首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 509 毫秒
1.
已克隆的植物抗病基因序列存在一些相对保守的结构区域.利用根据核苷酸结合位点(NBS)结构域扩增所获得的大豆抗病基因同源片段为混合探针,进行大豆cDNA文库筛选.通过筛库和5'RACE-PCR扩增后,获得一全长基因KR3.KR3的长度为2353 bp,编码636个氨基酸.KR3蛋白在结构上与烟草抗花叶病毒N基因蛋白有较高的同源性,具有Toll/白细胞介素-1受体(TIR)、NBS等抗病基因的分子特征.Southern杂交显示KR3在基因组中为低拷贝;RT-PCR分析表明,该基因的表达受外源水杨酸的诱导.  相似文献   

2.
大豆抗病基因同源序列的克隆与分析   总被引:1,自引:0,他引:1  
已克隆的植物抗病基因序列存在一些相对保守的结构区域。利用根据核苷酸结合位点(NBS)结构域扩增所获得的大豆抗病基因同源片段为混合探针,进行大豆cDNA文库筛选。通过筛库和5′RAcE-PcR扩增后,获得一全长基因KR3。KR3的长度为2353 bp,编码636个氨基酸。KR3蛋白在结构上与烟草抗花叶病毒N基因蛋白有较高的同源性,具有Toll/白细胞介素-1受体(TIR)、NBS等抗病基因的分了特征。Southern 杂交显KR3在基因组中为低拷贝:RT-PCR分析表明,该基因的表达受外源水杨酸的诱导。  相似文献   

3.
甜瓜抗霜霉病基因同源序列克隆与分析   总被引:4,自引:0,他引:4  
采用RT—PCR扩增的方法,从高抗霜霉病甜瓜品种‘日本安农二号’中克隆到约3kb的cDNA片段(命名为MRGH-D,该基因是一个连续的通读编码框,编码1007个氨基酸。推测的蛋白质分子量为113.7kDa,等电点为7.88,蛋白质预测无跨膜区。根据推测的氨基酸序列,该基因属于TIR—NBS—LRR类抗病基因,具有TIR-NBS—LRR类抗病基因所有的保守结构域。核苷酸序列和氨基酸序列同源性分析结果显示,MRGH-J与甜瓜抗病基因的同源序列MRGHl2及抗霜霉病相关基因mp-19均具有高达99%的同源性,推测该基因可能在甜瓜抗霜霉病中起作用。  相似文献   

4.
小麦NBS类抗病基因同源cDNA序列的克隆与特征分析   总被引:2,自引:0,他引:2  
根据已克隆植物抗病(R)基因NBS保守结构域设计简并引物,采用RT-PCR和cDNA末端快速扩增技术(RACE),在小麦抗叶锈病近等基因系材料TcLr19中进行抗病同源基因cDNA全长的扩增。获得了1个通读的NBS类抗病同源基因S11A11cDNA序列,该序列全长2923bp,编码878个氨基酸序列。生物信息学分析结果表明,该片段含有NB-ARC保守结构域和多个LRR结构域。聚类分析表明,S11A11编码的蛋白与小麦抗叶锈病基因Lr1编码的蛋白亲缘关系较近,而与Lr10亲缘关系较远。半定量RT-PCR分析表明,该基因在小麦叶片中为低丰度组成型表达。本研究在TcLr19小麦中成功获得了抗病基因同源序列,为最终克隆小麦抗叶锈病目的基因奠定了基础。  相似文献   

5.
为研究云南野生蔷薇属中的NBS类抗病基因,根据已知抗病基因NBS LRR序列中的保守区域设计简并引物,利用RT PCR技术从云南悬钩子蔷薇中进行体外扩增,获得了对应区域的cDNA片段,回收、克隆这些特异片段,测序分析,共得到4个含有NBS LRR保守结构域的抗病基因同源序列(RGAs),分别命名为AC9、AC39、AC50和AC68。它们与已报道的11个NBS类抗病基因相应区段的氨基酸序列相似性为5.4%~79.2%,其中这4个RGAs片段与Mi、RPS2、Pib和RPM1基因聚为一类。表明这4条RGAs序列可进一步用作悬钩子蔷薇抗病候选基因的分子筛选及遗传图谱的构建。  相似文献   

