首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin resistance in skeletal muscle and heart plays a major role in the development of type 2 diabetes and diabetic heart failure and may be causally associated with altered lipid metabolism. Hormone-sensitive lipase (HSL) is a rate-determining enzyme in the hydrolysis of triglyceride in adipocytes, and HSL-deficient mice have reduced circulating fatty acids and are resistant to diet-induced obesity. To determine the metabolic role of HSL, we examined the changes in tissue-specific insulin action and glucose metabolism in vivo during hyperinsulinemic euglycemic clamps after 3 wk of high-fat or normal chow diet in awake, HSL-deficient (HSL-KO) mice. On normal diet, HSL-KO mice showed a twofold increase in hepatic insulin action but a 40% decrease in insulin-stimulated cardiac glucose uptake compared with wild-type littermates. High-fat feeding caused a similar increase in whole body fat mass in both groups of mice. Insulin-stimulated glucose uptake was reduced by 50-80% in skeletal muscle and heart of wild-type mice after high-fat feeding. In contrast, HSL-KO mice were protected from diet-induced insulin resistance in skeletal muscle and heart, and these effects were associated with reduced intramuscular triglyceride and fatty acyl-CoA levels in the fat-fed HSL-KO mice. Overall, these findings demonstrate the important role of HSL on skeletal muscle, heart, and liver glucose metabolism.  相似文献   

2.
Lipid metabolism in a child may be altered when the mother has a high-fat diet (HFD), but it is unclear whether the lipid metabolism of future offspring (grandchildren) is also changed under these circumstances. In this study, we examined the influence of intake of an HFD beyond one generation on offspring in normal mice. Parent mice fed an HFD were bred and the resultant second and third generations were also fed an HFD. The diets used in the study had approximately 20% more energy than a standard chow diet. Changes in lipid metabolism were examined in each generation. Intake of an HFD from generation to generation promoted lipid accumulation in the white adipose tissue of female mice, increased lipid, glucose and insulin levels in the serum, increased the activities of enzymes associated with fatty acid metabolism in the liver, promoted lipid accumulation in hepatocytes and adipocytes and increased the mRNA levels of Cdkn1a in the liver and white adipose tissue. These results suggest that activation of Cdkn1a promoted lipid accumulation in the liver and white adipose tissue of third-generation female mice that were offspring from earlier generations fed HFDs. Moreover, intake of a high-energy diet beyond one generation led to offspring with obesity, fatty liver and hyperinsulinemia.  相似文献   

3.
NO-1886改善糖尿病小型猪的糖代谢   总被引:1,自引:0,他引:1  
合成化合物NO-1886是一种脂蛋白脂酶活化剂,已被证明其可降低血浆TG并能升高HDLC的浓度.后又发现其还有降低高脂高蔗糖诱发糖尿病兔血浆葡萄糖浓度的作用.对高脂高蔗糖饲料喂养的小型猪脂肪细胞大小、血浆TNF—α和FFA的水平以及NO-1886对其影响进行了研究,结果发现,脂肪细胞明显肥大.血浆TNF-α和FFA以及空腹血糖水平均增高,且引起胰岛素抵抗.添加了l%NO-1886后.脂肪细胞增大被抑制,血浆TNF—α、FFA和空腹血糖的浓度均显著降低,血浆葡萄糖清除率和胰岛素分泌急性相都有了明显改善.以上结果说明,NO-1886可能通过抑制脂肪蓄积、降低血浆TNF-α和FFA的浓度而改善高脂高蔗糖饲料引起的小型猪的糖代谢紊乱.  相似文献   

4.
5.
The changes of insulin responsiveness of white adipose tissue during the suckling-weaning transition in the rat were investigated in vitro on isolated adipocytes. Insulin binding, glucose transport and glucose metabolism in adipocytes from suckling rats and from rats weaned on to a high-carbohydrate (HC) or a high-fat (HF) diet were compared. Despite similar insulin binding, insulin-stimulated glucose transport rate is lower in adipocytes from suckling rats and HF-weaned rats than in adipocytes from HC-weaned rats. Moreover, whereas insulin markedly stimulates glucose metabolism in adipocytes from HC-weaned rats, glucose metabolism is totally unresponsive to insulin in adipocytes from suckling and HF-weaned rats. This insulin resistance is associated with a very low rate of lipogenesis and low activities of acetyl-CoA carboxylase, fatty acid synthase and pyruvate dehydrogenase.  相似文献   

