首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Purified Escherichia coli K-12 ribose binding protein was used to reconstitute the high affinity ribose transport system in spheroplasts derived from ribose-induced cells. It was not possible to reconstitute ribose transport in spheroplasts derived from uninduced cells or from transport-negative mutant strains, suggesting that one or more additional inducible components are required for binding protein-dependent ribose transport. It was possible to reconstitute transport in a ribokinase-deficient mutant which constitutively transports but does not utilize ribose.  相似文献   

2.
The reconstitution of active transport by the Ca2+ -induced import of exogenous binding protein was studied in detail in whole cells of a malE deletion mutant lacking the periplasmic maltose-binding protein. A linear increase in reconstitution efficiency was observed by increasing the Ca2+ - concentration in the reconstitution mixture up to 400 mM. A sharp pH optimum around pH 7.5 was measured for reconstitution. Reconstitution efficiency was highest at 0 degree C and decreased sharply with increasing temperature. The time necessary for optimal reconstitution at 0 degree C and 250 mM Ca2+ was about 1 min. The competence for reconstitution was highest in exponentially growing cultures with cell densities up to 1 X 10(9)/ml and declined when the cells entered the stationary-growth phase. The apparent Km for maltose uptake was the same as that of wild-type cells (1 to 2 microM). Vmax at saturating maltose-binding protein concentration was 125 pmol per min per 7.5 X 10(7) cells (30% of the wild-type activity). The concentration of maltose-binding protein required for half-maximal reconstitution was about 1 mM. The reconstitution procedure appears to be generally applicable. Thus, galactose transport in Escherichia coli could also be reconstituted by its respective binding protein. Maltose transport in E. coli was restored by maltose-binding protein isolated from Salmonella typhimurium. Finally, in S. typhimurium, histidine transport was reconstituted by the addition of shock fluid containing histidine-binding protein to a hisJ deletion mutant lacking histidine-binding protein. The method is fast and general enough to be used as a screening procedure to distinguish between transport mutants in which only the binding protein is affected and those in which additional transport components are affected.  相似文献   

3.
Reconstitution of phosphate transport in Escherichia coli was demonstrated. Conversion of E. coli K10 cells to spheroplasts decreased phosphate transport to about 2%. Addition of purified phosphate-binding protein at physiological levels to these spheroplasts caused a mean 14-fold increase in phosphate transport rate. Crude shock fluid fractions were also stimulatory but not if the shock fluid was obtained from mutants lacking phosphate-binding protein. The effect of the binding protein was abolished by its specific antibody. The phosphate was shown to have entered the cell, where it became esterified. Reconstitution was not possible with cold-shocked or osmotically shocked cells.  相似文献   

4.
The leucine-specific binding protein (LS-BP), a periplasmic component of the Escherichia coli high-affinity leucine transport system, is initially synthesized in a precursor form with a 23 amino acid N-terminal leader sequence that is removed during secretion of the protein into the periplasm. Using in vitro mutagenesis, deletion mutants of the LS-BP gene have been constructed with altered or missing amino acid sequences in the C-terminal portion of the protein. These altered binding proteins exhibited normal processing and secretion but were rapidly degraded in the periplasmic space. In the presence of an uncoupler of the transmembrane potential (CCCP) the precursor forms accumulated in the membrane and were protected from degradation. The altered binding proteins also were secreted by spheroplasts of E coli, after which they were easily detected.  相似文献   

5.
The Escherichia coli single-stranded DNA binding (SSB) protein is a non-sequence-specific DNA binding protein that functions as an accessory factor for the RecA protein-promoted three-strand exchange reaction. An open reading frame encoding a protein similar in size and sequence to the E. coli SSB protein has been identified in the Streptococcus pneumoniae genome. The open reading frame has been cloned, an overexpression system has been developed, and the protein has been purified to greater than 99% homogeneity. The purified protein binds to ssDNA in a manner similar to that of the E. coli SSB protein. The protein also stimulates the S. pneumoniae RecA protein and E. coli RecA protein-promoted strand exchange reactions to an extent similar to that observed with the E. coli SSB protein. These results indicate that the protein is the S. pneumoniae analog of the E. coli SSB protein. The availability of highly-purified S. pneumoniae SSB protein will facilitate the study of the molecular mechanisms of RecA protein-mediated transformational recombination in S. pneumoniae.  相似文献   

