首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
环境污染物对水生生物产生氧化压力的分子生物标志物   总被引:12,自引:0,他引:12  
王丽平  郑丙辉  孟伟 《生态学报》2007,27(1):380-388
为了能够建立一种简单、快速、准确的环境污染监测预警体系,人们进行了广泛的研究,其中有关环境污染物对分子生物标志物的影响已成为研究热点。生物体内的氧自由基和其它活性氧分子(ROS)对组织和细胞成分造成的伤害,称之为氧化压力,环境中的有毒物质能够对生物体产生不同程度的氧化压力。生物体内的强氧化剂或体外因素(如环境污染物)引起的强氧化物与抗氧化防御系统之间的平衡能够用于评估环境压力对生物体产生影响的程度,尤其适合于评估不同种化学物质引起氧化损伤的程度。这些抗氧化防御系统及其对氧化压力的敏感性在环境毒物学研究中占有非常重要的地位,大量研究结果表明:过渡金属、多环芳烃、有机氯和有机磷农药、多氯联苯、二氧芑和其它异型物质都能够对生物体产生氧化压力。这些有毒物质能够引起各种有害影响,如对膜脂、DNA和蛋白产生损伤;改变抗氧化酶的活性等。总结了这种氧化压力的研究进展情况,并讨论了这些分子生物标志物在水生生物中的应用。  相似文献   

2.
Numerous factors influence male fertility. Among these factors is oxidative stress (OS), which has elicited an enormous interest in researchers in recent period. Reactive oxygen species (ROS) are continuously produced by various metabolic and physiologic processes. OS occurs when the delicate balance between the production of ROS and the inherent antioxidant capacity of the organism is distorted. Spermatozoa are particularly sensitive to ROS as their plasma membrane contains polyunsaturated fatty acids (PUFA), which oxidizes easily. They also lack cytoplasm to generate a robust preventive and repair mechanism against ROS. The transition metal ions that are found in the body have a catalytic effect in the generation of ROS. Lifestyle behaviours such as smoking and alcohol use and environmental pollution further enhance the generation of ROS and thus, cause destructive effects on various cellular organelles like mitochondria, sperm DNA etc. This article analyzes the detrimental effects of OS on male fertility, measurement of OS and effective ways to decrease or eliminate them completely. We have also provided information on oxidative stress in other systems of the body, which may be applied to future research in the field of reproductive biology.  相似文献   

3.
Normal growth and development of plants is greatly dependent on the capacity to overcome environmental stresses. Environmental stress conditions like high salinity, drought, high incident light and low or high temperature cause major crop losses worldwide. A common denominator in all these adverse conditions is the production of reactive oxygen species (ROS) within different cellular compartments of the plant cell. Plants have developed robust mechanisms including enzymatic or nonenzymatic scavenging pathways to counter the deleterious effects of ROS production. There are a number of general reviews on oxidative stress in plants and few on the role of ROS scavengers during stress conditions. Here we review the regulation of antioxidant enzymes during salt stress in halophytes, especially mangroves. We conclude that (i) antioxidant enzymes protect halophytes from deleterious ROS production during salt stress, and (ii) genetic information from mangroves and other halophytes would be helpful in defining the roles of individual isoforms. This information would be critical in using the appropriate genes for oxidative stress defence for genetic engineering of enhanced stress tolerance in crop systems.  相似文献   