6.
7.
目的:通过研究高脂饮食和有氧运动对胰岛素抵抗(IR)小鼠骨骼肌雷帕霉素靶蛋白/核糖体S6激酶1(mTOR/S6K1)通路的影响,试图为运动防治IR提供理论依据。方法:8周C57BL/6小鼠随机分为正常饮食组和高脂饮食组,每组各20只,高脂饮食组喂养8周后建立IR模型。随后将正常饮食组再次随机分为正常饮食安静组(NC)和正常饮食运动组(NE);高脂饮食组也随机分为高脂饮食安静组(HC)和高脂饮食运动组(HE)。各运动组进行为期6周、75%VO2max强度跑台训练,每天1次,每次60min,每周5次。实验结束后采用OGTT检测葡萄糖耐量,组织学检测胰岛形态变化,ELISA法检测血清空腹胰岛素水平,Northern blot、Western blot检测骨骼肌中mTOR和S6K1 mRNA和蛋白及其磷酸化蛋白pS6K1-Thr389的表达。结果:与NC组相比,HC组小鼠体重、空腹血清胰岛素值和胰岛β细胞团面积百分比均呈显著增加,且OGTT曲线显示糖耐量明显受损,然而6周有氧运动后以上各指标呈显著性降低,葡萄糖耐量也得到明显改善;且骨骼肌中mTOR、S6K1、pS6K1-Thr389 mRNA和蛋白表达均明显降低。结论:mTOR/S6K1信号通路与高脂饮食诱导IR的发生密切相关,有氧运动明显增加了机体组织对胰岛素的敏感性,推测有氧运动可能通过抑制mTOR/S6K1信号通路,增加IR小鼠骨骼肌的能量代谢从而改善IR。  相似文献   

8.
Kenerson HL  Yeh MM  Yeung RS 《PloS one》2011,6(3):e18075
Non-alcoholic fatty liver disease (NAFLD) is causally linked to type 2 diabetes, insulin resistance and dyslipidemia. In a normal liver, insulin suppresses gluconeogenesis and promotes lipogenesis. In type 2 diabetes, the liver exhibits selective insulin resistance by failing to inhibit hepatic glucose production while maintaining triglyceride synthesis. Evidence suggests that the insulin pathway bifurcates downstream of Akt to regulate these two processes. Specifically, mTORC1 has been implicated in lipogenesis, but its role on hepatic steatosis has not been examined. Here, we generated mice with hepatocyte-specific deletion of Tsc1 to study the effects of constitutive mTORC1 activation in the liver. These mice developed normally but displayed mild hepatomegaly and insulin resistance without obesity. Unexpectedly, the Tsc1-null livers showed minimal signs of steatosis even under high-fat diet condition. This 'resistant' phenotype was reversed by rapamycin and could be overcome by the expression of Myr-Akt. Moreover, rapamycin failed to reduce hepatic triglyceride levels in models of steatosis secondary to Pten ablation in hepatocytes or high-fat diet in wild-type mice. These observations suggest that mTORC1 is neither necessary nor sufficient for steatosis. Instead, Akt and mTORC1 have opposing effects on hepatic lipid accumulation such that mTORC1 protects against diet-induced steatosis. Specifically, mTORC1 activity induces a metabolic shift towards fat utilization and glucose production in the liver. These findings provide novel insights into the role of mTORC1 in hepatic lipid metabolism.  相似文献   