6.
Complex formation of circular, single-stranded phage fd DNA with Escherichia coli DNA binding protein HD or phage fd gene 5 protein keeps infection of E. coli spheroplasts at the level of free phage DNA, whereas complexes of this DNA with E. coli DNA unwinding protein show a strongly reduced efficiency of transfection. Displacement of the unwinding protein by HD protein or gene 5 protein also maintains the poor adsorption of the complexes to spheroplasts. Free E. coli DNA unwinding protein and residual amounts of this protein bound to the DNA may interfere with the adsorption and the uptake of the phage genome.  相似文献   

7.
Styrene is one of the most important industrial intermediates consumed in the world. Human exposure to styrene occurs mainly in the reinforced plastics industry, particularly in developing countries. Styrene has been found to be hepatotoxic and pneumotoxic in humans and animals. The biochemical mechanisms of styrene-induced toxicities remain unknown. Albumin and hemoglobin adduction derived from styrene oxide, a major reactive metabolite of styrene, has been reported in blood samples obtained from styrene-exposed workers. The objectives of the current study focused on cellular protein covalent binding of styrene metabolite and its correlation with cytotoxicity induced by styrene. We found that radioactivity was bound to cellular proteins obtained from mouse airway trees after incubation with 14C-styrene. Microsomal incubation studies showed that the observed protein covalent binding required the metabolic activation of styrene. The observed radioactivity binding in protein samples obtained from the cultured airways and microsomal incubations was significantly suppressed by co-incubation with disulfiram, a CYP2E1 inhibitor, although disulfiram apparently did not show a protective effect against the cytotoxicity of styrene. A 2-fold increase in radioactivity bound to cellular proteins was detected in cells stably transfected with CYP2E1 compared to the wild-type cells after 14C-styrene exposure. With the polyclonal antibody developed in our lab, we detected cellular protein adduction derived from styrene oxide at cysteinyl residues in cells treated with styrene. Competitive immunoblot studies confirmed the modification of cysteine residues by styrene oxide. Cell culture studies showed that the styrene-induced protein modification and cell death increased with the increasing concentration of styrene exposure. In conclusion, we detected cellular protein covalent modification by styrene oxide in microsomal incubations, cultured cells, and mouse airways after exposure to styrene and found a good correlation between styrene-induced cytotoxicity and styrene oxide-derived cellular protein adduction.  相似文献   

8.
C Urbanke  A Schaper 《Biochemistry》1990,29(7):1744-1749
The time course of the reaction of Escherichia coli single-stranded DNA binding protein (E. coli SSB) with poly(dT) and M13mp8 single-stranded DNA has been measured by fluorescence stopped-flow experiments. For poly(dT), the fluorescence traces follow simple bimolecular behavior up to 80% saturation of the polymer with E. coli SSB. A mechanistic explanation of this binding behavior can be given as follows: (1) E. coli SSB is able to translocate very rapidly on the polymer, forming cooperative clusters. (2) In the rate-limiting step of the association reaction, E. coli SSB is bound to the polymer only by one or two of its four contact sites. As compared to poly(dT), association to single-stranded M13mp8 phage DNA is slower by at least 2 orders of magnitude. We attribute this finding to the presence of secondary structure elements (double-stranded structures) in the natural single-stranded DNA. These structures cannot be broken by E. coli SSB in a fast reaction. In order to fulfill its physiological function in reasonable time, E. coli SSB must bind newly formed single-stranded DNA immediately. The protein can, however, bind to such pieces of the newly formed single-stranded DNA which are too short to cover all four binding sites of the E. coli SSB tetramer.  相似文献   

9.
Several lines of evidence provided by other workers indicate that within the same species thyroid hormone binding protein, the beta-subunit of prolyl hydroxylase, and protein disulfide isomerase are the same protein. We sought to determine if glycosylation site binding protein, a lumenal protein of the endoplasmic reticulum, also has the same primary structure. To accomplish this the level of glycosylation site binding protein (GSBP) activity, measured by photolabeling with a glycosylation site peptide probe, was carried out in preparations of 3T3 cells and in E. coli transformed with human thyroid hormone binding protein cDNA. The results strongly support the idea that GSBP is identical to these other lumenal proteins of the endoplasmic reticulum.  相似文献   

