranges. Protein activity was stimulated by the metal ions Mg+2, K+, and Ca+2 and strongly inhibited by Mn+2. HsChiA1p is salt-dependent with its highest activity in the presence of 1.5 M of NaCl, but retains 20 % of its activity in the absence of salt. The recombinant enzyme hydrolysed p-NP-(GlcNAc)3, p-NP-(GlcNAc), crystalline chitin, and colloidal chitin. From its sequence features and biochemical properties, it can be identified as an exo-acting enzyme with potential interest regarding the biodegradation of chitin waste or its bioconversion into biologically active products.  相似文献   

13.
Immunoproteasomes are primarily induced upon infection and formed by replacing constitutive beta subunits with inducible beta subunits which possess specific cleavage properties that aid in the release of peptides necessary for MHC class I antigen presentation. In this study, we report the molecular characterization and expression analysis of the inducible immunosubunits PSMB8, PSMB9, PSMB9-L, and PSMB10 from rock bream, Oplegnathus fasciatus. The three subunits shared common active site residues and were placed in close proximity to fish homologues in the reconstructed phylogenetic tree, in which the mammalian homologues formed separate clades, indicating a common ancestral origin. The rock bream immunosubunits possessed higher identity and similarity with the fish homologues. RbPSMB8, RbPSMB9, RbPSMB9-L, and RbPSMB10 were multi-exonic genes with 6, 6, 7 and 8 exons, respectively. These four genes were constitutively expressed in all the examined tissues. Immunostimulants such as lipopolysaccharide and poly I:C induced RbPSMB8, RbPSMB9, RbPSMB9-L, and RbPSMB10 in liver and head kidney, suggesting their possible involvement in immune defense in rock bream.  相似文献   

14.
Bottlenecks in protein expression and secretion often limit the development of industrial processes. By manipulating chaperone and foldase levels, improvements in yeast secretion were found for a number of proteins. Recently, sustained endoplasmic reticulum stress, occurring due to recombinant protein production, was reported to cause oxidative stress in yeast. Saccharomyces cerevisiae cells are able to trigger an adaptive response to oxidative-stress conditions, resulting in the upregulation of both primary and secondary antioxidant defenses. SOD1 encodes for a superoxide dismutase that catalyzes the dismutation of superoxide anions (O2) into oxygen and hydrogen peroxide. It is a Cu2+/Zn2+ metalloenzyme and represents an important antioxidant defense in nearly all aerobic and aerotolerant organisms. We found that overexpression of the Kluyveromyces lactis SOD1 (KlSOD1) gene was able to increase the production of two different heterologous proteins, human serum albumin (HSA) and glucoamylase from Arxula adeninivorans. In addition, KlSOD1 overexpression led to a significant decrease in the amount of reactive oxygen species (ROS) that originated during protein production. The yield of HSA also increased when K. lactis cells were grown in the presence of the antioxidant agent ascorbic acid and decreased when cells were challenged with menadione, a ROS generator compound. Moreover, we observed that, in high-osmolarity medium, cells overexpressing KlSOD1 showed higher growth rates than control cells. Our results thus further support the notion that the production of some heterologous proteins may be improved by manipulating genes involved in general stress responses.  相似文献   

15.
Clerodendrum is a plant with potent antioxidant activity and has been frequently employed as a traditional remedy against bronchitis, asthma, liver and stomach disorders. Three species of genus Clerodendrum namely Clerodendrum indicum, C. colebrookianum and C. inerme (Syn. Volkameria inermis) were investigated for their possible activity against oxidative stress induced liver injury. Apart from generation of Reactive Oxygen Species (ROS) in the WRL-68 cell line (human hepatic cell line), in-vitro and in-vivo antioxidant assays were also assessed. Features of immune cell proliferation (MTT) were analyzed thoroughly. Gas Chromatography-Mass Spectrometry (GC–MS) and Fourier Transform Infrared Spectroscopy (FTIR) analyses have been performed to identify the active biological compounds. These active biological compounds were further subjected to molecular docking. The antioxidant activity of three Clerodendrum sp. was significantly high in DPPH, nitric oxide, hydroxyl radical and hydrogen peroxide etc. Biochemical parameters like catalase, superoxide dismutase (SOD) and reduced glutathione (GSH) were generated in excess due to CCl4 administration, which was ameliorated by treating with Clerodendrum extract. The phytochemical 24,25-Dihydroxyvitamin D shows excellent binding affinity in Autodock Vina. The present study provided convincing evidences that C. indicum and C. inerme showed good result but C. colebrookianum performed better by almost all means.  相似文献   