9.
目的:探讨孕期和哺乳期的高脂饮食能否导致子代在生命早期出现糖脂代谢紊乱。方法成年雌性C57BL/6J小鼠与正常饮食雄性小鼠进行交配,孕鼠随机分为高脂饮食组和正常饮食组,在孕期和哺乳期喂养高脂饲料或正常饲料,至交配后第一代鼠断乳时(3周龄)观察其糖脂代谢相关性指标以及肝脏病理表现。结果较正常饮食组子鼠相比,高脂饮食子鼠出生体重更低( P<0.05)。在断乳时,高脂饮食组雄性子鼠体重较重( P =0.038),腹腔糖耐量实验30 min和60 min血糖明显升高(P值分别为<0.001和<0.01),糖耐量曲线下面积较大(P=0.0016),HOMA-IR值较大(P<0.05),雌性子鼠腹腔糖耐量实验在30 min血糖高于正常组(P<0.01),而糖耐量曲线下面积和HOMA-IR值在两组之间无明显统计学意义。雄性和雌性子代小鼠空腹胆固醇水平高脂饮食组均高于正常饮食组( P值分别为<0.0001和0.0004),而两组雄性和雌性子代小鼠空腹胰岛素和甘油三酯水平差异均无显著性( P均>0.05)。另外,在断乳时高脂饮食子鼠出现肝脏脂肪变性,雌性和雄性子鼠无明显差异。结论母鼠孕期和哺乳期高脂饮食能够诱导子代在生命早期就能出现糖脂代谢紊乱并且雄性子鼠更易出现肥胖、糖耐量异常、胰岛素抵抗。  相似文献   

10.
1. Virgin and lactating C(3)H mice maintained on laboratory chow were transferred to a high-fat (15% corn oil) or a fat-free diet 3 days before being killed. 2. The linoleate content of liver, mammary gland and milk was decreased in lactating mice given the fat-free diet but was increased in those fed on the high-fat diet. Changes in linoleate content and mammary gland followed a similar but much less marked trend in virgin animals. 3. Hepatic fatty acid synthesis in lactating and virgin mice fed on the fat-free diet was higher than in corresponding animals fed on either the chow or the high-fat diet. The lipogenic capacity of livers from mice fed on either the chow or the high-fat diet was greater in lactating than in virgin animals. These changes in hepatic lipogenic capacity were accompanied by alterations in the specific activities of certain enzymes involved in fat synthesis. 4. Mammary gland from virgin and lactating animals showed no such adaptation to dietary fat. Results indicate that fatty acid synthesis in neither mammary-gland parenchymal cells nor mammary-gland adipose cells can be influenced by dietary fat in the same way as in the hepatocyte.  相似文献   

11.
目的:探讨下丘脑注射OXR-1选择性受体拮抗剂ACT-335827对肥胖大鼠代谢的效果。方法:通过高脂饮食建立肥胖大鼠模型,采用CODA 8通道高通量非侵入性血压系统(EMKA)测量血压;所有脂类都使用商品酶试剂盒和TOSHIBA-40FR全自动分析仪测量;空腹血糖采用葡萄糖氧化酶法;空腹胰岛素采用放射免疫法测定。肥胖大鼠出现代谢紊乱后,给予ACT-335827处理,检测大鼠体重、血压、脂肪、甘油三酯、总胆固醇、高密度脂蛋白、低密度脂蛋白、游离脂肪酸(NEFA)、瘦素、空腹血糖及空腹胰岛素等的变化。结果:与普通饮食组相比,经过10周高脂饮食,高脂饮食组大鼠体重显著升高(P0.05),给予ACT-335827处理后,普通大鼠的体重、血压、脂肪含量、脂代谢等均无明显变化;与高脂饮食和高脂饮食加生理盐水处理组大鼠比较,高脂饮食加ACT-335827处理组肥胖大鼠的体重显著下降(P0.05),腹部和附睾脂肪含量下降(P0.05),低密度脂蛋白、甘油三酯、总胆固醇、瘦素水平下降(P0.05),空腹血糖及空腹胰岛素也显著降低(P0.05),但血压、肠系膜脂肪和肩胛棕色脂肪、高密度脂蛋白和NEFA无明显变化(P0.05)。结论:ACT-335827对肥胖大鼠的代谢紊乱具有改善作用,对肥胖大鼠有一定的减肥作用。  相似文献   

12.
Excess energy intake correlates with the development of metabolic disorders. However, different energy-dense foods have different effects on metabolism. To compare the effects of a high-fat diet, a high-fructose diet and a combination high-fat/high-fructose diet on glucose and lipid metabolism, male C57BL/6 mice were fed with one of four different diets for 3 months: standard chow; standard diet and access to fructose water; a high fat diet; and a high fat diet with fructose water. After 3 months of feeding, the high-fat and the combined high-fat/high-fructose groups showed significantly increased body weights, accompanied by hyperglycemia and insulin resistance; however, the high-fructose group was not different from the control group. All three energy-dense groups showed significantly higher visceral fat weights, total cholesterol concentrations, and low-density lipoprotein cholesterol concentrations compared with the control group. Assays of basal metabolism showed that the respiratory quotient of the high-fat, the high-fructose, and the high-fat/high-fructose groups decreased compared with the control group. The present study confirmed the deleterious effect of high energy diets on body weight and metabolism, but suggested that the energy efficiency of the high-fructose diet was much lower than that of the high-fat diet. In addition, fructose supplementation did not worsen the detrimental effects of high-fat feeding alone on metabolism in C57BL/6 mice.  相似文献   

