首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study determined how surgical removal of the stem terminal, with indole-3-butyric acid (IBA) treatment, influenced concentrations and partitioning of carbohydrates in Pinus banksiana Lamb, cuttings during propagation. Seedlings and cuttings that originated from 90-day-old stock plants were untreated or treated by removing the stem terminal, followed by application of IBA to the severed apical or basal (cuttings only) stem. Fresh and dry weights of the basal 1-cm stems of cuttings were determined daily for the first 10 days of propagation (i.e., before roots were visible). In addition, basal 1-cm stems, upper (ca 9-cm) stems and needles of seedlings and cuttings were analyzed for sucrose, soluble reducing sugar and total non-structural carbohydrate. Net concentrations of each carbohydrate in cuttings were obtained by subtracting corresponding concentrations for similarly treated seedlings, yielding data directly related to only the physiology of rooting. Data for cuttings indicated that presence of the stem terminal combined with applied IBA positively influenced rooting through processes that increased basal stem fresh and dry weights before root emergence. Removal of the stem terminal influenced accumulation of net total carbohydrate in cuttings, but the major effect was on carbohydrate partitioning. Either type of IBA treatment after removal of the stem terminal usually resulted in different net carbohydrate concentrations in each tissue source of cuttings, compared with only removal of the terminal. Neither basal nor apical IBA treatment of cuttings without stem terminals yielded results for carbohydrate accumulation and partitioning like those obtained with intact cuttings. Removal of the stem terminal, even if followed by IBA treatment, may have lessened rooting potential of cuttings because it resulted in greater reducing sugarstarch concentration ratios in basal stems compared with those in intact cuttings.  相似文献   

2.
Untreated and indole-3-butyrie acid-treated (IBA) cuttings from 90-day-old Pinus banksiana Lamb, stock plants were propagated under normal greenhouse irradiance (max. 900 $$mol m-2 s-1) and shade (max. 120 $$mol m-2 s-1) to determine effects on adventitious rooting and on reducing sugar and starch concentrations in needles and basal stems. In one experiment, cuttings were assessed at days 15 and 25 of propagation for basal 1-cm stem fresh weight, proportion rooted, number of roots and longest root length. In a second experiment with cuttings, basal 1-cm stem fresh weight and concentrations of reducing sugar and starch in needles and basal stems were measured each day for the first 10 days of propagation. Carbohydrate measurements were also made for seedling stock plants as controls for the second experiment. Carbohydrate data for cuttings were primarily evaluated based on net (cutting minus seedling) concentrations, to correct for changes in cuttings not related to adventitious rooting. Increase of basal stem fresh weight and rooting of cuttings, based on all measured variables, occurred in the order: light + IBA > light > shade + IBA > shade. The best rooting required the greater irradiance. Compared to results from cuttings in the light, shading resulted in lesser accumulations of reducing sugars and starch in needles and basal stems. Reducing sugar: starch concentration ratios were significantly greater in shade- vs light-propagated cuttings, IBA treatment did not offset the effects of shade on rooting or on reducing sugar and starch concentrations or ratios. Overall, the results suggested that decreased reducing sugar and starch concentrations and/or their increased ratios are associated with shade-induced poor rooting of P. banksiana cuttings.  相似文献   

