首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.

Background  

Termination of translation in eukaryotes is controlled by two interacting polypeptide chain release factors, eRF1 and eRF3. While eRF1 recognizes nonsense codons, eRF3 facilitates polypeptide chain release from the ribosome in a GTP-dependent manner. Besides termination, both release factors have essential, but poorly characterized functions outside of translation.  相似文献   

2.
以八肋游仆虫第二类肽链释放因子eRF3基因为模板,用PCR的方法获得eRF3的C端(eRF3C)和C端缺失76个氨基酸的突变体eRF3Ct片段,并构建重组表达质粒pGEX-6p-1-eRF3C和pGEX-6p-1-eRF3Ct,转入大肠杆菌BL21(DE3)中获得了可溶性表达。通过Glutathione Sepharose 4B柱亲和层析纯化,重组蛋白GST-eRF3C和GST-eRF3Ct获得纯化。Western blotting分析表明获得的蛋白为目的蛋白。PreScission酶切割后得到eRF3C和eRF3Ct蛋白。体外pull down分析显示eRF3C和eRF3Ct均能与八肋游仆虫第一类释放因子eRF1a相互作用,这表明八肋游仆虫eRF3 C端的76个氨基酸对于释放因子eRF1a的结合不是必需的。  相似文献   

3.
eRF3 is a GTPase associated with eRF1 in a complex that mediates translation termination in eukaryotes. In mammals, two genes encode two distinct forms of eRF3, eRF3a and eRF3b, which differ in their N-terminal domains. Both bind eRF1 and stimulate its release activity in vitro. However, whether both proteins can function as termination factors in vivo has not been determined. In this study, we used short interfering RNAs to examine the effect of eRF3a and eRF3b depletion on translation termination efficiency in human cells. By measuring the readthrough at a premature nonsense codon in a reporter mRNA, we found that eRF3a silencing induced an important increase in readthrough whereas eRF3b silencing had no significant effect. We also found that eRF3a depletion reduced the intracellular level of eRF1 protein by affecting its stability. In addition, we showed that eRF3b overexpression alleviated the effect of eRF3a silencing on readthrough and on eRF1 cellular levels. These results suggest that eRF3a is the major factor acting in translation termination in mammals and clearly demonstrate that eRF3b can substitute for eRF3a in this function. Finally, our data indicate that the expression level of eRF3a controls the formation of the termination complex by modulating eRF1 protein stability.  相似文献   

4.
Termination of translation in eukaryotes is governed by the ribosome, a termination codon in the mRNA, and two polypeptide chain release factors (eRF1 and eRF3). We have identified a human protein of 628 amino acids, named eRF3b, which is highly homologous to the known human eRF3 henceforth named eRF3a. At the nucleotide and at the amino acid levels the human eRF3a and eRF3b are about 87% identical. The differences in amino acid sequence are concentrated near the amino terminus. The most important difference in the nucleotide sequence is that eRF3b lacks a GGC repeat close to the initiation codon in eRF3a. We have cloned the cDNA encoding the human eRF3b, purified the eRF3b expressed in Escherichia coli, and found that the protein is active in vitroas a potent stimulator of the release factor activity of human eRFl. Like eRF3a, eRF3b exhibits GTPase activity, which is ribosome- and eRFl-dependent. In vivoassays (based on suppression of readthrough induced by three species of suppressor tRNAs: amber, ochre, and opal) show that the human eRF3b is able to enhance the release factor activity of endogenous and overexpressed eRF1 with all three stop codons.  相似文献   

5.
Translation termination in eukaryotes is governed by the concerted action of eRF1 and eRF3 factors. eRF1 recognizes the stop codon in the A site of the ribosome and promotes nascent peptide chain release, and the GTPase eRF3 facilitates this peptide release via its interaction with eRF1. In addition to its role in termination, eRF3 is involved in normal and nonsense-mediated mRNA decay through its association with cytoplasmic poly(A)-binding protein (PABP) via PAM2-1 and PAM2-2 motifs in the N-terminal domain of eRF3. We have studied complex formation between full-length eRF3 and its ligands (GDP, GTP, eRF1 and PABP) using isothermal titration calorimetry, demonstrating formation of the eRF1:eRF3:PABP:GTP complex. Analysis of the temperature dependence of eRF3 interactions with G nucleotides reveals major structural rearrangements accompanying formation of the eRF1:eRF3:GTP complex. This is in contrast to eRF1:eRF3:GDP complex formation, where no such rearrangements were detected. Thus, our results agree with the established active role of GTP in promoting translation termination. Through point mutagenesis of PAM2-1 and PAM2-2 motifs in eRF3, we demonstrate that PAM2-2, but not PAM2-1 is indispensible for eRF3:PABP complex formation.  相似文献   