13.
Role of PYK2 in the development of obesity and insulin resistance   总被引:3,自引:0,他引:3  
Non-receptor proline-rich tyrosine kinase-2 (PYK2), which is activated by phosphorylation of one or more of its tyrosine residues, has been implicated in the regulation of GLUT4 glucose transporter translocation and glucose transport. Some data favor a positive role of PYK2 in stimulating glucose transport, whereas other studies suggest that PYK2 may participate in the induction of insulin resistance. To ascertain the importance of PYK2 in the setting of obesity and insulin resistance, we (1) evaluated the regulation of PYK2 in mice fed a high-fat diet and (2) characterized body and glucose homeostasis in wild type (WT) and PYK2(-/-) mice on different diets. We found that both PYK2 expression and phosphorylation were significantly increased in liver and adipose tissues harvested from high-fat diet fed mice. Wild type and PYK2(-/-) mice were fed a high-fat diet for 8 weeks to induce insulin resistance/obesity. Surprisingly, in response to this diet PYK2(-/-) mice gained significantly more weight than WT mice (18.7+/-1.2g vs. 9.5+/-0.6g). Fasting serum leptin and insulin and blood glucose levels were significantly increased in high-fat diet fed mice irrespective of the presence of PYK2 protein. There was a close correlation between serum leptin and body weight. Intraperitoneal glucose tolerance tests revealed that as expected, the high-fat diet resulted in increased blood glucose levels following glucose administration in wild type mice compared to those fed normal chow. An even greater increase in blood glucose levels was observed in PYK2(-/-) mice compared to wild type mice. These results demonstrate that a lack of PYK2 exacerbates weight gain and development of glucose intolerance/insulin resistance induced by a high-fat diet, suggesting that PYK2 may play a role in slowing the development of obesity, insulin resistance, and/or frank diabetes.  相似文献   

14.

Aim

To evaluate the influence of dietary lipid quality on the body mass, carbohydrate metabolism and morphology of the rat ventral prostate.

Materials and Methods

Wistar rats were divided into four groups: SC (standard chow), HF-S (high-fat diet rich in saturated fatty acids), HF-P (high-fat diet rich in polyunsaturated fatty acids) and HF-SP (high-fat diet rich in saturated and polyunsaturated fatty acids). We analyzed body mass, fat mass deposits, plasma blood, insulin resistance and the ventral prostate structure.

Results

Groups that received high-fat diets were heavier and presented larger fat deposits than SC group. The HF-S and HF-SP groups had higher glucose, insulin and total cholesterol serum levels and insulin resistance compared with the SC. The acinar area, epithelium height and area density of the lumen were higher in the HF-SP than in the other groups. The epithelium area density and epithelial cell proliferation were greater in the HF-P and HF-SP than in the SC group. All of the groups that received high-fat diets had greater area density of the stroma, area density of smooth muscle cells and stromal cell proliferation compared with the SC group.

Conclusion

Diets rich in saturated and/or polyunsaturated fatty acids induced overweight. Independently of insulin resistance, polyunsaturated fatty acids increased prostate stromal and epithelial cell proliferation. Saturated fatty acids influenced only stromal cellular proliferation. These structural and morphometric alterations may be considered risk factors for the development of adverse remodeling process in the rat ventral prostate.  相似文献   