3.
BACKGROUND AND AIMS: The aim of this study was to determine the role of nitrogen- and storage-affected carbohydrate availability in rooting of pelargonium cuttings, focusing on the environmental conditions of stock plant cultivation at low latitudes, transport of cuttings, and rooting under the low light that prevails during the winter rooting period in Central European greenhouses. METHODS: Carbohydrate partitioning in high-light-adapted cuttings of the cultivar 'Isabell' was studied in relation to survival and adventitious root formation under low light. Effects of a graduated supply of mineral nitrogen to stock plants and of cutting storage were examined. KEY RESULTS: Nitrogen deficiency raised starch levels in excised cuttings, whereas the concentrations of glucose and total sugars in leaves and the basal stem were positively correlated with internal total nitrogen (Nt). Storage reduced starch to trace levels in all leaves, but sugar levels were only reduced in tissues of non-nitrogen deficient cuttings. Sugars accumulated in the leaf lamina of stored cuttings during the rooting period, whereas carbohydrates were simultaneously exhausted in all other cutting parts including the petioles, thereby promoting leaf senescence. The positive correlation between initial Nt and root number disappeared after storage. Irrespectively of storage, higher pre-rooting leaf glucose promoted subsequent sugar accumulation in the basal stem and final root number. The positive relationships between initial sugar levels in the stems with cutting survival and in leaves with root formation under low light were confirmed in a sample survey with 21 cultivars provided from different sources at low latitudes. CONCLUSIONS: The results indicate that adventitious rooting of pelargonium cuttings can be limited by the initial amount of nitrogen reserves. However, this relationship reveals only small plasticity and is superimposed by a predominant effect of carbohydrate availability that depends on the initial leaf sugar levels, when high-light adaptation and low current light conditions impair net carbon assimilation.  相似文献   

4.
This study investigated the relationship between internal nitrogenand carbohydrate distribution in chrysanthemum cuttings of twocultivars (‘Puma’, ‘Cassa’) when affectedby nitrogen supply to stock plants (0.6, 1.5, or 4.0 g N m-2week-1)and different periods (2, 3, or 4 weeks) of dark cold-storage(0.5 or 5°C), and adventitious rooting. Concentrations oftotal nitrogen (Nt) and nitrate in cuttings and the levels ofsugars, starch and fructan in different cutting parts (leaves,upper stem, and basal stem) were studied in relation to subsequentadventitious rooting at natural radiation in a greenhouse. Increasingnitrogen supply resulted in substantially lower starch levelsand higher sucrose concentrations in leaves when cuttings wereexcised. Fructan concentrations were low and decreased withincreasing nitrogen levels. Starch completely disappeared fromleaves and to a large extent from stems within the shorteststorage period. A less pronounced decrease in sugar concentrationwas observed, particularly in low-nitrogen cuttings and thecuttings of ‘Puma’. The number and length of adventitiousroots subsequently formed by unstored and stored cuttings waspositively correlated with initial Nt, and to a lesser extentwith initial nitrate concentrations in cuttings. Whereas rootingwas not limited by pre-rooting concentrations of carbohydratesin the different cutting parts, the generally higher rootingcapability of nitrogen-rich cuttings, a stronger nitrogen responseof ‘Cassa’, and increased rooting at a particularharvest date, were associated with higher sucrose:starch ratiosin leaves at harvest. This reflected an increased assimilateexport. By using this characteristic in a linear regressionmodel, total variability of root numbers, ranging from three–35per cutting, could be predicted to 57% for the unstored andto 40% for all cuttings. Increased basipetal transport of carbohydrates,of nitrogen compounds, and of auxins may be causally involvedin these associations. Copyright 2000 Annals of Botany Company Adventitious rooting, nitrogen, sugars, carbohydrates, source-sink, partitioning, quality, storage, cuttings, stock plants, chrysanthemum, Dendranthema grandiflorum  相似文献   

5.
树干环剥可以阻碍韧皮部光合产物的运输并进一步影响光合产物的分配。长时期内,环剥能够导致环痕上部可溶性糖和淀粉的积累,但对于短期内如何影响碳水化合物在木质部和韧皮部内的运输模式所知甚少。以38年生红松(Pinus koraiensis Sieb.etZucc.)为研究材料,分别对环剥上部、下部每隔1~2d采样,区分木质部和韧皮部(树皮)进行可溶性糖和淀粉含量及树干糖呼吸消耗速率测定,确定环剥后的日变化和周变化,并对木质部可溶性糖、淀粉含量与韧皮部中相应指标进行相关关系的回归分析。结果发现:(1)环剥后4周内,在环剥痕上、下部间木质部可溶性糖和淀粉含量,韧皮部中淀粉含量均不存在显著差异(p>0.05),而韧皮部内可溶性糖含量,环剥后第2周出现显著差异,从第4周出现环剥上部显著高于下部的碳水化合物积累现象(p<0.05);(2)环剥阻隔了韧皮部可溶性糖的纵向运输,但是并不影响木质部的纵向运输,而且环剥并没有影响木质部和韧皮部之间的糖和淀粉的相关关系;(3)环剥第1周内环剥上部和下部呼吸消耗速率差异不显著,第2周环剥上部显著高于环剥下部,从第3周开始环剥下部呼吸消耗速率显著下降。推断认为,在环剥处理的4周内,环剥上部冠层新形成的碳水化合物很大一部分均被呼吸消耗掉,导致环剥上部较环剥下部可溶性糖稍有增加;红松胸高直径以下部分所储藏的碳水化合物足以保障2周内红松树干呼吸。  相似文献   