6.
Translation termination in eukaryotes is governed by two proteins belonging to class 1 (eRF1) and class 2 (eRF3) polypeptide release factors. eRF3 catalyzes hydrolysis of GTP to yield GDP and Pi in the ribosome in the absence of mRNA, tRNA, aminoacyl-tRNA, and peptidyl-tRNA and requires eRF1 for this activity. It is known that eRF1 and eRF3 interact with each other via their C-terminal regions both in vitro and in vivo. eRF1 consists of three domains—N, M, and C. In this study we examined the influence of the individual domains of the human eRF1 on induction of the human eRF3 GTPase activity in the ribosome in vitro. It was shown that none of the N, M, C, and NM domains induces the eRF3 GTPase activity in the presence of ribosomes. The MC domain does induce the eRF3 GTPase activity, but four times less efficiently than full-length eRF1. Therefore, we assumed that the MC domain (and very likely the M domain) binds to the ribosome in the presence of eRF3. Based on these data and taking into account the data available in the literature, a conclusion was drawn that the N domain of eRF1 is not essential for eRF1-dependent induction of the eRF3 GTPase activity. A working hypothesis is formulated that the eRF3 GTPase activity in the ribosome during translation termination is associated with the intermolecular interactions of GTP/GDP, the GTPase center of the large (60S) subunit, the MC domain of eRF1, and the C-terminal region and GTP-binding motifs of eRF3 but without participation of the N-terminal region of eRF1.  相似文献   

7.
Eukaryotic translation termination employs two protein factors, eRF1 and eRF3. Proteins of the eRF3 family each consist of three domains. The N and M domains vary in different species, while the C domains are highly homologous. The MC domains of Homo sapiens eRF3a (hGSPT1), Xenopus laevis eRF3 (XSup35), and Mus musculus eRF3a (mGSPT1) and eRF3b (mGSPT2) were found to compensate for the sup35-21(ts) temperature-sensitive mutation and lethal disruption of the SUP35 gene in yeast Saccharomyces cerevisiae. At the same time, strains containing the MC domains of the eRF3 proteins from different species differed in growth rate and the efficiency of translation termination.  相似文献   

8.
Eukaryotic translation termination is triggered by peptide release factors eRF1 and eRF3. Whereas eRF1 recognizes all three termination codons and induces hydrolysis of peptidyl tRNA, eRF3's function remains obscure. Here, we reconstituted all steps of eukaryotic translation in vitro using purified ribosomal subunits; initiation, elongation, and termination factors; and aminoacyl tRNAs. This allowed us to investigate termination using pretermination complexes assembled on mRNA encoding a tetrapeptide and to propose a model for translation termination that accounts for the cooperative action of eRF1 and eRF3 in ensuring fast release of nascent polypeptide. In this model, binding of eRF1, eRF3, and GTP to pretermination complexes first induces a structural rearrangement that is manifested as a 2 nucleotide forward shift of the toeprint attributed to pretermination complexes that leads to GTP hydrolysis followed by rapid hydrolysis of peptidyl tRNA. Cooperativity between eRF1 and eRF3 required the eRF3 binding C-terminal domain of eRF1.  相似文献   