15.
目的:探讨口服桂皮醛对高脂喂养小鼠(C57BL/6J 背景)糖脂代谢的影响。方法:采用雄性C57BL/6J小鼠作为研究对象,分 正常对照组(6 只),高脂组(6 只),高脂+ 桂皮醛(40 mg/kg,每天1 次)干预组(6 只)。桂皮醛以0.5 %羧甲基纤维素钠(CMC-Na) 溶解后口服灌胃,每天1 次;正常对照组和高脂组给予灌服等体积的CMC-Na,每天1 次,干预时间为3 月。每周观察体重、空腹血 糖,实验结束后观察胰岛素耐量(IPITT)、葡萄糖耐量(IPGTT),观察各组小鼠的血脂水平(TC,TG,LDL-C,HDL-C)、胰岛素水 平、肠系膜脂肪重量及以HE 染色观察脂肪细胞形态。结果:在脂代谢方面,桂皮醛干预可显著防止高脂喂养小鼠的体重和血脂水 平的升高;高脂喂养小鼠肠系膜脂肪重量显著增加,HE 染色提示脂肪细胞显著增大;桂皮醛可显著防止肠系膜脂肪重量的增加 及脂肪细胞的变大。而在葡萄糖代谢方面,桂皮醛可显著降低高脂喂养小鼠血糖和胰岛素水平,改善小鼠的葡萄糖耐量和胰岛素 敏感性。结论:口服桂皮醛可显著改善高脂喂养小鼠的糖、脂代谢。  相似文献   

16.
Borst SE  Conover CF 《Life sciences》2005,77(17):2156-2165
In several strains of genetically obese and insulin resistant rodents, adipose tissue over expresses mRNA for tumor necrosis factor alpha (TNF-alpha). Our purpose was to determine whether tissue expression of TNF-alpha protein is elevated in rats that are made obese and insulin resistant by administration of a high-fat diet. Young Wistar rats weighing approximately 50 g were fed for 39 days with either normal rat chow (12.4% fat) or a high-fat diet (50% fat). After 33 days, glucose tolerance was assessed and after 39 days, insulin-stimulated transport of [3H]-2-deoxyglucose was assessed in isolated strips of soleus muscle. Rats on the high-fat diet consumed slightly fewer calories but became obese, displaying significant approximately 2-fold increases in the mass of both visceral and subcutaneous fat depots. High-fat feeding also caused a moderate degree of insulin resistance. Fasting serum insulin was significantly increased, as were insulin and glucose concentrations following glucose loading. In isolated strips of soleus muscle, the high-fat diet produced a trend toward a 33% decrease in the insulin-stimulated component of glucose transport (p=0.064). Western analysis of muscle, liver and fat revealed two forms of TNF-alpha, a soluble 17 Kd form (sTNF-alpha) and a 26 Kd membrane form (mTNF-alpha). Both sTNF-alpha and mTNF-alpha were relatively abundant in fat; whereas sTNF-alpha was the predominant form present in muscle and liver. High-fat feeding caused a significant 2-fold increase in muscle sTNF-alpha, along with a trend toward a 54% increase in visceral fat sTNF-alpha (p=0.055). TNF-alpha was undetectable in serum. We conclude that muscle over expression of TNF-alpha occurs during the development of diet-induced obesity and may, in part cause insulin resistance by an autocrine mechanism.  相似文献   

17.
Free fatty acid receptor 2 (Ffar2), also known as GPR43, is activated by short-chain fatty acids (SCFA) and expressed in intestine, adipocytes, and immune cells, suggesting involvement in lipid and immune regulation. In the present study, Ffar2-deficient mice (Ffar2-KO) were given a high-fat diet (HFD) or chow diet and studied with respect to lipid and energy metabolism. On a HFD, Ffar2-KO mice had lower body fat mass and increased lean body mass. The changed body composition was accompanied by improved glucose control and lower HOMA index, indicating improved insulin sensitivity in Ffar2-KO mice. Moreover, the Ffar2-KO mice had higher energy expenditure accompanied by higher core body temperature and increased food intake. The liver weight and content of triglycerides as well as plasma levels of cholesterol were lower in the Ffar2-KO mice fed a HFD. A histological examination unveiled decreased lipid interspersed in brown adipose tissue of the Ffar2-KO mice. Interestingly, no significant differences in white adipose tissue (WAT) cell size were observed, but significantly lower macrophage content was detected in WAT from HFD-fed Ffar2-KO compared with wild-type mice. In conclusion, Ffar2 deficiency protects from HFD-induced obesity and dyslipidemia at least partly via increased energy expenditure.  相似文献   