6.
The transport of 14C-indole-3-acetic acid in branch terminals and stems of rooted cuttings of Pseudotsuga menziesii (Mirb.) Franco was studied to determine if the plagiotropic growth of cuttings might result from an accumulation of basipetally transported auxin in the morphologically upper side of cuttings stems. Twenty-four h after application of 10 μl of 14C-IAA solution to the cut surface of decapitated, rooted cuttings, nearly twice as much activity was detected in extracts of tissue from the morphologically upper than from the lower halves of the stems. A similar distribution of activity was observed in horizontal branch terminals and in branch terminals which had been tied vertically for 2 weeks. The magnitude of the difference in activity between the 2 sides of the stem was greater in the horizontal than in the vertical branches.
There was no significant difference in transport through the upper and lower sides of excised stem segments from cuttings or branch terminals. In segments from rooted cutting stems, however, significantly more radioactivity from 14C-IAA donor blocks was detected in the lower than in the upper halves of segments.  相似文献   

7.
Two-leaf, two-node cuttings were taken fromEucalyptus grandis stockplants grown under different light qualities (red to far-red ratios of 0.4, 0.7, 1.3, 3.5 and 6.5) at a constant photon flux density (200 μmol m-2 s-1). Two experiments tested effects of pre-severance light quality on cutting morphology, post-severance gas exchange, carbohydrate status and rooting of cuttings. The best rooting percentage was achieved by cuttings with longer stems and greater stem volume from stockplants grown at lower red to far-red (R∶FR) ratios. Generally, rooting success was associated with low pre-severance starch and water-soluble sugar concentrations, and a greater total water-soluble carbohydrate (TWSC) content per cutting. Rooting was associated with well maintained stem starch and an increase in stem TWSC during the propagation period. Gas exchange of cuttings was measured between 28 and 33 days after severance. Rooting percentages at 35 days after severance were positively and linearly related to net photosynthetic rate and stomatal conductance. In unrooted cuttings there was a net release of CO2 which increased significantly with an increase in pre-severance R∶FR ratio. These results demonstrate that stockplant environment may significantly modify the morphology and physiology of subsequent cuttings, and that cutting morphology, and stored and current photosynthates have a significant influence on rooting. ITE is a component of the Edinburgh Centre for Tropical Forestry  相似文献   

8.
以长白山林线树种岳桦为对象,利用生长控制试验进行干旱处理,研究干旱对岳桦幼苗光合特性及非结构性碳水化合物(NSC)积累的影响。结果表明:干旱显著降低了岳桦幼苗的净光合速率和气孔导度,提高了其水分利用效率;干旱显著增加了岳桦幼苗叶、皮、干和根中的可溶性糖和总NSC的含量,但显著降低了淀粉含量;随着干旱的持续,叶片的气孔导度、光合速率和瞬时水分利用效率迅速降低,而可溶性糖、淀粉和NSC则是先增后减;在试验末期,叶片90%发黄,岳桦幼苗干、皮和根中可溶性糖与淀粉含量的比值均显著高于对照。这表明岳桦在受到干旱胁迫时,迅速降低气孔导度以减少水分散失,提高水分利用效率,它属于避旱型植物;岳桦通过优先储存策略来提高组织器官中可溶性糖含量、增加淀粉与糖之间的转化率来应对水分亏缺的不利环境;在遭受持续干旱,幼苗面临死亡的时候,干旱胁迫可能超过了植物自我调节的阈值,但此时其组织器官中NSC含量并未降低,这说明岳桦最终的死亡可能不是碳饥饿导致的。  相似文献   

