首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes how the structure and concentration level of a detergent used for substitution after bacteriorhodopsin (bR) solubilization affect the reconstitution of the bR into phospholipid planar bilayers. A direct insertion method was used for the bR reconstitution into the bilayers. Two detergents representing the two major types were used: sodium deoxycholate with a cholane-ring structure, and octylglucoside with a linear (or chain) structure. We then characterized the reconstitution for the two detergents by considering the detergent separation profiles and the photocurrent variations upon addition of lanthanum chloride and the protonophore FCCP (carbonylcyanide-p-trifluoromethoxyphenylhydrazone). We found that for successful transmembrane reconstitution of bR the detergent with the cholane-ring structure was preferable to that with the linear structure when the detergent concentration was above its critical micellar concentration. This preference was explained by the ease with which the detergent with the cholane-ring structure was removed from protein compared to that with the linear structure. Finally, we proposed a scheme for the reconstitution of the protein.  相似文献   

2.
Proton magnetic resonance, circular dichroism and infrared spectroscopy were used to investigate the secondary and tertiary structure of the 16-S RNA binding protein S4 from Escherichia coli ribosomes. The proton magnetic resonance spectra of protein S4 in ribosomal reconstitution and low-salt buffers were identical and showed little dipolar broadening of the peaks, suggesting that the protein had an open extended structure. A ring-current-shifted apolar methyl resonance in the high-field region of the spectrum, together with a perturbation of the tyrosine ring proton resonance in the low-field region, indicated the existence of a specific tertiary fold in the polypeptide chain. This structure disappeared on lowering the pH below 5 or on heating above 30 degrees C, both processes being reversible. Circular dichroism measurements on protein S4 showed an alpha-helix content of 32% in reconstitution buffer compared with 26% in low-salt buffer. Heating the protein solution in reconstitution buffer above 35 degrees C reversibly disrupted this extra helix. Infrared studies on both solid films and solutions of protein S4 indicated the presence of little or no beta-structure. These results correlate well with the known RNA binding properties of protein S4.  相似文献   

3.
Yang C  Horn R  Paulsen H 《Biochemistry》2003,42(15):4527-4533
The major light-harvesting chlorophyll a/b protein (LHCIIb) of higher plants is one of the few membrane proteins that can be refolded in vitro. During folding, the apoprotein is assembled with pigments to form a structurally authentic and functional pigment--protein complex. All reconstitution procedures used so far include solubilization of the apoprotein in sodium dodecyl sulfate (SDS) where the protein adopts approximately half of its alpha-helical folding present in the native structure. This paper shows that this preformed alpha-helix is not a prerequisite for LHCIIb folding in vitro. The apoprotein can also be reconstituted starting from a solution in guanidinium hydrochloride (Gnd) where the protein contains no detectable helical structure. Reconstitution yields are somewhat lower in the Gnd than in the SDS procedure, but the reconstitution products exhibit very similar biochemical and spectroscopic properties. The kinetics of LHCIIb assembly, as assessed by time-resolved fluorescence measurements, are virtually the same in both reconstitution procedures. This demonstrates that the initiation of alpha-helix formation is not a rate-limiting step in LHCIIb apoprotein folding.  相似文献   

4.
A major requirement to perform structural studies with membrane proteins is to define efficient reconstitution protocols that ensure a high incorporation degree and protein directionality and topology that mimics its in vivo conditions. For this kind of studies, protein reconstitution in membrane systems via a detergent-mediated pathway is usually successfully adopted because detergents are generally used in the initial isolation and purification of membrane proteins. This study reports OmpF reconstitution in preformed Escherichia coli liposomes followed by detection of its insertion by analyzing modifications on membrane structure by two different techniques: steady-state fluorescence anisotropy and dynamic light scattering. Another important issue is protein directionality. For OmpF, it is known that interaction with polyamines promotes channel blockage. In this work, the spermine–OmpF interaction was evaluated using surface plasmon resonance, and protein directionality was confirmed.  相似文献   