9.
Translation termination in eukaryotes requires a stop codon-responsive (class-I) release factor, eRF1, and a guanine nucleotide-responsive (class-II) release factor, eRF3. Schizosaccharomyces pombe eRF3 has an N-terminal polypeptide similar in size to the prion-like domain of Saccharomyces cerevisiae eRF3 in addition to the EF-1alpha-like catalytic domain. By in vivo two-hybrid assay as well as by an in vitro pull-down analysis using purified proteins of S. pombe as well as of S. cerevisiae, eRF1 bound to the C-terminal one-third domain of eRF3, named eRF3C, but not to the N-terminal two-thirds, which was inconsistent with the previous report by Paushkin et al. (1997, Mol Cell Biol 17:2798-2805). The activity of S. pombe eRF3 in eRF1 binding was affected by Ala substitutions for the C-terminal residues conserved not only in eRF3s but also in elongation factors EF-Tu and EF-1alpha. These single mutational defects in the eRF1-eRF3 interaction became evident when either truncated protein eRF3C or C-terminally altered eRF1 proteins were used for the authentic protein, providing further support for the presence of a C-terminal interaction. Given that eRF3 is an EF-Tu/EF-1alpha homolog required for translation termination, the apparent dispensability of the N-terminal domain of eRF3 for binding to eRF1 is in contrast to importance, direct or indirect, in EF-Tu/EF-1alpha for binding to aminoacyl-tRNA, although both eRF3 and EF-Tu/EF-1alpha share some common amino acids for binding to eRF1 and aminoacyl-tRNA, respectively. These differences probably reflect the independence of eRF1 binding in relation to the G-domain function of eRF3 (i.e., probably uncoupled with GTP hydrolysis), whereas aminoacyl-tRNA binding depends on that of EF-Tu/EF-1alpha(i.e., coupled with GTP hydrolysis), which sheds some light on the mechanism of eRF3 function.  相似文献   

10.

Background  

Termination of protein synthesis in eukaryotes involves at least two polypeptide release factors (eRFs) – eRF1 and eRF3. The highly conserved translation termination factor eRF1 in Saccharomyces cerevisiae is encoded by the essential gene SUP45.  相似文献   

11.
Translation termination in eukaryotes is governed by two proteins, belonging to the class-1 (eRF1) and class-2 (eRF3) polypeptide release factors. eRF3 catalyzes hydrolysis of GTP to GDP and inorganic phosphate in the ribosome in the absence of mRNA, tRNA, aminoacyl-tRNA and peptidyl-tRNA but needs the presence of eRF1. It's known that eRF1 and eRF3 interact with each other in vitro and in vivo via their C-terminal regions. eRF1 consists of three domains - N, M, and C. In this study we examined the influence of individual domains of the human eRF1 on induction of the human eRF3 GTPase activity in the ribosome in vitro. It was shown that none of the N-, M-, C- and NM-domains induces eRF3 GTPase activity in presence of the ribosomes. MC-domain does induce GTPase activity of eRF3 but four times less efficient than full-length eRF1, therefore, MC-domain (and very likely M-domain) binds to the ribosome in the presence of eRF3. Based on these data and taking into account the data available in literature, a conclusion was drawn that the N domain of eRF1 is not essential for eRF1-dependent induction of the eRF3 GTPase activity. A working hypothesis is formulated, postulating that GTPase activity eRF3 during the translation termination is associated with the intermolecular interactions of GTP/GDP, GTPase center of the large ribosomal subunit (60S), MC-domain of eRF1, C-terminal region and GTP-binding domains of eRF3, but without participation of the N-terminal region of eRF3.  相似文献   

12.
Collection of missense mutations in the SUP45 gene of Saccharomyces cerevisiae encoding translation termination factor eRF1 has been obtained by different approaches. It has been shown that most of isolated mutations cause amino acid substitutions in the N-terminal part of eRF1 and do not decrease the eRF1 amount. Most of mutations studied do not abolish eRF1–eRF3 interaction. The role of the N-terminal part of eRF1 in stop codon recognition is discussed.  相似文献   

13.
The eukaryotic translation termination factor eRF3 stimulates release of nascent polypeptides from the ribosome in a GTP-dependent manner. In most eukaryotes studied, eRF3 consists of an essential, conserved C-terminal domain and a nonessential, nonconserved N-terminal extension. However, in some species, this extension is required for efficient termination. Our data show that the N-terminal extension of Saccharomyces cerevisiae eRF3 also participates in regulation of termination efficiency, but acts as a negative factor, increasing nonsense suppression efficiency in sup35 mutants containing amino acid substitutions in the C-terminal domain of the protein.  相似文献   