9.
王凯  沈潮  曹鹏  宋立宁  于国庆 《生态学杂志》2018,29(11):3513-3520
以2年生沙地樟子松幼苗为对象,通过持续自然干旱处理,研究当土壤含水量下降到田间持水量的60%、40%、30%、20%和15%时幼苗叶片水势及不同器官(一年生叶、当年生叶、茎、粗根和细根)的可溶性糖、淀粉和非结构性碳水化合物(NSC)的含量,分析沙地樟子松幼苗在干旱致死过程中各器官NSC的分配规律及其适应机制.结果表明: 土壤含水量从田间持水量的40%下降到15%,幼苗叶片凌晨及正午水势无显著变化.当土壤含水量从田间持水量的60%下降到30%,各器官可溶性糖、淀粉、NSC含量和可溶性糖/淀粉先下降后上升.从30%下降到20%,当年生叶、一年生叶、茎和细根可溶性糖、淀粉和NSC含量降低,而粗根可溶性糖含量增加,淀粉和NSC含量减少.从20%下降到15%,当年生叶、一年生叶和茎可溶性糖、淀粉和NSC含量降低,粗根可溶性糖和NSC含量下降,淀粉含量上升,细根可溶性糖含量减少,淀粉和NSC含量增加.沙地樟子松幼苗通过不断调整各器官NSC及其组分含量变化以适应不同干旱环境,土壤含水量下降到田间持水量的30%后,幼苗可溶性糖和NSC含量总体呈下降趋势,淀粉在粗根和细根中积累,幼苗可能因碳耗竭而死亡.  相似文献   

10.
以濒危植物七子花二年生幼苗为研究材料,采用盆栽试验方法,研究干旱胁迫和接种丛枝菌根真菌(AMF)处理对幼苗不同器官C、N、P化学计量关系和非结构性碳水化合物(NSC)含量的影响。试验共设计4个处理:对照(CK)、干旱胁迫(D)、接种AMF(AMF)、干旱胁迫和接种AMF(D+AMF)。结果表明: 在干旱胁迫下七子花根系AMF的侵染率显著下降,但接种AMF处理植株的株高、叶片数显著高于未接种处理。接种AMF显著提高了干旱胁迫下植株根、叶可溶性糖和NSC含量及茎、叶淀粉含量,且茎和叶可溶性糖与淀粉比显著下降。干旱胁迫导致植株C含量在根和叶中显著增加,P含量在茎中显著减少;与干旱胁迫相比,胁迫下接种AMF植株根、茎、叶P含量及叶C含量显著提高,而根C、N含量及茎C含量显著降低。胁迫下接种AMF植株根、茎C∶N、C∶P、N∶P和叶N∶P均显著低于单一胁迫处理。NSC与C∶N∶P计量比的相关性分析表明,根、叶P含量与可溶性糖和NSC含量呈显著正相关,茎P含量与淀粉和NSC含量呈显著正相关,各器官N∶P与NSC含量呈显著负相关。综上,干旱胁迫显著抑制了七子花幼苗的生长,接种AMF通过提高植株根和叶的可溶性糖含量、根的可溶性糖/淀粉,增加地上部分淀粉含量,促进P元素吸收和降低各器官N∶P来增强植株耐旱性,从而提高七子花幼苗在干旱环境中的存活率。  相似文献   

11.
The changes in sugars (water-soluble carbohydrates) were studied in the developing grain of rice (Oryza sativa L., variety IR28 and IR29) in relation to the role of these sugars as precursors of ADP glucose in starch accumulation. The levels of total sugars, total reducing sugars and free glucose, sucrose and other nonreducing sugars, maltooligosaccharides, and total and nonsucrosyl fructose followed closely the changes in the rate of starch accumulation, in both IR28 and 29; the peak value occurred 9 days after flowering. The level of soluble carbohydrates remained high in the caryopsis and also in milled rice after starch accumulation, suggesting that the supply of sugar precursors does not limit starch accumulation in the rice grain. Because of a higher level of reducing sugars, the level of free sugars in the grain of waxy rice IR29 was higher than that of nonwaxy IR28.  相似文献   

12.

