首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9929篇
  免费   753篇
  2023年   23篇
  2022年   25篇
  2021年   140篇
  2020年   126篇
  2019年   178篇
  2018年   286篇
  2017年   219篇
  2016年   359篇
  2015年   582篇
  2014年   663篇
  2013年   679篇
  2012年   921篇
  2011年   845篇
  2010年   555篇
  2009年   469篇
  2008年   646篇
  2007年   539篇
  2006年   484篇
  2005年   465篇
  2004年   401篇
  2003年   342篇
  2002年   295篇
  2001年   194篇
  2000年   186篇
  1999年   133篇
  1998年   61篇
  1997年   43篇
  1996年   26篇
  1995年   46篇
  1994年   40篇
  1993年   31篇
  1992年   57篇
  1991年   51篇
  1990年   62篇
  1989年   42篇
  1988年   35篇
  1987年   33篇
  1986年   30篇
  1985年   39篇
  1984年   27篇
  1983年   28篇
  1982年   20篇
  1981年   23篇
  1979年   21篇
  1975年   15篇
  1974年   18篇
  1973年   19篇
  1971年   23篇
  1970年   17篇
  1968年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Chronic hepatitis is a major cause of liver cancer, so earlier treatment of hepatitis might be reducing liver cancer incidence. Hepatitis can be induced in mice by treatment with Concanavalin A (Con A); the resulting liver injury causes significant CD4+ T cell activation and infiltration. In these T cells, Roquin, a ring-type E3 ubiquitin ligase, is activated. To investigate the role of Roquin, we examined Con A-induced liver injury and T cell infiltration in transgenic (Tg) mice overexpressing Roquin specifically in T cells. In Roquin Tg mice, Con A treatment caused greater increases in both the levels of liver injury enzymes and liver tissue apoptosis, as revealed by TUNEL and H&E staining, than wild type (WT) mice. Further, Roquin Tg mice respond to Con A treatment with greater increases in the T cell population, particularly Th17 cells, though Treg cell counts are lower. Roquin overexpression also enhances increases in pro-inflammatory cytokines, including IFN-γ, TNF-α and IL-6, upon liver injury. Furthermore, Roquin regulates the immune response and apoptosis in Con A induced hepatitis via STATs, Bax and Bcl2. These findings suggest that over-expression of Roquin exacerbates T-cell mediated hepatitis.  相似文献   
2.
Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.  相似文献   
3.
Human adenovirus has evolved to infect and replicate in terminally differentiated human epithelial cells, predominantly those within the airway, the gut, or the eye. To overcome the block to viral DNA replication present in these cells, the virus expresses the Early 1A proteins (E1A). These immediate early proteins drive cells into S-phase and induce expression of all other viral early genes. During infection, several E1A isoforms are expressed with proteins of 289, 243, 217, 171, and 55 residues being present for human adenovirus type 5. Here we examine the contribution that the two largest E1A isoforms make to the viral life cycle in growth-arrested normal human fibroblasts. Viruses that express E1A289R were found to replicate better than those that do not express this isoform. Importantly, induction of several viral genes was delayed in a virus expressing E1A243R, with several viral structural proteins undetectable by western blot. We also highlight the changes in E1A isoforms detected during the course of viral infection. Furthermore, we show that viral DNA replication occurs more efficiently, leading to higher number of viral genomes in cells infected with viruses that express E1A289R. Finally, induction of S-phase specific genes differs between viruses expressing different E1A isoforms, with those having E1A289R leading to, generally, earlier activation of these genes. Overall, we provide an overview of adenovirus replication using modern molecular biology approaches and further insights into the contribution that E1A isoforms make to the life cycle of human adenovirus in arrested human fibroblasts.  相似文献   
4.
5.
6.
Amyloid‐β (Aβ)‐peptide, the major constituent of the plaques that develop during Alzheimer's disease, is generated via the cleavage of Aβ precursor protein (APP) by β‐site APP‐cleaving enzyme (BACE). Using live‐cell imaging of APP and BACE labeled with pH‐sensitive proteins, we could detect the release events of APP and BACE and their distinct kinetics. We provide kinetic evidence for the cleavage of APP by α‐secretase on the cellular surface after exocytosis. Furthermore, simultaneous dual‐color evanescent field illumination revealed that the two proteins are trafficked to the surface in separate compartments. Perturbing the membrane lipid composition resulted in a reduced frequency of exocytosis and affected BACE more strongly than APP. We propose that surface fusion frequency is a key factor regulating the aggregation of APP and BACE in the same membrane compartment and that this process can be modulated via pharmacological intervention.   相似文献   
7.
8.
Neoadjuvant chemotherapy, that is, the administration of chemotherapy before surgery, has been commonly used for locally advanced breast cancer to improve the surgical outcomes and increase the opportunity for breast-conserving therapy. Women with breast cancer often receive an anthracycline-based regimen as the neoadjuvant chemotherapy, which is associated with a high risk of emesis. Despite the development of novel antiemetics, chemotherapy-induced nausea and vomiting (CINV) has been commonly reported as a major adverse effect, affecting the quality of life of the patients. However, the factors predicting CINV in women with breast cancer undergoing neoadjuvant chemotherapy remain unclear. In this single-institution, prospective, observational study conducted at an outpatient cancer centre in the Republic of Korea from November 2013 to March 2016, we analysed women with breast cancer who planned to be treated with neoadjuvant chemotherapy before surgery. Candidate factors associated with CINV were assessed before neoadjuvant chemotherapy using the Munich Chronotype Questionnaire, Pittsburgh Sleep Quality Index and Hospital Anxiety and Depression Scale. CINV was assessed after chemotherapy by using the Multinational Association of Supportive Care in Cancer Antiemesis Tool. Of a total of 143 participants, 7 patients were lost to follow-up and 2 patients were excluded due to changes in their treatment plan; thus, 134 patients were finally included in the analyses. Overall, 48.5% of the participants experienced CINV, with delayed CINV prevalence (42.5%) being more common than acute (39.6%). In the univariate analyses, overall CINV was significantly associated with late chronotypes (odds ratio [OR], 3.49; 95% confidence interval [CI], 1.37–8.87; p = 0.009), a history of nausea/vomiting (OR, 2.19; 95% CI, 1.10–4.37; p = 0.026) and anxiety (OR, 2.25; 95% CI, 1.05–4.81; p = 0.036). In the multivariate analyses, late chronotypes (OR, 3.53; 95% CI, 1.27–9.79; p = 0.015) and a history of nausea/vomiting (OR, 2.83; 95% CI, 1.31–6.13; p = 0.008) remained significantly associated with CINV. In conclusion, in women with breast cancer undergoing neoadjuvant chemotherapy before surgery, late chronotypes were found to have an increased risk of CINV; these data suggest that clinicians need to assess and consider the chronotype in the management of CINV.  相似文献   
9.