6.
为研究云南野生蔷薇属中的NBS类抗病基因,根据已知抗病基因NBSLRR序列中的保守区域设计简并引物,利用RTPCR技术从云南悬钩子蔷薇中进行体外扩增,获得了对应区域的cDNA片段,回收、克隆这些特异片段,测序分析,共得到4个含有NBSLRR保守结构域的抗病基因同源序列(RGAs),分别命名为AC9、AC39、AC50和AC68。它们与已报道的11个NBS类抗病基因相应区段的氨基酸序列相似性为5.4%~79.2%,其中这4个RGAs片段与Mi、RPS2、Pib和RPM1基因聚为一类。表明这4条RGAs序列可进一步用作悬钩子蔷薇抗病候选基因的分子筛选及遗传图谱的构建。  相似文献   

7.
结球甘蓝抗TuMV相关基因的克隆   总被引:14,自引:0,他引:14  
以结球甘蓝高抗TuMV自交不亲和系84075为材料,构建了cDNA文库。根据抗病基因保守序列(NBS-LRR)设计一对简并引物,以84075的基因组DNA和cDNA为模板,进行PCR扩增,分别扩增出一条513bp片段,扩增片段进行克隆测序。选取两个与抗病基因同源性较高的克隆片段作探针(命名Borl,Bor2),对构建的cDNA文库进行筛选,得到一个阳性克隆(命名TuR2),测序及序列分析表明,该基因总长为762bp,编码226个氨基酸、包含681bp的开放阅读框。与已克隆的抗病基因有不同程度的同源性。利用TuR2作探针,进行了Southern杂交、Northern杂交以及抗病性的共分离检测分析。结果表明,TuR2可能吧单拷贝形式存在,其表达是组成成型的,且无组织特异性;初步确定是一个与结球甘蓝抗TuMV相关的基因。  相似文献   

8.
根据已知抗病基因NBS保守区的P-loop和GLPL区设计一对简并引物F1/R1,以7个抗黄萎病陆地棉品种和2个感黄萎病品种的基因组DNA为模板进行PCR扩增.在9个品种中均扩增出500 bp左右的条带.对目的条带进行回收,连接、转化克隆得到350个阳性克隆,进行测序.在8个棉花品种中克隆到74条具有完整开放读码框的棉花RGAs序列.这74条序列共有64种不同的基因型,有10条与其他品种中的RGAs序列相同.用MEGA软件对8个棉花品种的74条RGA序列以及12个已知的抗病基因的NBS区域进行聚类分析,可分为4类;4类RGAs之间的相似性较低,各类之内的RGAs虽然来自不同品种,氨基酸序列的相似度却非常高.推测各大类中相似性较高的序列分别属于同一个基因家族,从位点上说可能处于同一个基因簇.  相似文献   

9.
水稻NBS-LRR类R基因同源序列   总被引:28,自引:0,他引:28  
根据多数抗病基因(R)编码蛋白质的核苷酸结合区(nucleotide binding site, NBS)和富含亮氨酸重复(leucine-rich repeat,LRR)保守区域特点,设计PCR特异扩增引物,从水稻中克隆了大小约为520 bpDNA片段23个.通过序列同源比较分析发现, 它们编码的蛋白质氨基酸序列包括有NBS-LRR类基因所具有的kinase-1a,kinase-2a, kinase-3a和保守的domain 2区域,它们属于R基因同源序列(R gene homologous sequence, 简称RS).聚类结果发现它们分为4类.遗传定位结果表明它们分布在1,3,4,7~11染色体上,其中10个RS位于已知R基因所在的染色体区间.用水稻抗白叶枯病基因Xa4的近等基因系和基因累加系对克隆的NBS-LRR同源序列进行RFLP分析,发现序列RS13可能来自Xa4基因家族.  相似文献   

10.
以含编码NBS及LRR结构域序列的PCR扩增产物作标准对照,根据P-LOOP模体及LRR结构域氨基酸序列设计寡核苷酸探针,应用Southern杂交定量检测甘薯基因组中NBS与LRR序列的拷贝数目。结果表明,甘薯基因组中存在多个拷贝的NBS与LRR编码序列,经计算初步获得了其在基因组中的拷贝数目,为揭示甘薯抗病分子机制及植物抗病分子育种打下基础。  相似文献   