1. 1. Reduced carbohydrate reserves have been suggested as a factor in the decline of bald cypress in swamp areas impacted by thermal effluents.

2. 2. Morphological characteristics and root carbohydrate concentrations were examined for bald cypress seedlings subjected to three temperature regimes (ambient, mid, and high) and three water levels (drained, saturated and flooded).

3. 3. Although few differences in total root carbohydrate concentrations existed after 3 weeks, the proportion of starch to sugar decreased with increasing temperature treatment.

4. 4. After senescence, mid saturated seedlings had the greatest aboveground and belowground biomass, whereas high flooded seedlings had the lowest concentration of root carbohydrates.

Author Keywords: Bald cypress; temperature; thermal; water level; flooding; carbohydrates; sugar; starch; growth; morphology  相似文献   


13.

Background and Aims

To understand whether root responses to aerial rhythmic growth and contrasted defoliation treatments can be interpreted under the common frame of carbohydrate availability; root growth was studied in parallel with carbohydrate concentrations in different parts of the root system on oak tree seedlings.

Methods

Quercus pubescens seedlings were submitted to selective defoliation (removal of mature leaves, cotyledons or young developing leaves) at appearance of the second flush and collected 1, 5 or 10 d later for morphological and biochemical measurements. Soluble sugar and starch concentrations were measured in cotyledons and apical and basal root parts.

Key Results

Soluble sugar concentration in the root apices diminished during the expansion of the second aerial flush and increased after the end of aerial growth in control seedlings. Starch concentration in cotyledons regularly decreased. Continuous removal of young leaves did not alter either root growth or apical sugar concentration. Starch storage in basal root segments was increased. After removal of mature leaves (and cotyledons), root growth strongly decreased. Soluble sugar concentration in the root apices drastically decreased and starch reserves in the root basal segments were emptied 5 d after defoliation, illustrating a considerable shortage in carbohydrates. Soluble sugar concentrations recovered 10 d after defoliation, after the end of aerial growth, suggesting a recirculation of sugar. No supplementary recourse to starch in cotyledons was observed.

Conclusions

The parallel between apical sugar concentration and root growth patterns, and the correlations between hexose concentration in root apices and their growth rate, support the hypothesis that the response of root growth to aerial periodic growth and defoliation treatments is largely controlled by carbohydrate availability.  相似文献   

14.
以一年生蒙古莸幼苗为对象,设置适宜水分、慢速干旱致死和快速干旱致死3个处理,研究不同干旱强度致死下蒙古莸幼苗各器官中非结构性碳水化合物(NSC,包括可溶性糖和淀粉)的含量变化及其分配规律.结果表明:慢速干旱致死胁迫下各器官可溶性糖含量与适宜水分组无显著差异.随时间的推移,茎可溶性糖含量先增加后减少,淀粉和NSC含量增加;粗根可溶性糖含量减少,淀粉和NSC含量增加;叶可溶性糖含量增加,淀粉和NSC含量减少.致死时(80 d),叶、茎、粗根和细根的NSC含量分别为6.2%、7.8%、8.3%和7.4%.快速干旱致死胁迫下,各器官可溶性糖含量均高于适宜水分处理组,而淀粉和NSC含量均低于适宜水分组.随时间的推移,根可溶性糖含量下降,淀粉和NSC含量上升;茎可溶性糖、淀粉和NSC含量均上升;叶可溶性糖含量上升,淀粉和NSC含量下降.致死时(30 d),叶、茎、粗根和细根的NSC含量分别为5.9%、6.6%、8.9%和7.7%.应对不同的干旱致死情况,蒙古莸幼苗各器官间非结构性碳水化合物呈现出不同的动态变化.在慢速干旱致死胁迫下,NSC优先为维持各器官生理代谢活动提供能量;而在快速干旱致死下,NSC主要以可溶性糖形式维持植物代谢,调节渗透势,促进吸水,应对急剧的干旱胁迫.  相似文献   