5.
I Rousso  N Friedman  A Lewis    M Sheves 《Biophysical journal》1997,73(4):2081-2089
The experiments reported in this paper, based on reconstitution of bacteriorhodopsin (bR) from apomembrane at varying environmental conditions, demonstrate that the presence of water is a controlling factor in generating a native wild-type bR conformation. If water is lacking during this reconstitution process, then a non-native bR structure is formed that exhibits altered M formation and decay kinetics, as well as different behavior following extensive dehydration. It is shown that mutants affecting the ability of bR to form appropriate structures of water in specific protein cavities also affect the ability to generate a native bR conformation. The results suggest that aspartic acid 96 plays a major role in anchoring the appropriate water structure conformation associated with bR. It is also demonstrated that the glutamic acid 204 residue is pivotal in controlling the protein/water affinity. This water affinity can be further controlled by modifying the charge environment of the protein with altered pH. These data, based on kinetic absorption spectroscopy and Fourier transform infrared spectroscopy, highlight the central role of water in this protein.  相似文献   

6.
Reconstitution of integral membrane proteins into membrane mimetic environments suitable for biophysical and structural studies has long been a challenge. Isotropic bicelles promise the best of both worlds-keeping a membrane protein surrounded by a small patch of bilayer-forming lipids while remaining small enough to tumble isotropically and yield good solution NMR spectra. However, traditional methods for the reconstitution of membrane proteins into isotropic bicelles expose the proteins to potentially destabilizing environments. Reconstituting the protein into liposomes and then adding short-chain lipid to this mixture produces bicelle samples while minimizing protein exposure to unfavorable environments. The result is higher yield of protein reconstituted into bicelles and improved long-term stability, homogeneity, and sample-to-sample reproducibility. This suggests better preservation of protein structure during the reconstitution procedure and leads to decreased cost per sample, production of fewer samples, and reduction of the NMR time needed to collect a high quality spectrum. Furthermore, this approach enabled reconstitution of protein into isotropic bicelles with a wider range of lipid compositions. These results are demonstrated with the small multidrug resistance transporter EmrE, a protein known to be highly sensitive to its environment.  相似文献   

7.
Popelkova H  Im MM  Yocum CF 《Biochemistry》2002,41(31):10038-10045
Manganese stabilizing protein (MSP) is an intrinsically disordered extrinsic subunit of photosystem II that regulates the stability and kinetic performance of the tetranuclear manganese cluster that oxidizes water to oxygen. An earlier study showed that deletion of the (1)E-(3)G domain of MSP caused no loss of activity reconstitution, whereas deletion of the (4)K-(10)E domain reduced binding of the protein from 2 to 1 mol of MSP/mol of photosystem II and lowered activity reconstitution to about 50% of the control value [Popelkova et al. (2002) Biochemistry 41, 2702-2711]. In this work we present evidence that deletion of 13 or 14 amino acid residues from the MSP N-terminus (mutants DeltaS13M and DeltaK14M) does not interfere either with functional binding of one copy of MSP to photosystem II or with reconstitution of oxygen evolution activity to 50% of the control level. Both of these mutants exhibit nonspecific binding to photosystem II at higher protein concentrations. Truncation of the MSP sequence by 18 amino acids (mutant DeltaE18M), however, causes a loss of protein binding and activity reconstitution. This result demonstrates that the N-terminal domain (15)T-(18)E is required for binding of at least one copy of MSP to photosystem II. Analyses of CD spectra reveal changes in the structure of DeltaE18M (loss of beta-sheet, gain of unordered structure). Use of the information gained from these experiments in analyses of N-terminal sequences of MSP from a number of species indicates that higher plants and algae possess two recognition domains that are required for MSP binding to PSII, whereas cyanobacteria lack the first N-terminal domain found in eukaryotes. This may explain the absence of a second copy of MSP in the crystal structure of PSII from Synechococcus elongatus [Zouni et al. (2001) Nature 409, 739-743].  相似文献   

8.
The importance of the N-terminal domain of manganese stabilizing protein in binding to photosystem II has been previously demonstrated [Eaton-Rye and Murata (1989) Biochim. Biophys. Acta 977, 219-226; Odom and Bricker (1992) Biochemistry 31, 5616-5620]. In this paper, we report results from a systematic study of functional and structural consequences of N-terminal elongation and truncation of manganese stabilizing protein. Precursor manganese stabilizing protein is the unprocessed wild-type protein, which carries an N-terminal extension of 84 amino acids in the form of its chloroplastic signal peptide. Despite its increased size, this protein is able to reconstitute O(2) evolution activity to levels observed with the mature, processed protein, but it also binds nonspecifically to PSII. Truncation of wild-type manganese stabilizing protein by site-directed mutagenesis to remove three N-terminal amino acids, resulting in a mutant called DeltaG3M, causes no loss of activity reconstitution, but this protein also exhibits nonspecific binding. Further truncation of the wild-type protein by ten N-terminal amino acids, producing DeltaE10M, limits binding of manganese stabilizing protein to 1 mol/mol of photosystem II and decreases activity reconstitution to about 65% of that obtained with the wild-type protein. Because two copies of wild type normally bind to photosystem II, amino acids in the domain (4)K-(10)E must be involved in the binding of one copy of manganese stabilizing protein to photosystem II. Spectroscopic analysis (CD and UV spectra) reveals that N-terminal elongation and deletion of manganese stabilizing protein influence its overall conformation, even though secondary structure content is not perturbed. Our data suggest that the solution structure of manganese stabilizing protein attains a more compact solution structure upon removal of N-terminal amino acids.  相似文献   