11.
 The most common class of plant disease resistance (R) genes cloned so far belong to the NBS-LRR group which contain nucleotide-binding sites (NBS) and a leucine-rich repeat (LRR). Specific primer sequences derived from a previously isolated NBS-LRR sequence at the Cre3 locus, which confers resistance to cereal cyst nematode (CCN) in wheat (Triticum aestivum L.) were used in isolating a family of resistance gene analogs (RGA) through a polymerase chain reaction (PCR) cloning approach. The cloning, analysis and genetic mapping of a family of RGAs from wheat (cv ‘Chinese Spring’) and barley (Hordeum vulgare L. cvs ‘Chebec’ and ‘Harrington’) are presented. The wheat and barley RGAs contain other conserved motifs present in known R genes from other plants and share between 55–99% amino acid sequence identity to the NBS-LRR sequence at the Cre3 locus. Phylogenetic analysis of the RGAs with other cloned R genes and RGAs from various plant species indicate that they belong to a superfamily of NBS-containing genes. Two of the barley derived RGAs were mapped onto loci on chromosomes 2H (2), 5H (7) and 7H (1) using barley doubled haploid (DH) mapping populations. Some of these loci identified are associated with regions carrying resistance to CCN and corn leaf aphid. Received: 6 January 1998 / Accepted: 1 April 1998  相似文献   

12.
Differential responses in host-nematode pathotype interactions occur in wheat lines carrying different cereal cyst nematode resistance (Cre) genes. Cre1, located on chromosome 2B, confers resistance to most European nematodes and the sole Australian pathotype, while Cre3, present on chromosome 2D, is highly resistant to the Australian pathotype and susceptible to a number of European pathotypes. Genes encoding nucleotide binding site-leucine rich repeat (NBS-LRR) proteins that cosegregate with the Cre3 locus cross hybridize to homologues whose restriction fragment length polymorphism (RFLP) patterns distinguish near-isogenic Cre1 nematode-resistant wheat lines. Genetic mapping showed that the NBS-LRR gene members that distinguished the Cre1 near-isogenic lines were located on chromosome 2BL at a locus, designated Xcsl107, that cosegregates with the Cre1 locus. A haplotype of NBS-LRR genes from the Xcsl107 locus provides a diagnostic marker for the presence of Cre1 nematode resistance in a wide collection of wheat lines and segregating families. Genetic analysis of NBS-LRR haplotypes that cosegregate with Cre1 and Cre3 resistance, together with flanking cDNA markers and other markers from homoeologous group 2 chromosomes, revealed a conserved gene order that suggests Cre1 and Cre3 are homeoloci.  相似文献   

13.
Sequences of two recently cloned genes playing a role in resistance against wheat pathogens (receptor-like kinase Lrk10 and Cre3 genes) were used to search for similarity of cereal clones included in the NCBI database. We found 23 clones with similarity to the Cre3 gene with predicted NBS and LRR domains, and 50 clones with serine/threonine kinase function and similarity to the new receptor-like kinase gene Lrk10 from wheat. In those two groups of clones some conservative nucleotide sequences were identified. Two sequences are identical between the majority of resistance gene candidate clones with a high similarity to Lrk10, and two sequences are identical between the majority of resistance gene candidate clones with similarity to the Cre3 gene.  相似文献   

14.
Western white pine ( Pinus monticola Dougl. ex. D. Don., WWP) shows genetic variation in disease resistance to white pine blister rust ( Cronartium ribicola). Most plant disease resistance (R) genes encode proteins that belong to a superfamily with nucleotide-binding site domains (NBS) and C-terminal leucine-rich repeats (LRR). In this work a PCR strategy was used to clone R gene analogs (RGAs) from WWP using oligonucleotide primers based on the conserved sequence motifs in the NBS domain of angiosperm NBS-LRR genes. Sixty-seven NBS sequences were cloned from disease-resistant trees. BLAST searches in GenBank revealed that they shared significant identity to well-characterized R genes from angiosperms, including L and M genes from flax, the tobacco N gene and the soybean gene LM6. Sequence alignments revealed that the RGAs from WWP contained the conserved motifs identified in angiosperm NBS domains, especially those motifs specific for TIR-NBS-LRR proteins. Phylogenic analysis of plant R genes and RGAs indicated that all cloned WWP RGAs can be grouped into one major branch together with well-known R proteins carrying a TIR domain, suggesting they belong to the subfamily of TIR-NBS-LRR genes. In one phylogenic tree, WWP RGAs were further subdivided into fourteen clusters with an amino acid sequence identity threshold of 75%. cDNA cloning and RT-PCR analysis with gene-specific primers demonstrated that members of 10 of the 14 RGA classes were expressed in foliage tissues, suggesting that a large and diverse NBS-LRR gene family may be functional in conifers. These results provide evidence for the hypothesis that conifer RGAs share a common origin with R genes from angiosperms, and some of them may play important roles in defense mechanisms that confer disease resistance in western white pine. Ratios of non-synonymous to synonymous nucleotide substitutions (Ka/Ks) in the WWP NBS domains were greater than 1 or close to 1, indicating that diversifying selection and/or neutral selection operate on the NBS domains of the WWP RGA family.  相似文献   