15.
The effect of the bacterium Azospirillum brasilense jointly immobilized with Chlorella vulgaris or C. sorokiniana in alginate beads on total carbohydrates and starch was studied under dark and heterotrophic conditions for 144h in synthetic growth medium supplemented with either d-glucose or Na-acetate as carbon sources. In all treatments, enhanced total carbohydrates and starch content per culture and per cell was obtained after 24h; only jointly immobilized C. vulgaris growing on d-glucose significantly increased total carbohydrates and starch content after 96h. Enhanced accumulation of carbohydrate and starch under jointly immobilized conditions was variable with time of sampling and substrate used. Similar results occurred when the microalgae was immobilized alone. In both microalgae growing on either carbon sources, the bacterium promoted accumulation of carbohydrates and starch; when the microalgae were immobilized alone, they used the carbon sources for cell multiplication. In jointly immobilized conditions with Chlorella spp., affinity to carbon source and volumetric productivity and yield were higher than when Chlorella spp. were immobilized alone; however, the growth rate was higher in microalgae immobilized alone. This study demonstrates that under heterotrophic conditions, A. brasilense promotes the accumulation of carbohydrates in two strains Chlorella spp. under certain time-substrate combinations, producing mainly starch. As such, this bacterium is a biological factor that can change the composition of compounds in microalgae in dark, heterotrophic conditions.  相似文献   

16.
The rooting of vegetatively propagated leafy cuttings involvesthe complex interaction of many processes. For this reason,the influence of carbohydrate status, nutrition, water and hormonalfactors on root formation is poorly understood at a mechanisticlevel. We present a mechanistic model of the growth of pre-formedroot initials on a cutting consisting of leaf, internode androots. The processes represented are leaf photosynthesis, starchmobilization, sugar transport, and sugar utilization for rootgrowth. The model provides a quantitative scheme for understandinghow root development depends on properties of cuttings suchas leaf area, internode length and initial carbohydrate content.The potential of the model to interpret rooting experimentson a whole-cutting basis is illustrated using published datafor cuttings of Triplochiton scleroxylon (a West African hardwood)with different leaf areas. Observed rooting times are reproducedin the model by varying the leaf photosynthetic rate per unitarea. The simulated starch and sugar dynamics during root growthare in qualitative agreement with observations. A sensitivityanalysis is performed to examine the effect of key parameterson the timing or success of rooting. The model provides a frameworkfor examining the role of other factors known to affect rooting,such as nutrient and water status, but requires further parameterisationbefore it can be used as a predictive tool in vegetative propagation. Model, carbohydrates, rooting, vegetative propagation  相似文献   

17.
为了解林下红松幼苗生长和养分存储季节动态,以长白山原始阔叶红松林(原始林)和次生杨桦林(次生林)林下2年生红松幼苗为对象,研究林下光合有效辐射(PAR)、幼苗生物量、非结构性碳水化合物(NSC)、全氮(N)和全磷(P)等指标的季节变化,分析两林分林下光照的季节动态及其差异对红松幼苗生长和养分积累的影响。结果表明: 原始林和次生林林下月PAR累积量季节变化都呈“双峰”型,夏季为郁闭期,两林分林下光线弱。春季和秋季为阔叶树无叶期,林下光照条件变好,且次生林林下光照明显好于原始林;原始林和次生林红松幼苗的生物量、NSC、全N和全P浓度的季节动态与林下光照的季节变化基本一致,在春季和秋季表现为显著增加,在夏季呈下降趋势。春季幼苗的淀粉浓度增加,夏季淀粉和可溶性糖浓度均逐渐降低,到8月达到最低值,秋季可溶性糖浓度显著升高。春季和秋季次生林林下幼苗的生物量和NSC浓度整体上均显著高于原始林,而夏季两林分差异不显著。因此,春季和秋季的林下光照条件差异是影响原始林和次生林中红松幼苗养分积累和生长更新差异的主要原因。  相似文献   