9.
The reconstitution of active transport by the Ca2+ -induced import of exogenous binding protein was studied in detail in whole cells of a malE deletion mutant lacking the periplasmic maltose-binding protein. A linear increase in reconstitution efficiency was observed by increasing the Ca2+ - concentration in the reconstitution mixture up to 400 mM. A sharp pH optimum around pH 7.5 was measured for reconstitution. Reconstitution efficiency was highest at 0 degree C and decreased sharply with increasing temperature. The time necessary for optimal reconstitution at 0 degree C and 250 mM Ca2+ was about 1 min. The competence for reconstitution was highest in exponentially growing cultures with cell densities up to 1 X 10(9)/ml and declined when the cells entered the stationary-growth phase. The apparent Km for maltose uptake was the same as that of wild-type cells (1 to 2 microM). Vmax at saturating maltose-binding protein concentration was 125 pmol per min per 7.5 X 10(7) cells (30% of the wild-type activity). The concentration of maltose-binding protein required for half-maximal reconstitution was about 1 mM. The reconstitution procedure appears to be generally applicable. Thus, galactose transport in Escherichia coli could also be reconstituted by its respective binding protein. Maltose transport in E. coli was restored by maltose-binding protein isolated from Salmonella typhimurium. Finally, in S. typhimurium, histidine transport was reconstituted by the addition of shock fluid containing histidine-binding protein to a hisJ deletion mutant lacking histidine-binding protein. The method is fast and general enough to be used as a screening procedure to distinguish between transport mutants in which only the binding protein is affected and those in which additional transport components are affected.  相似文献   

10.
Using reverse phase HPLC, we have been able to quantify the protein compositions of reconstituted 30S ribosomal subunits, formed either with the full complement of 30S proteins in the reconstitution mix or with a single protein omitted. We denote particles formed in the latter case as SPORE (single protein omission reconstitution) particles. An important goal in 30S reconstitution studies is the formation of reconstituted subunits having uniform protein composition, preferably corresponding to one copy of each protein per reconstituted particle. Here we describe procedures involving variation of the protein:rRNA ratio that approach this goal. In SPORE particles the omission of one protein often results in the partial loss in uptake of other proteins. We also describe procedures to increase the uptake of such proteins into SPORE particles, thus enhancing the utility of the SPORE approach in defining the role of specific proteins in 30S structure and function. The losses of proteins other than the omitted protein provide a measure of protein:protein interaction within the 30S subunit. Most of these losses are predictable on the basis of other such measures. However, we do find evidence for several long-range protein:protein interactions (S6:S3, S6:S12, S10:S16, and S6:S4) that have not been described previously.  相似文献   

11.
Highly purified ribose-binding protein from Escherichia coli has been used to reconstitute a binding-protein-dependent ribose transport in spheroplasts derived from a binding-protein-deficient mutant of E coli K 12, and in spheroplasts derived from Salmonella typhimurium. The cross-species reconstitution was nearly as efficient as the reconstitution of the E coli strain from which the binding protein was derived. Antibody raised against the ribose binding protein completely prevented reconstitution, whereas it had no effect on whole cells. The reconstitution procedure has been improved by generating spheroplasts from cells grown in a rich medium and by reducing the background uptake in spheroplasts through a special washing procedure. Rapid purification of ribose binding protein by high pressure liquid chromatography is also described.  相似文献   

12.
Several versions of split green fluorescent protein (GFP) fold and reconstitute fluorescence, as do many circular permutants, but little is known about the dependence of reconstitution on circular permutation. Explored here is the capacity of GFP to fold and reconstitute fluorescence from various truncated circular permutants, herein called "leave-one-outs" using a quantitative in vivo solubility assay and in vivo reconstitution of fluorescence. Twelve leave-one-out permutants are discussed, one for each of the 12 secondary structure elements. The results expand the outlook for the use of permuted split GFPs as specific and self-reporting gene encoded affinity reagents.  相似文献   