15.
Based on the conserved regions of known resistance genes, an NBS-LRR-type CCN resistance gene analog was isolated from the CCN resistant E-10 near isogenic lines (NILs) of wheat, designated as CreZ (GenBank accession number: EU327996). It contained a complete ORF that was 2775 bp in length and encoded 924 amino acids. Sequence comparison indicated that it shared 92% nucleotide and 87% amino acid identity with those of the known CCN-resistance gene Cre3 and had similar characteristic conserved motifs to those in other established NBS-LRR disease resistance genes. The expression profiling of CreZ indicated that it was specifically expressed in the roots of resistant plants and real-time PCR analysis demonstrated that expression levels drastically increased when the plants were inoculated with cereal cyst nematodes. It could be inferred, then, that CreZ belongs to the NBS-LRR resistance gene family and is a candidate gene for potential resistance to the cereal cyst nematode. Published in Russian in Molekulyarnaya Biologiya, 2008, Vol. 42, No. 6, pp. 1070–1077. The text was submitted by the authors in English.  相似文献   

16.
Cereal cyst nematode (CCN; Heterodera avenae Woll.) is a root pathogen of cereal crops that can cause severe yield losses in wheat (Triticum aestivum). Differential host-nematode interactions occur in wheat cultivars carrying different CCN resistance (Cre) genes. The objective of this study was to determine the CCN resistance conferred by the Cre7 gene from Aegilops triuncialis in a 42-chromosome introgression line and to assess the effects of the Cre1, Cre3, Cre4, and Cre8 genes present in Australian wheat lines on Spanish pathotype Ha71. Inhibition of nematode reproduction was rank-ordered as Cre1 >or = Cre4 > or = Cre7 > Cre8 > Cre3. Lines carrying Cre1, Cre4, or Cre7 exhibited a significantly higher level of resistance than those carrying Cre8 or Cre3. Allelism tests indicated that Cre7 segregated independently of Cre1 on chromosome 2BL and Cre4 on chromosome 2DL, and these genes could consistently be combined in the same genotype, inducing a more durable resistance. Tests to determine the chromosomal location of Cre7 using addition lines were inconclusive.  相似文献   

17.
The cloning of several plant genes directly involved in triggering a disease resistance response has shown that numerous resistance genes in the nucleotide binding site (NBS)/leucine-rich repeat (LRR) class have similar conserved amino acid sequences. In this study, we used a short soybean DNA sequence, previously cloned based on its conserved NBS, as a probe to identify full-length resistance gene candidates. Two homologous, but genetically independent genes were identified. One gene maps to the soybean molecular linkage group (MLG) F and a second is coded on MLG E. The first gene contains a 3,279 nucleotide open reading frame (ORF) sequence and possesses all the functional motifs characteristic of previously cloned NBS/LRR resistance genes. The N-terminal sequence of the deduced gene product is highly characteristic of other resistance genes in the subgroup of NBS/LRR genes which show homology to the Toll/Interleukin-1 receptor genes. The C-terminal region is somewhat more divergent as seen in other cloned disease resistance genes. This region of the F-linked gene contains an LRR region that is characterized by two alternatively spliced products which produce gene products with either a four-repeat or a ten-repeat LRR. The second cloned gene that maps to soybean MLG E contains 1,565 nucleotides of ORF in the N-terminal domain. Despite strong homology, however, the 3′ region of this gene contains several in-frame stop codons and apparent frame shifts compared to the F-linked gene, suggesting that its functionality as a disease resistance gene is questionable. These two disease resistance gene candidates are shown to be closely related to one another and to the members of the NBS/LRR class of disease resistance genes. Received: 29 November 1999 / Accepted: 22 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号