10.
The galactose binding protein implicated in transport and in chemotaxis has been purified to homogeneity from the shock fluids of Salmonella typhimurium and Escherichia coli. Both proteins are monomers of molecular weight 33 000 and exhibit cross-reactivity with antibody. The Salmonella galactose receptor showed binding of 1 mol of [14C]galactose or 1 mol of [14C]glucose at saturation. The dissociation constants were 0.38 and 0.17 muM, respectively. In light of the previously published report that the E. coli protein contains two binding sites with two different affinities, the binding characteristics of this protein were reexamined. Using highly purified radiolabeled substrate and homogeneous protein, a single binding site and single binding affinity were seen galactose (KD = 0.48 muM) or for glucose (KD = 0.21 muM). The competition between glucose and galactose for the same site is intriguing in view of the competition between ribose and galactose at the receptor level.  相似文献   

11.
Ribosomal protein L25 from the large subunit of E. coli ribosomes has been purified using a new procedure involving a 2M LiCl extraction followed by phosphocellulose chromatography in 6 M urea elution buffer. The conformation of purified L25 was studied employing circular dichroism and ultraviolet absorption spectroscopy in reconstitution buffer. The analysis of the far u.v. circular dichroism spectrum of L25 indicates L25 contains approximately 16% alpha-helix and approximately 19% beta-structure. The conformation of L25 was also studied using the predictive methods of Chou & Fasman and Maxfield & Scheraga. Both of these methods predict approximately three times the percent alpha-helix present in L25 as compared with that determined from the analysis of the circular dichroism spectrum. A structure for L25 is predicted which contains two positively charged binding domains and is consistent with published binding data on the interaction of 5S RNA and L25. The large difference in the % alpha-helix as determined from the analysis of the circular dichroism spectrum and the predictive techniques is suggested to result from the denaturing effects of 6 M urea used in the preparation of ribosomal proteins.  相似文献   

12.
The primary structure of the bovine retinal calcium binding protein P26 has been determined by the parallel analysis of the protein and the corresponding cDNA. This protein is identical to recovering and shares 59% homology with visinin, a cone specific calcium binding protein from chicken retina. P26 was expressed in E. coli as a fusion protein and, after purification by affinity chromatography on IgG-Sepharose 6, cleaved off with enteropeptidase.  相似文献   

13.
The eosinophil cationic protein (ECP) is an eosinophil-secreted RNase involved in the immune host defense, with a cytotoxic activity against a wide range of pathogens. The protein displays antimicrobial activity against both Gram-negative and Gram-positive strains. The protein can destabilize lipid bilayers, although the action at the membrane level can only partially account for its bactericidal activity. We have now shown that ECP can bind with high affinity to the bacteria-wall components. We have analyzed its specific association to lipopolysaccharides (LPSs), its lipid A component, and peptidoglycans (PGNs). ECP high-affinity binding capacity to LPSs and lipid A has been analyzed by a fluorescent displacement assay, and the corresponding dissociation constants were calculated using the protein labeled with a fluorophor. The protein also binds in vivo to bacteria cells. Ultrastructural analysis of cell bacteria wall and morphology have been visualized by scanning and transmission electron microscopy in both Escherichia coli and Staphylococcus aureus strains. The protein damages the bacteria surface and induces the cell population aggregation on E. coli cultures. Although both bacteria strain cells retain their shape and no cell lysis is patent, the protein can induce in E. coli the outer membrane detachment. ECP also activates the cytoplasmic membrane depolarization in both strains. Moreover, the depolarization activity on E. coli does not require any pretreatment to overcome the outer membrane barrier. The protein binding to the bacteria-wall surface would represent a first encounter step key in its antimicrobial mechanism of action.  相似文献   

14.
15.
The polyamine spermidine has recently been reported to be a substantial component of the RNA phage particle. Its effect on the isolated RNA-A protein complex of the phage MS2 is investigated here. This complex infects intact Escherichia coli cells via F-pili, as does the whole phage. It is shown that the infectivity of the complex on intact E. coli cells was enhanced by incubation with spermidine. Optimal stimulation (20-fold) of the complex infectivity was achieved by incubation with 3 x 10(-4) M spermidine for 20 to 30 min at 37 degrees C. This gave a more compact structure to the complex, as could be seen by its faster sedimentation in sucrose gradients. Although spermidine and Mg2+ are known to partially replace one another in several systems, no enhancement of the infectivity of the complex, but only its considerably faster sedimentation in sucrose gradients, occurred after incubation with 3 x 10(-4) M Mg2+. Only if the Mg2+ concentration was raised by more than one order of magnitude could increased infectivity of the complex be observed. At concentrations of spermidine and Mg2+ that maximally stimulated the infectivity of the complex on intact E. coli cells, no increase in infectivity of phenol-extracted RNA to E. coli spheroplasts was detected. From these in vitro results, the role of the polyamine spermidine in the RNA phage particle for the infecting, RNA-A protein complex molecules in phage infection is discussed.  相似文献   