16.
The gene in the locus GALLO_1609 from Streptococcus gallolyticus UCN34 was cloned and expressed as an active protein in Escherichia coli BL21 (DE3). The protein was named TanSg1 since it shows similarity to bacterial tannases previously described. The recombinant strain produced His-tagged TanSg1 which was purified by affinity chromatography. Purified TanSg1 protein showed tannase activity, having a specific activity of 577 U/mg which is 41 % higher than the activity of Lactobacillus plantarum tannase. Remarkably, TanSg1 displayed optimum catalytic activity at pH 6–8 and 50–70 °C and showed high stability over a broad range of temperatures. It retained 25 % of its relative activity after prolonged incubation at 45 °C. The specific activity of TanSg1 is enhanced by the divalent cation Ca2+ and is dramatically reduced by Zn2+ and Hg2+. The enzyme was highly specific for gallate and protocatechuate esters and showed no catalytic activity against other phenolic esters. The protein TanSg1 hydrolyzes efficiently tannic acid, a complex and polymeric gallotanin, allowing its complete conversion to gallic acid, a potent antioxidant. From its biochemical properties, TanSg1 is a tannase with potential industrial interest regarding the biodegradation of tannin waste or its bioconversion into biologically active products.  相似文献   

17.
Cataract-induced by sodium selenite in suckling rats is one of the suitable animal models to study the basic mechanism of human cataract formation. The aim of this present investigation is to study the endoplasmic reticulum (ER) stress-mediated activation of unfolded protein response (UPR), overproduction of reactive oxygen species (ROS), and suppression of Nrf2/Keap1-dependent antioxidant protection through endoplasmic reticulum-associated degradation (ERAD) pathway and Keap1 promoter DNA demethylation in human lens epithelial cells (HLECs) treated with sodium selenite. Lenses enucleated from sodium selenite injected rats generated overproduction of ROS in lens epithelial cells and newly formed lens fiber cells resulting in massive lens epithelial cells death after 1–5 days. All these lenses developed nuclear cataracts after 4–5 days. Sodium selenite treated HLECs induced ER stress and activated the UPR leading to release of Ca2 + from ER, ROS overproduction and finally HLECs death. Sodium selenite also activated the mRNA expressions of passive DNA demethylation pathway enzymes such as Dnmt1, Dnmt3a, and Dnmt3b, and active DNA demethylation pathway enzyme, Tet1 leading to DNA demethylation in the Keap1 promoter of HLECs. This demethylated Keap1 promoter results in overexpression of Keap1 mRNA and protein. Overexpression Keap1 protein suppresses the Nrf2 protein through ERAD leading to suppression of Nrf2/Keap1 dependent antioxidant protection in the HLECs treated with sodium selenite. As an outcome, the cellular redox status is altered towards lens oxidation and results in cataract formation.  相似文献   

18.
Hexavalent chromium (Cr6 +) is a common pollutant transient metal with high toxicity in the environment. The toxicological effects partly result from oxidative damage due to the production of excessive reactive oxygen species (ROS) in the reductive process of Cr6 +. To explore the influence of ROS induced directly by Cr6 + on the oxidative stress generation and antioxidant system, the full length cDNAs of antioxidant-related genes cat, gpx1 and Cu/Zn-sod were successfully acquired from pengze crucian carp first and analyzed. Furthermore, the mRNA expression of the antioxidant genes encompassing catalase (cat), copper/zinc superoxide dismutase (Cu/Zn-sod) and glutathione peroxidase (gpx1), antioxidant enzyme activities of CAT, SOD, and GPx and total protein content were further studied in the gill, intestine and liver of pengze crucian carp (Carassius auratus var. Pengze) juveniles upon acute exposure to Cr6 + at concentrations of 0.1, 1.0, 10 and 100 mg/L for 4 days. Differential significant changes of the antioxidant enzymes and gene expression were observed in different tissues. The findings contribute to better understanding the antioxidant mechanisms induced by Cr6 + and selecting the organic-specific sensitive biomarkers to monitor the safety of the aquatic ecosystem.  相似文献   

19.
20.
Hyperhydricity is a physiological abnormality that frequently affects shoots that are vegetatively propagated in vitro. In this study, sugar beet (Beta vulgaris L. cv. Felicita) shoot tip explants were cultured on Murashige and Skoog medium supplemented with different concentrations of polyethylene glycol (PEG) 6000. We observed that higher concentrations of PEG 6000 and longer exposure (up to 4 wk) resulted in increasing levels of hyperhydration as well as browning and/or blackening of tissues in culture. A comparison of hyperhydric shoots with controls on the 28th day showed a marked increase in the content of water, phenolics, and malondialdehyde (MDA), which was positively correlated with an increase in the accumulation of PEG 6000. Selected antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POX), and polyphenol oxidase (PPO) also increased in hyperhydric shoots, especially at lower concentrations of PEG 6000. Regression analysis indicated that strong linear relationships exist between SOD–APX (R 2?=?0.932), SOD–CAT (R 2?=?0.753), SOD–total phenolic content (R 2?=?0.966), APX–PPO (R 2?=?0.842), APX–total phenolic content (R 2?=?0.904), POX–CAT (R 2?=?0.751), and CAT–total phenolic content (R 2?=?0.806). Despite the correlation between different antioxidant enzymes and between the antioxidant enzymes and antioxidant compounds, was not able to prevent ROS damage in hyperhydric shoots. The negative correlation between SOD–MDA, POX–MDA, CAT–MDA, and MDA–total phenolics also indicated an increase in antioxidant enzyme activities, yet the increase in these antioxidant compound contents did not prevent lipid peroxidation of in vitro propagated beet shoots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号