18.
The fractalkine (CX3CL1-CX3CR1) chemokine system is associated with obesity-related inflammation and type 2 diabetes, but data on effects of Cx3cr1 deficiency on metabolic pathways is contradictory. We examined male C57BL/6 Cx3cr1-/- mice on chow and high-fat diet to determine the metabolic effects of Cx3cr1 deficiency. We found no difference in body weight and fat content or feeding and energy expenditure between Cx3cr1-/- and WT mice. Cx3cr1-/- mice had reduced glucose intolerance assessed by intraperitoneal glucose tolerance tests at chow and high-fat fed states, though there was no difference in glucose-stimulated insulin values. Cx3cr1-/- mice also had improved insulin sensitivity at hyperinsulinemic-euglycemic clamp, with higher glucose infusion rate, rate of disposal, and hepatic glucose production suppression compared to WT mice. Enhanced insulin signaling in response to acute intravenous insulin injection was demonstrated in Cx3cr1-/- by increased liver protein levels of phosphorylated AKT and GSK3β proteins. There were no differences in adipose tissue macrophage populations, circulating inflammatory monocytes, adipokines, lipids, or inflammatory markers. In conclusion, we demonstrate a moderate and reproducible protective effect of Cx3cr1 deficiency on glucose intolerance and insulin resistance.  相似文献   

19.
Non-alcoholic fatty liver disease (NAFLD) is becoming the leading cause of chronic liver disease and is now considered to be the hepatic manifestation of the metabolic syndrome. However, the role of steatosis per se and the precise factors required in the progression to steatohepatitis or insulin resistance remain elusive. The JAK-STAT pathway is critical in mediating signaling of a wide variety of cytokines and growth factors. Mice with hepatocyte-specific deletion of Janus kinase 2 (L-JAK2 KO mice) develop spontaneous steatosis as early as 2 weeks of age. In this study, we investigated the metabolic consequences of jak2 deletion in response to diet-induced metabolic stress. To our surprise, despite the profound hepatosteatosis, deletion of hepatic jak2 did not sensitize the liver to accelerated inflammatory injury on a prolonged high fat diet (HFD). This was accompanied by complete protection against HFD-induced whole-body insulin resistance and glucose intolerance. Improved glucose-stimulated insulin secretion and an increase in β-cell mass were also present in these mice. Moreover, L-JAK2 KO mice had progressively reduced adiposity in association with blunted hepatic growth hormone signaling. These mice also exhibited increased resting energy expenditure on both chow and high fat diet. In conclusion, our findings indicate a key role of hepatic JAK2 in metabolism such that its absence completely arrests steatohepatitis development and confers protection against diet-induced systemic insulin resistance and glucose intolerance.  相似文献   

20.
金昕晔  邹大进 《生物技术通讯》2012,23(4):519-522,562
目的:构建能诱导出针对脂肪细胞型脂肪酸结合蛋白(FABP4)特异性中和抗体的疫苗,为高脂诱导下肥胖和胰岛素抵抗的防治新途径提供理论和实验依据。方法:野生型C57BL/6J雌鼠随机分为疫苗组(n=10,高脂饲养)、佐剂组(n=10,高脂饲养)和空白对照组(n=10,普通饲养),分别予以皮下注射生物合成的FABP4蛋白、佐剂和磷酸盐缓冲液,观察比较各组抗体滴度、安全耐受性和体重、摄食量、空腹血糖、胰岛素抵抗指数(HOMA-IR)、糖耐量实验血糖曲线下面积(AUC)等指标。结果:疫苗组小鼠产生了高滴度的FABP4特异性抗体,并于第3轮加强免疫后达到平衡状态。首次免疫16周后,疫苗组小鼠体重高于空白对照组,但明显低于佐剂组(P<0.05);日平均摄食量高于空白对照组(P<0.05),与佐剂组无差异(P>0.05);空腹血糖、HOMA-IR、腹腔葡萄糖耐量实验AUC均明显低于佐剂组(P<0.05),与对照组无统计学差异(P>0.05)。结论:以FABP4作为抗原免疫小鼠,可产生高滴度特异性抗体IgG,有效降低高脂喂养野生型雌性小鼠体重、空腹血糖、HOMA-IR和血糖AUC等指标,为高脂诱导的肥胖和胰岛素抵抗的治疗提供了新的途径和初步证据,可进行深入研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号