4.
Reactive oxygen species (ROS) are generated as by-products of aerobic respiration and metabolism. Mammalian cells have evolved a variety of enzymatic mechanisms to control ROS production, one of the central elements in signal transduction pathways involved in cell proliferation, differentiation and apoptosis. Antioxidants also ensure defenses against ROS-induced damage to lipids, proteins and DNA. ROS and antioxidants have been implicated in the regulation of reproductive processes in both animal and human, such as cyclic luteal and endometrial changes, follicular development, ovulation, fertilization, embryogenesis, embryonic implantation, and placental differentiation and growth. In contrast, imbalances between ROS production and antioxidant systems induce oxidative stress that negatively impacts reproductive processes. High levels of ROS during embryonic, fetal and placental development are a feature of pregnancy. Consequently, oxidative stress has emerged as a likely promoter of several pregnancy-related disorders, such as spontaneous abortions, embryopathies, preeclampsia, fetal growth restriction, preterm labor and low birth weight. Nutritional and environmental factors may contribute to such adverse pregnancy outcomes and increase the susceptibility of offspring to disease. This occurs, at least in part, via impairment of the antioxidant defense systems and enhancement of ROS generation which alters cellular signalling and/or damage cellular macromolecules. The links between oxidative stress, the female reproductive system and development of adverse pregnancy outcomes, constitute important issues in human and animal reproductive medicine. This review summarizes the role of ROS in female reproductive processes and the state of knowledge on the association between ROS, oxidative stress, antioxidants and pregnancy outcomes in different mammalian species.  相似文献   

5.
Michela Gambino 《Biofouling》2016,32(2):167-178
Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. Facing harsh environmental conditions, microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. While high levels of oxidative stress are toxic, low levels act as a cue, triggering bacteria to activate effective scavenging mechanisms or to shift metabolic pathways. Although a complex and fragmentary picture results from current knowledge of the pathways activated in response to oxidative stress, three main responses are shown to be central: the existence of common regulators, the production of extracellular polymeric substances, and biofilm heterogeneity. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration.  相似文献   

6.
Generation of reactive oxygen species (ROS) is a normal process in the life of aerobic organisms. Under physiological conditions, these deleterious species are mostly removed by the cellular antioxidant systems, which include antioxidant vitamins, protein and non-protein thiols, and antioxidant enzymes. Since the antioxidant reserve capacity in most tissues is rather marginal, strenuous physical exercise characterized by a remarkable increase in oxygen consumption with concomitant production of ROS presents a challenge to the antioxidant systems.An acute bout of exercise at sufficient intensity has been shown to stimulate activities of antioxidant enzymes. This could be considered as a defensive mechanism of the cell under oxidative stress. However, prolonged heavy exercise may cause a transient reduction of tissue vitamin E content and a change of glutathione redox status in various body tissues. Deficiency of antioxidant nutrients appears to hamper antioxidant systems and augment exercise-induced oxidative stress and tissue damage. Chronic exercise training seems to induce activities of antioxidant enzymes and perhaps stimulate GSH levels in body fluids. Recent research suggest that supplementation of certain antioxidant nutrients are necessary for physically active individuals.  相似文献   

7.
In this review, recent developments in monitoring toxicological responses in estuarine animals are analyzed, considering the biomarker responses to different classes of pollutants. The estuarine environment imposes stressful conditions to the organisms that inhabit it, and this situation can alter their sensitivity to many pollutants. The specificity of some biomarkers like metallothionein tissue concentration is discussed in virtue of its dependence on salinity, which is highly variable in estuaries. Examples of cholinesterase activity measurements are also provided and criteria to select sensitive enzymes to detect pesticides and toxins are discussed. Regarding non-specific biomarkers, toxic responses in terms of antioxidant defenses and/or oxidative damage are also considered in this review, focusing on invertebrate species. In addition, the presence of an antioxidant gradient along the body of the estuarine polychaete Laeonereis acuta (Nereididae) and its relationship to different strategies, which deal with the generation of oxidative stress, is reviewed. Also, unusual antioxidant defenses against environmental pro-oxidants are discussed, including the mucus secreted by L. acuta. Disruption of osmoregulation by pollutants is of paramount importance in several estuarine species. In some cases such as in the estuarine crab Chasmagnathus granulatus, there is a trade off between bioavailability of toxicants (e.g. metals) and their interaction with key enzymes such as Na(+)-K(+)-ATPase and carbonic anhydrase. Thus, the metal effect on osmoregulation is also discussed in the present review. Finally, field case studies with fish species like the croaker Micropogonias furnieri (Scianidae) are used to illustrate the application of DNA damage and immunosuppressive responses as potential biomarkers of complex mixture of pollutants.  相似文献   