13.
Protonation changes of the protein occur during the reconstitution of bacteriorhodopsin from bacterio-opsin and all-trans retinal in the purple membrane of Halobacterium halobium. The protonation changes are conveniently determined from measures of the pH changes after photoisomerisation of 9-cis retinal in apomembrane preparations, which induces the reconstitution. In addition, to the omega-amino group of the lysine which is involved in the condensation of retinal and bacterio-opsin, the dissociation equilibria of at least two other amino acid residues are changed during the reconstitution. The results are consistent with a proposed model of chromophore structure in which an interaction of the Schiff's base occurs with two protonable amino acid residues.  相似文献   

14.

Background

SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1.

Methodology/Principal Finding

We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-β-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC), or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE), 1-palmitoyl-2oleoyl-phosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS), and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly α-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58°C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70°C.

Conclusion/Significance

The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications.  相似文献   

15.
26S蛋白酶体是真核细胞内负责蛋白质降解的主要分子机器,通过特异性降解目的蛋白质,几乎参与了生物体的绝大多数生命活动.26S蛋白酶体在结构上可分为19S调节颗粒和20S核心颗粒两部分.19S调节颗粒负责识别带有泛素链标记的蛋白质底物及对其进行去折叠,并最终将去折叠的蛋白质底物传送至20S核心颗粒中进行降解.由于26S蛋白酶体的结构组成复杂,分子量十分巨大,现有的X-ray技术和NMR技术对其完整结构的解析都无能为力,仅能解析出部分单个蛋白成员或分子量较低的亚复合物晶体结构.而冷冻电镜技术在相当一段时间内处于发展的初级阶段,导致其三维结构的研究进展曾经十分缓慢,严重阻碍了人们对其结构和功能的了解.近年来,随着在X-ray技术领域对大分子复合物结构解析的经验积累和冷冻电镜技术领域的技术革命,完整的26S蛋白酶体三维结构解析取得了飞速的发展.本文回顾了近几年在26S蛋白酶体结构生物学领域的重要进展,并展望了该领域未来的发展及面临的挑战.  相似文献   

16.
The enzyme activity of Escherichia coli ribonucleotide reductase requires the presence of a stable tyrosyl free radical and diiron center in its smaller R2 component. The iron/radical site is formed in a reconstitution reaction between ferrous iron and molecular oxygen in the protein. The reaction is known to proceed via a paramagnetic intermediate X, formally a Fe(III)-Fe(IV) state. We have used 9.6 GHz and 285 GHz EPR to investigate intermediates in the reconstitution reaction in the iron ligand mutant R2 E238A with or without azide, formate, or acetate present. Paramagnetic intermediates, i.e. a long-living X-like intermediate and a transient tyrosyl radical, were observed only with azide and under none of the other conditions. A crystal structure of the mutant protein R2 E238A/Y122F with a diferrous iron site complexed with azide was determined. Azide was found to be a bridging ligand and the absent Glu-238 ligand was compensated for by azide and an extra coordination from Glu-204. A general scheme for the reconstitution reaction is presented based on EPR and structure results. This indicates that tyrosyl radical generation requires a specific ligand coordination with 4-coordinate Fe1 and 6-coordinate Fe2 after oxygen binding to the diferrous site.  相似文献   

17.
The periplasmic protein ApbE was identified through the analysis of several mutants defective in thiamine biosynthesis and was implicated as having a role in iron-sulfur cluster biosynthesis or repair. While mutations in apbE cause decreased activity of several iron-sulfur enzymes in vivo, the specific role of ApbE remains unknown. Members of the AbpE family include NosX and RnfF, which have been implicated in oxidation-reduction associated with nitrous oxide and nitrogen metabolism, respectively. In this work, we show that ApbE binds one FAD molecule per monomeric unit. The structure of ApbE in the presence of bound FAD reveals a new FAD-binding motif. Protein variants that are nonfunctional in vivo were generated by random and targeted mutagenesis. Each variant was substituted in the environment of the FAD and analyzed for FAD binding after reconstitution. The variant that altered a key tyrosine residue involved in FAD binding prevented reconstitution of the protein.  相似文献   