18.
While both the total sugar content and cold hardiness greatly increased during artificial cold acclimation, no direct parallelism was demonstrated. In fact, plants hardened in the dark exhibited an increase in hardiness during the period when the total sugar content declined, furthermore, while there was evidence for an accumulation of sugars (especially sucrose) incorporation of 14C indicated that all of the isolated fractions were in a dynamic state. Dehardening, paralleled by a large increase in the starch content, was more rapid in the light than in the dark. Furthermore, in stems the sugar content increased after 3 days of dehardening but declined after 7 days. This increase may represent the release of sugars from a previously unextractable form such as a glycoprotein complex. Starvation experiments indicate that photosynthates produced during the cold acclimation period are preferentially used during cold acclimation rather than reserve carbohydrates. This was also indicated by the smaller amount of starch hydrolysis in plants hardened in the light. Thus, while there appears to be a role for carbohydrates in the cold acclimation process, the lack of parallelism between sugar content and hardiness may be interpreted as indicating 1) cold acclimation is not merely an accumulation of sugars or an osmotic effect per se, and 2) under normal conditions, the level of carbohydrates is not limiting the rate or degree of cold acclimation.  相似文献   

19.
We studied the NaCl-induced changes in cotyledons and the embryonic axis of establishing dwarf cashew (Anacardium occidentale) seedlings. The salt stress reduced the growth of dwarf cashew seedlings, and this response was related to the inhibition of cotyledonary reserve depletion. Lipid mobilization was inhibited by NaCl due to reduced lipase activity in the emerging and establishing seedlings. Additionally, there was reduced transient starch accumulation in the cotyledons of the salt-stressed seedlings that was associated with lower starch synthase activity at the early developmental stages and inhibited amylolytic and starch phosphorylase activities at the established seedling stage. The NaCl-induced changes in lipid and starch metabolism influenced the soluble sugar content in the cotyledons. Protein mobilization was inhibited by NaCl, and we observed the accumulation of amino acids and the inhibition of proteolytic activity in the cotyledons of the salt-stressed established seedlings. Salinity significantly reduced the free amino acid and reducing sugar contents in the embryonic axes of both emerged and established seedlings, whereas the non-reducing sugar content was affected by this stress only in the established seedlings. The Na+ and Cl? contents progressively increased in the cotyledons and embryonic axis of the seedlings as the salinity increased. We conclude that salt stress inhibits dwarf cashew seedling establishment by inhibiting the mobilization of reserves, an inhibition that was related to increased Na+ and Cl? accumulation in the cotyledons. Additionally, these toxic ions reduced the sink strength of the embryonic axis with regard to the products of cotyledonary reserve mobilization.  相似文献   

20.
An understanding of the proportion of true seedlings, seedling sprouts and root suckers in the forest is essential for directing the genetic composition of the future crop. We conducted a study to determine the difference between these plantlets of Detarium microcarpum based on morphological characters and carbohydrate contents in leaves and roots. For individuals ≤50 cm in height, root suckers had the highest values for height, stem length, internode number, root diameter, rachis length and leaflet number. The concentrations of starch and total nonstructural carbohydrates in the roots of seedling sprouts were superior. Plantlets did not differ in the concentration of leaf carbohydrates. For individuals >50 cm in height, root suckers had larger values for stem length, root diameter, leaflet length and width. Roots of seedling sprouts showed higher concentrations of soluble sugars and total soluble sugars. True seedlings were distinguished from seedling sprouts and root suckers using all morphological traits except collar diameter and leaflet number. Root suckers and seedling sprouts showed a closer morphological resemblance; thus resulted in slightly more than 50% discrimination success. In conclusion, discrimination between seedling sprouts and root suckers appeared to be more difficult than between true seedlings and clonal plantlets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号