8.
9.
Reactive oxygen species (ROS) are known to be mediators of intracellular signaling pathways. However the excessive production of ROS may be detrimental to the cell as a result of the increased oxidative stress and loss of cell function. Hence, well tuned, balanced and responsive antioxidant systems are vital for proper regulation of the redox status of the cell. The cells are normally able to defend themselves against the oxidative stress induced damage through the use of several antioxidant systems. Even though the free radical scavenging enzymes such as superoxide dismutase (SOD) and catalase can handle huge amounts of reactive oxygen species, should these systems fail some reactive molecules will evade the detoxification process and damage potential targets. In such a scenario, cells recruit certain small molecules and proteins as 'rescue specialists' in case the 'bodyguards' fail to protect potential targets from oxidative damage. The thioredoxin (Trx) system thus plays a vital role in the maintenance of a reduced intracellular redox state which is essential for the proper functioning of each individual cell. Trx alterations have been implicated in many diseases such as cataract formation, ischemic heart diseases, cancers, AIDS, complications of diabetes, hypertension etc. The interactions of Trx with many different proteins and different metabolic and signaling pathways as well as the significant species differences make it an attractive target for therapeutic intervention in many fields of medical science. In this review, we present, the critical roles that thioredoxins play in limiting oxidant stress through either its direct effect as an antioxidant or through its interactions with other key signaling proteins (thioredoxin interacting proteins) and its implications in various disease models.  相似文献   

10.
Reactive oxygen species (ROS) encompass a variety of diverse chemical species including superoxide anions, hydrogen peroxide, hydroxyl radicals and peroxynitrite, which are mainly produced via mitochondrial oxidative metabolism, enzymatic reactions, and light-initiated lipid peroxidation. Over-production of ROS and/or decrease in the antioxidant capacity cause cells to undergo oxidative stress that damages cellular macromolecules such as proteins, lipids, and DNA. Oxidative stress is associated with ageing and the development of age-related diseases such as cancer and age-related macular degeneration. ROS activate signaling pathways that promote cell survival or lead to cell death, depending on the source and site of ROS production, the specific ROS generated, the concentration and kinetics of ROS generation, and the cell types being challenged. However, how the nature and compartmentalization of ROS contribute to the pathogenesis of individual diseases is poorly understood. Consequently, it is crucial to gain a comprehensive understanding of the molecular bases of cell oxidative stress signaling, which will then provide novel therapeutic opportunities to interfere with disease progression via targeting specific signaling pathways. Currently, Dr. Qin's work is focused on inflammatory and oxidative stress responses using the retinal pigment epithelial (RPE) cells as a model. The study of RPE cell inflammatory and oxidative stress responses has successfully led to a better understanding of RPE cell biology and identification of potential therapeutic targets.  相似文献   

11.
Abstract

Reactive oxygen species (ROS, partially reduced or activated derivatives of oxygen), are highly reactive and toxic and can lead to oxidative destruction of the cell. ROS production increases when plants are exposed to different kinds of stresses. The chief toxic effect of O2 ? and H2O2 resides in their ability to initiate cascade reactions that result in the production of the hydroxyl radical and other destructive species such as lipid peroxides. These dangerous cascades are prevented by efficient operation of the cell's antioxidant defenses. However, in addition to their role as toxic byproducts of aerobic metabolism, recently, a new role for ROS has been identified, i.e. the control and regulation of biological processes, such as growth, cell cycle, programmed cell death, hormone signaling, biotic and abiotic stress responses, and development. This review discusses the biochemical properties and sources and sites of ROS production, ROS-scavenging systems, and the role of ROS as signaling molecules.  相似文献   

12.
Oxidative stress can take place in marine bivalves under a series of environmental adverse conditions. The study of different systems related to oxidative stress in these organisms can give important information about their physiological status and also about environmental health. Bivalves have been proposed as good sentinel organisms in pollution monitoring studies through the analysis of biochemical biomarkers, and most of the biomarkers analyzed are those related to oxidative stress. However, it is very important to know how other environmental factors not associated to the presence of pollutants might affect these parameters. We have studied a series of mechanisms related to oxidative stress in mussels which inhabit the Brazilian coast, especially in Perna perna species, subjected to different stress conditions, such as the exposure to different contaminants in the laboratory and in the field, the exposure of mussels to air and re-submersion, simulating the tidal oscillations, and in mussels collected at different seasons. Both oxidative damage levels and antioxidant defense systems were strongly affected by the different environmental stress. This review summarizes the data obtained in some studies carried out in bivalves from the Brazilian coast.  相似文献   