16.
The Gram positive bacterium, Streptococcus pneumoniae, has two genes, designated ssbA and ssbB, which are predicted to encode single-stranded DNA binding proteins (SSB proteins). We have shown previously that the SsbA protein is similar in size and in biochemical properties to the well-characterized SSB protein from Escherichia coli. The SsbB protein, in contrast, is a smaller protein and has no counterpart in E. coli. This report describes the development of an expression system and purification procedure for the SsbB protein. The ssbB gene was amplified from genomic S. pneumoniae DNA and cloned into the E. coli expression vector, pET21a. Although, we had shown previously that the SsbA protein is strongly expressed from pET21a in the E. coli strain BL21(DE3)pLysS, no expression of the SsbB protein was detected in these cells. However, the SsbB protein was strongly expressed from pET21a in the Rosetta(DE3)pLysS strain, a derivative of BL21(DE3)pLysS which supplies the tRNAs for six codons that are used infrequently in E. coli. The differential expression of the two SSB proteins in the parent BL21(DE3)pLysS strain was apparently due to the presence of two rare codons in the ssbB gene sequence that are not present in the ssbA sequence. Using the Rosetta(DE3)pLysS/pETssbB expression system, a protocol was developed in which the SsbB protein was purified to apparent homogeneity. DNA binding assays confirmed that the purified SsbB protein had single-stranded DNA binding activity. The expression and purification procedures reported here will facilitate further investigations into the biological role of the SsbB protein.  相似文献   

17.
Lundegaard C  Jensen KF 《Biochemistry》1999,38(11):3327-3334
Phosphoribosyltransferases catalyze the formation of nucleotides from a nitrogenous base and 5-phosphoribosyl-alpha-1-pyrophosphate (PRPP). These enzymes and the PRPP synthases resemble each other in a short homologous sequence of 13 amino acid residues which has been termed the PRPP binding site and which interacts with the ribose 5-phosphate moiety in structurally characterized complexes of PRPP and nucleotides. We show that each class of phosphoribosyltransferases has subtle deviations from the general consensus PRPP binding site and that all uracil phosphoribosyltransferases (UPRTases) have a proline residue at a position where other phosphoribosyltransferases and the PRPP synthases have aspartate. To investigate the role of this unusual proline (Pro 131 in the E. coli UPRTase) for enzyme activity, we changed the residue to an aspartate and purified the mutant P131D enzyme to compare its catalytic properties with the properties of the wild-type protein. We found that UPRTase of E. coli obeyed the kinetics of a sequential mechanism with the binding of PRPP preceding the binding of uracil. The basic kinetic constants were derived from initial velocity measurements, product inhibition, and ligand binding assays. The change of Pro 131 to Asp caused a 50-60-fold reduction of the catalytic rate (kcat) in both directions of the reaction and approximately a 100-fold increase in the KM for uracil. The KM for PRPP was strongly diminished by the mutation, but kcat/KM,PRPP and the dissociation constant (KD,PRPP) were nearly unaffected. We conclude that the proline in the PRPP binding site of UPRTase is of only little importance for binding of PRPP to the free enzyme, but is critical for binding of uracil to the enzyme-PRPP complex and for the catalytic rate.  相似文献   