18.
Leslie KD  Fox KR 《Biochemistry》2002,41(10):3484-3497
We have examined the interaction of Hoechst 33258 and echinomycin with nucleosomal DNA fragments which contain isolated ligand binding sites. A 145 base pair fragment was prepared on the basis of the sequence of tyrT DNA, which contained no CpG or (A/T)(4) binding sites for these ligands. Isolated binding sites were introduced into this fragment at discrete locations where the minor groove is known to face toward or away from the protein core when reconstituted onto nucleosome core particles. The interaction of ligands with target sites on these nucleosomal DNA fragments was assessed by DNase I footprinting. We find that Hoechst 33258 can bind to single nucleosomal sites which face both toward and away from the protein core, without affecting the nucleosome structure. Hoechst binding is also observed on nucleosomal fragments which contain two or more drug binding sites, though in these cases the footprints are accompanied by the presence of new cleavage products in positions which suggest that the ligand has caused a proportion of the DNA molecules to adopt a new rotational positioning on the protein surface. Hoechst 33258 does not affect nucleosome reconstitution with any of these fragments. In contrast, the bifunctional intercalating antibiotic echinomycin is not able to bind to single nucleosomal CpG sites. Echinomycin footprints are observed on nucleosomal fragments containing two or more CpG sites, but there are no changes in the cleavage patterns in the remainder of the fragment. Echinomycin abolishes nucleosome reconstitution when included in the reconstitution mixture.  相似文献   

19.
Benjwal S  Jayaraman S  Gursky O 《Biochemistry》2007,46(13):4184-4194
Binding of protein to a phospholipid surface is commonly mediated by amphipathic alpha-helices. To understand the role of alpha-helical structure in protein-lipid interactions, we used discoidal lipoproteins reconstituted from dimyristoylphosphatidylcholine (DMPC) and human apolipoprotein C-I (apoC-I, 6 kDa) or its mutants containing single Pro substitutions along the sequence and differing in their alpha-helical content in solution (0-48%) and on DMPC (40-75%). Thermal denaturation revealed that lipoprotein stability correlates weakly with the protein helix content: proteins with higher alpha-helical content on DMPC may form more stable complexes. Lipoprotein reconstitution upon cooling from the heat-denatured state and DMPC clearance studies revealed that protein secondary structure in solution and on DMPC correlates strongly with the maximal temperature of lipoprotein reconstitution: more helical proteins can reconstitute lipoproteins at higher temperatures. Interestingly, at Tc = 24 degrees C of the DMPC gel-to-liquid crystal transition, the clearance rate is independent of the protein helical content. Consequently, if the packing defects at the phospholipid surface are readily available (e.g., at the lipid phase boundary), insertion of protein into these defects is independent of the secondary structure in solution. However, if hydrophobic defects are limited, protein binding and insertion are aided by other surface-bound proteins and depend on their helical propensity: the larger the propensity, the faster the binding and the broader its temperature range. This positive cooperativity in binding of alpha-helices to phospholipid surface, which may result from direct and/or lipid-mediated protein-protein interactions, may be important for lipoprotein metabolism and for protein-membrane binding.  相似文献   

20.
Soluble variant surface glycoprotein (sVSG) is the form of the coat protein of Trypanosoma brucei released by cleavage of its lipid anchor. As shown by ultracentrifugal analysis, the protein of the variant clone MITat 1.2 is a stable dimer of (117 +/- 6)-kDa molecular mass. Its quaternary structure remains unaltered in the concentration range from 0.01 to approximately 50 mg/mL. Further extrapolation to the in situ concentration on the cell surface points to no significant protein association beyond the dimer, because after correction for solution viscosity sedimentation velocity is independent of the protein concentration. The sedimentation constant, s20,w = 5.1 X 10(-13) s, together with the particle weight confirms the high anisotropy of the dimer. Circular dichroism and fluorescence spectra show the typical properties of an alpha-helical protein (51% alpha-helix) with fluorophores buried in the hydrophobic interior of the protein. Denaturation at extremes of pH leads to the monomer still maintaining a relatively compact structure. Increased concentrations of urea and guanidine hydrochloride cause randomization with cooperative transitions at 1.7 and 0.7 M, respectively. The yield of reconstitution of the denatured protein reaches 87% under optimum conditions. The final product is indistinguishable from the native protein in its spectral, hydrodynamic, and immunochemical properties. Immunological analysis included polyclonal antibodies as well as monoclonal antibodies raised against epitopes in the surface of the complete trypanosome, as well as cryptic epitopes exposed only on sVSG in solution. The kinetics of reconstitution involve sequential uni-bimolecular processes, corresponding to consecutive folding and subunit association. About 38% of the fluorescence of the native protein is recovered within the mixing time (secondary structure formation).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号