13.
14.
Oxidative stress can take place in marine bivalves under a series of environmental adverse conditions. The study of different systems related to oxidative stress in these organisms can give important information about their physiological status and also about environmental health. Bivalves have been proposed as good sentinel organisms in pollution monitoring studies through the analysis of biochemical biomarkers, and most of the biomarkers analyzed are those related to oxidative stress. However, it is very important to know how other environmental factors not associated to the presence of pollutants might affect these parameters. We have studied a series of mechanisms related to oxidative stress in mussels which inhabit the Brazilian coast, especially in Perna perna species, subjected to different stress conditions, such as the exposure to different contaminants in the laboratory and in the field, the exposure of mussels to air and re-submersion, simulating the tidal oscillations, and in mussels collected at different seasons. Both oxidative damage levels and antioxidant defense systems were strongly affected by the different environmental stress. This review summarizes the data obtained in some studies carried out in bivalves from the Brazilian coast.  相似文献   

15.
Park JG  Oh GT 《BMB reports》2011,44(8):497-505
Reactive oxygen species (ROS), which include superoxide anions and peroxides, induce oxidative stress, contributing to the initiation and progression of cardiovascular diseases involving atherosclerosis. The endogenous and exogenous factors hypercholesterolemia, hyperglycemia, hypertension, and shear stress induce various enzyme systems such as nicotinamide adenine dinucleotide (phosphate) oxidase, xanthine oxidase, and lipoxygenase in vascular and immune cells, which generate ROS. Besides inducing oxidative stress, ROS mediate signaling pathways involved in monocyte adhesion and infiltration, platelet activation, and smooth muscle cell migration. A number of antioxidant enzymes (e.g., superoxide dismutases, catalase, glutathione peroxidases, and peroxiredoxins) regulate ROS in vascular and immune cells. Atherosclerosis results from a local imbalance between ROS production and these antioxidant enzymes. In this review, we will discuss 1) oxidative stress and atherosclerosis, 2) ROS-dependent atherogenic signaling in endothelial cells, macrophages, and vascular smooth muscle cells, 3) roles of peroxidases in atherosclerosis, and 4) antioxidant drugs and therapeutic perspectives.  相似文献   

16.
《Process Biochemistry》2014,49(4):589-598
Microorganisms are essential for maintaining ecosystem balance, and understanding their response to toxic pollutants is important in assessing the potential environmental impacts of such releases. In this study, the response to the heavy metal cadmium and the potential defense or adaptive mechanisms of the widely used white-rot fungus, Phanerochaete chrysosporium, were investigated. The results indicated that cadmium causes plasma membrane damage, including rigidification of lipids, a decrease in H+-ATPase activity, and lipid peroxidation. The cellular death may be mediated by oxidative stress with mitochondria membrane potential (MMP) breakdown and reactive oxygen species (ROS) formation. Parts of the cells were able to survive by activating antioxidant defense systems (antioxidant agents and enzymes). Extracellular synthesis of cadmium crystal particles was observed after exposure to dissolved cadmium ion, which is probably another detoxification mechanism in which the dissolved metal is precipitated, thus reducing its bioavailability and toxicity. These physiological responses of P. chrysosporium to cadmium together with the defense mechanisms can provide useful information for the development of fungal-based technologies to reduce the toxic effects of cadmium.  相似文献   