14.
Mutations in genes of omnipotent nonsense suppressors SUP35 and SUP45 in yeast Saccharomyces cerevisiae encoding translation termination factors eRF3 and eRF1, respectively, and prionization of the eRF3 protein may lead to the suppression of some frameshift mutations (CPC mutations). Partial inactivation of the translation termination factor eRF3 was studied in strains with unstable genetically modified prions and also in transgenic yeast S. cerevisiae strains with the substitution of the indigenous SUP35 gene for its homolog from Pichia methanolica or for a recombinant S. cerevisiae SUP35gene. It was shown that this partial inactivation leads not only to nonsense suppression, but also to suppression of the frameshift lys2-90 mutation. Possible reasons for the correlation between nonsense suppression and suppression of the CPC lys2-90 mutation and mechanisms responsible for the suppression of CPC mutations during inactivation of translation termination factors are discussed.  相似文献   

15.
In eukaryotes, translation termination is performed by eRF1, which recognizes stop codons via its N-terminal domain. Many previous studies based on point mutagenesis, cross-linking experiments or eRF1 chimeras have investigated the mechanism by which the stop signal is decoded by eRF1. Conserved motifs, such as GTS and YxCxxxF, were found to be important for termination efficiency, but the recognition mechanism remains unclear. We characterized a region of the eRF1 N-terminal domain, the P1 pocket, that we had previously shown to be involved in termination efficiency. We performed alanine scanning mutagenesis of this region, and we quantified in vivo readthrough efficiency for each alanine mutant. We identified two residues, arginine 65 and lysine 109, as critical for recognition of the three stop codons. We also demonstrated a role for the serine 33 and serine 70 residues in UGA decoding in vivo. NMR analysis of the alanine mutants revealed that the correct conformation of this region was controlled by the YxCxxxF motif. By combining our genetic data with a structural analysis of eRF1 mutants, we were able to formulate a new model in which the stop codon interacts with eRF1 through the P1 pocket.  相似文献   

16.
Translation termination in eukaryotes is mediated by two release factors, eRF1 and eRF3. eRF1 recognizes each of the three stop codons (UAG, UAA, and UGA) and facilitates release of the nascent polypeptide chain. eRF3 is a GTPase that stimulates the translation termination process by a poorly characterized mechanism. In this study, we examined the functional importance of GTP hydrolysis by eRF3 in Saccharomyces cerevisiae. We found that mutations that reduced the rate of GTP hydrolysis also reduced the efficiency of translation termination at some termination signals but not others. As much as a 17-fold decrease in the termination efficiency was observed at some tetranucleotide termination signals (characterized by the stop codon and the first following nucleotide), while no effect was observed at other termination signals. To determine whether this stop signal-dependent decrease in the efficiency of translation termination was due to a defect in either eRF1 or eRF3 recycling, we reduced the level of eRF1 or eRF3 in cells by expressing them individually from the CUP1 promoter. We found that the limitation of either factor resulted in a general decrease in the efficiency of translation termination rather than a decrease at a subset of termination signals as observed with the eRF3 GTPase mutants. We also found that overproduction of eRF1 was unable to increase the efficiency of translation termination at any termination signals. Together, these results suggest that the GTPase activity of eRF3 is required to couple the recognition of translation termination signals by eRF1 to efficient polypeptide chain release.  相似文献   

17.
Eukaryotic translation termination is triggered by peptide release factors eRF1 and eRF3. eRF1 recognizes the stop codon and promotes nascent peptide chain release, while eRF3 facilitates this peptide release in a GTP-dependent manner. In addition to its role in termination, eRF3 is involved in normal and nonsense-mediated mRNA decay. Despite extensive investigation, the complete understanding of eRF3 function have been hampered by the lack of specific anti-eRF3 monoclonal antibodies (Mabs). The purpose of the study was production of recombinant eRF3a/GSPT1, development of anti-eRF3a/GSPT1 Mabs and their utilization for eRF3a/GSPT1 sub-cellular localization. Plasmid encoding C-terminal part of human GSPT1/eRF3a was constructed. Purified protein, which was predominantly present in the inclusion bodies, was used for the development of Mabs. Characterization of the regions recognized by Mabs using GSPT1/eRF3a mutants and its visualization in the 3D space suggested that Mabs recognize different epitopes. Consistent with its function in translational termination, immunostaining of the cells with developed Mabs revealed that the endogenous GSPT1/eRF3a localized in endoplasmic reticulum. Taking into account the important role of eRF3 for the fundamental research one can suggests that developed Mabs have great prospective to be used as a research reagent in a wide range of applications.  相似文献   