18.
The murine adipocyte lipid binding protein (ALBP) has been cloned into Escherichia coli, purified from expressing cultures, and its ligand binding and phosphorylation properties studied. In the cloning strategy, the recombinant, pT7-5 rALBP, was transformed into E. coli strain K38 harboring plasmid pGP1-2 which directs the synthesis of T7 RNA polymerase. Upon shifting the temperature from 30 to 42 degrees C to induce T7 RNA polymerase expression, the 14.6-kDa recombinant ALBP (rALBP) was expressed for approximately 2 h and accumulated to about 1% of total E. coli protein. The recombinant ALBP was soluble in E. coli extracts and resistant to bacterial proteolysis. A procedure for purifying rALBP was developed utilizing immuno-chemical detection based upon reactivity with anti-murine ALBP antiserum. A combination of acidic ammonium sulfate fractionation, gel permeation chromatography, and carboxymethyl ion-exchange high performance liquid chromatography separation was used to prepare homogeneous rALBP. Sequence analysis of rALBP indicated that the initiating methionine residue had been removed and the amino-terminal cysteine residue was not blocked. Purified rALBP exhibited stoichiometric, saturable binding of oleic acid (n = 1.0, K0.5 approximately 100 microM) and retinoic acid (n = 1.0, K0.5 approximately 170 microM). Incubation of rALBP with wheat germ agglutinin-purified insulin receptor, ATP, and 100 nM insulin resulted in a 5-fold stimulation of rALBP phosphorylation above the basal state. Kinetic analysis of rALBP phosphorylation by the 3T3-L1 insulin receptor kinase yielded a Michaelis constant (Km) of 50 microM and a maximal velocity of 1 mol of rALBP phosphorylated/min/mol insulin binding sites. Phosphoamino acid analysis indicated that phosphorylation occurred upon tyrosine. These results indicate that murine ALBP has been cloned and expressed in E. coli, purified to homogeneity, and is a substrate for the insulin receptor tyrosyl kinase in vitro.  相似文献   

19.
The adherence of uropathogenic Escherichia coli to the urothelial surface, a critical first step in the pathogenesis of urinary tract infection (UTI), is controlled by three key elements: E. coli adhesins, host receptors, and host defense mechanisms. Although much has been learned about E. coli adhesins and their urothelial receptors, little is known about the role of host defense in the adherence process. Here we show that Tamm-Horsfall protein (THP) is the principal urinary protein that binds specifically to type 1 fimbriated E. coli, the main cause of UTI. The binding was highly specific and saturable and could be inhibited by d-mannose and abolished by endoglycosidase H treatment of THP, suggesting that the binding is mediated by the high-mannose moieties of THP. It is species-conserved, occurring in both human and mouse THPs. In addition, the binding to THP was much greater with an E. coli strain bearing a phenotypic variant of the type 1 fimbrial FimH adhesin characteristic of those prevalent in UTI isolates compared with the one prevalent in isolates from the large intestine of healthy individuals. Finally, a physiological concentration of THP completely abolished the binding of type 1 fimbriated E. coli to uroplakins Ia and Ib, two putative urothelial receptors for type 1 fimbriae. These results establish, on a functional level, that THP contains conserved high-mannose moieties capable of specific interaction with type 1 fimbriae and strongly suggest that this major urinary glycoprotein is a key urinary anti-adherence factor serving to prevent type 1 fimbriated E. coli from binding to the urothelial receptors.  相似文献   

20.
Bovine and human lactoferrins (LF) prevent hepatitis C virus (HCV) infection in cultured human hepatocytes; the preventive mechanism is thought to be the direct interaction between LF and HCV. To clarify this hypothesis, we have characterized the binding activity of LF to HCV E2 envelope protein and have endeavored to determine which region(s) of LF are important for this binding activity. Several regions of human LF have been expressed and purified as thioredoxin-fused proteins in Escherichia coli. Far-Western blot analysis using these LF fragments and the E2 protein, expressed in Chinese hamster ovary cells, revealed that the 93 carboxyl amino acids of LF specifically bound to the E2 protein. The 93 carboxyl amino acids of LFs derived from bovine and horse cells also possessed similar binding activity to the E2 protein. In addition, the amino acid sequences of these carboxyl regions appeared to show partial homology to CD81, a candidate receptor for HCV, and the binding activity of these carboxyl regions was also comparable with that of CD81. Further deletion analysis identified 33 amino acid residues as the minimum binding site in the carboxyl region of LF, and the binding specificity of these 33 amino acids was also confirmed by using 33 maltose-binding protein-fused amino acids. Furthermore, we demonstrated that the 33 maltose-binding protein-fused amino acids prevented HCV infection in cultured human hepatocytes. In addition, the site-directed mutagenesis to an Ala residue in both terminal residues of the 33 amino acids revealed that Cys at amino acid 628 was determined to be critical for binding to the E2 protein. These results led us to consider the development of an effective anti-HCV peptide. This is the first identification of a natural protein-derived peptide that specifically binds to HCV E2 protein and prevents HCV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号