17.
Reactive oxygen species (ROS) generated by mitochondrial respiration and other processes are often viewed as hazardous substances. Indeed, oxidative stress, defined as an imbalance between oxidant production and antioxidant protection, has been linked to several neurological disorders, including cerebral ischemia-reperfusion and Parkinson's disease. Consequently, cells and organisms have evolved specialized antioxidant defenses to balance ROS production and prevent oxidative damage. Research in our laboratory has shown that neuronal levels of ascorbate, a low molecular weight antioxidant, are ten-fold higher than those in much less metabolically active glial cells. Ascorbate levels are also selectively elevated in the CNS of anoxia-tolerant reptiles compared to mammals; moreover, plasma and CSF ascorbate concentrations increase markedly in cold-adapted turtles and in hibernating squirrels. Levels of the related antioxidant, glutathione, vary much less between neurons and glia or among species. An added dimension to the role of the antioxidant network comes from recent evidence that ROS can act as neuromodulators. One example is modulation of dopamine release by endogenous hydrogen peroxide, which we describe here for several mammalian species. Together, these data indicate adaptations that prevent oxidative stress and suggest a particularly important role for ascorbate. Moreover, they show that the antioxidant network must be balanced precisely to provide functional levels of ROS, as well as neuroprotection.  相似文献   

18.
The antioxidant defences in aerobic organisms represent the detoxification pathway against toxicity of reactive oxygen species (ROS). These highly reactive molecules are normally produced during the 4-electrons reduction of molecular oxygen to water coupled with oxidative phosphorylation, and during the activity of several enzymatic systems which produce ROS as intermediates. However, the endogenous generation of oxyradicals may be influenced by different environmental and biological factors, and the basal efficiency of antioxidant systems generally reflects the normal prooxidant pressure to which organisms are exposed. If the antioxidant capacity is exceeded (i.e. as a consequence of enhanced intracellular formation of ROS), a pathological condition, generally termed oxidative stress, may arise. In this preliminary work, susceptibility to oxidative stress has been compared in plasma of Adélie penguin (Pygoscelis adeliae), emperor penguin (Aptenodytes forsteri), south polar skua (Catharacta maccormicki) and snow petrel (Pagodroma nivea). Within the framework of the Italian Research Program in Antarctica, blood samples were collected during the austral summer 1998-1999 and the Total Oxyradical Scavenging Capacity (TOSC) analysed. The TOSC assay, measuring the capability of biological samples to neutralise different oxyradicals, has been recently standardised to provide a quantifiable value of biological resistance to toxicity of ROS. Penguins exhibited higher scavenging capacity towards peroxyl radicals than south polar skua and snow petrel. The greater resistance to toxicity of oxyradicals might suggest that penguins are naturally exposed to a higher basal prooxidant pressure in comparison to other analysed Antarctic birds.  相似文献   

19.
Currently, food security depends on the increased production of cereals such as wheat (Triticum aestivum L.), which is an important source of calories and protein for humans. However, cells of the crop have suffered from the accumulation of reactive oxygen species (ROS), which can cause severe oxidative damage to the plants, due to environmental stresses. ROS are toxic molecules found in various subcellular compartments. The equilibrium between the production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants. In the present review, we offer a brief summary of antioxidant defense and hydrogen peroxide (H2O2) signaling in wheat plants. Wheat plants increase antioxidant defense mechanisms under abiotic stresses, such as drought, cold, heat, salinity and UV-B radiation, to alleviate oxidative damage. Moreover, H2O2 signaling is an important factor contributing to stress tolerance in cereals.  相似文献   

20.
Reactive oxygen species (ROS) are continuously produced in several organelles during aerobic metabolism. Furthermore, a wide range of environmental stresses such as chilling, salinity, drought and high light, lead to an elevated production of ROS. ROS can react with biomolecules and cause oxidative damage and even necrosis. Antioxidants and antioxidant-enzymes function to interrupt the cascades of uncontrolled oxidation. On the other hand, ROS influence the expression of genes playing a central role in many signaling pathways. Tools like the exogenous application of oxidative stress-causing agents and the in planta production of ROS in mutants altered in ROS metabolism are increasingly used to assess specific and common responses toward different types of ROS signals. The major challenge is the identification of ROS sensors and signaling components to finally elucidate the molecular mechanisms of oxidative stress response in plants.Key words: Arabidopsis thaliana, oxidative damage, reactive oxygen species, signaling  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号