18.
Eukaryotic translation termination is governed by eRF1 and eRF3. eRF1 recognizes the stop codons and then hydrolyzes peptidyl-tRNA. eRF3, which facilitates the termination process, belongs to the GTPase superfamily. In this study, the effect of the MC domain of eRF1a (eRF1aMC) on the GTPase activity of eRF3 was analyzed using fluorescence spectra and high-performance liquid chromatography. The results indicated eRF1aMC promotes the GTPase activity of eRF3, which is similar to the role of eRF1a. Furthermore, the increased affinity of eRF3 for GTP induced by eRF1aMC was dependent on the concentration of Mg(2+). Changes in the secondary structure of eRF3C after binding GTP/GDP were detected by CD spectroscopy. The results revealed changes of conformation during formation of the eRF3C·GTP complex that were detected in the presence of eRF1a or eRF1aMC. The conformations of the eRF3C·eRF1a·GTP and eRF3C·eRF1aMC·GTP complexes were further altered upon the addition of Mg(2+). By contrast, there was no change in the conformation of GTP bound to free eRF3C or the eRF3C·eRF1aN complex. These results suggest that alterations in the conformation of GTP bound to eRF3 is dependent on eRF1a and Mg(2+), whereas the MC domain of eRF1a is responsible for the change in the conformation of GTP bound to eRF3 in Euplotes octocarinatus.  相似文献   

19.
In Saccharomyces cerevisiae, translation termination is mediated by a complex of two proteins, eRF1 and eRF3, encoded by the SUP45and SUP35 genes, respectively. Mutations in the SUP45 gene were selected which enhanced suppression by the weak ochre (UAA) suppressor tRNASerSUQ5. In each of four such allo-suppressor alleles examined, an in-frame ochre (TAA) mutation was present in the SUP45 coding region; therefore each allele encoded both a truncated eRF1 protein and a full-length eRF1 polypeptide containing a serine missense substitution at the premature UAA codon. The full-length eRF1 generated by UAA read-through was present at sub-wild-type levels. In an suq5+ (i.e. non-suppressor) background none of the truncated eRF1 polypeptides were able to support cell viability, with the loss of only 27 amino acids from the C-terminus being lethal. The reduced eRF1 levels in these sup45 mutants did not lead to a proportional reduction in the levels of ribosome-bound eRF3, indicating that eRF3 can bind the ribosome independently of eRF1. A serine codon inserted in place of the premature stop codon at codon 46 in the sup45–22 allele did not generate an allosuppressor pheno-type, thereby ruling out this‘missense’mutation as the cause of the allosuppressor phenotype. These data indicate that the cellular levels of eRF1 are important for ensuring efficient translation termination in yeast.  相似文献   

20.
Translation termination in eukaryotes is governed by two interacting release factors, eRF1 and eRF3. The crystal structure of the eEF1alpha-like region of eRF3 from S. pombe determined in three states (free protein, GDP-, and GTP-bound forms) reveals an overall structure that is similar to EF-Tu, although with quite different domain arrangements. In contrast to EF-Tu, GDP/GTP binding to eRF3c does not induce dramatic conformational changes, and Mg(2+) is not required for GDP binding to eRF3c. Mg(2+) at higher concentration accelerates GDP release, suggesting a novel mechanism for nucleotide exchange on eRF3 from that of other GTPases. Mapping sequence conservation onto the molecular surface, combined with mutagenesis analysis, identified the eRF1 binding region, and revealed an essential function for the C terminus of eRF3. The N-terminal extension, rich in acidic amino acids, blocks the proposed eRF1 binding site, potentially regulating eRF1 binding to eRF3 in a competitive manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号