Objective

To examine the role of a gene encoding flavin-containing monooxygenase (cFMO) from Corynebacterium glutamicum ATCC13032 when cloned and expressed in Escherichia coli for the production of indigo pigments.

Results

The blue pigments produced by recombinant E. coli were identified as indigo and indirubin. The cFMO was purified as a fused form with maltose-binding protein (MBP). The enzyme was optimal at 25 °C and pH 8. From absorption spectrum analysis, the cFMO was classified as a flavoprotein. FMO activity was strongly inhibited by 1 mM Cu2+ and recovered by adding 1–10 mM EDTA. The enzyme catalyzed the oxidation of TMA, thiourea, and cysteamine, but not glutathione or cysteine. MBP-cFMO had an indole oxygenase activity through oxygenation of indole to indoxyl. The recombinant E. coli produced 685 mg indigo l?1 and 103 mg indirubin l?1 from 2.5 g l-tryptophan l?1.

Conclusion

The results suggest the cFMO can be used for the microbial production of both indigo and indirubin.
  相似文献   
10.
Proteins associated with the centrosome play key roles in mitotic progression in mammalian cells. The activity of Cdk1-opposing phosphatases at the centrosome must be inhibited during early mitosis to prevent premature dephosphorylation of Cdh1—an activator of the ubiquitin ligase anaphase-promoting complex/cyclosome—and the consequent premature degradation of mitotic activators. In this paper, we show that reversible oxidative inactivation of centrosome-bound protein phosphatases such as Cdc14B by H2O2 is likely responsible for this inhibition. The intracellular concentration of H2O2 increases as the cell cycle progresses. Whereas the centrosome is shielded from H2O2 through its association with the H2O2-eliminating enzyme peroxiredoxin I (PrxI) during interphase, the centrosome-associated PrxI is selectively inactivated through phosphorylation by Cdk1 during early mitosis, thereby exposing the centrosome to H2O2 and facilitating inactivation of centrosome-bound phosphatases. Dephosphorylation of PrxI by okadaic acid–sensitive phosphatases during late mitosis again shields the centrosome from H2O2 and thereby allows the reactivation of Cdk1-opposing phosphatases at the organelle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号