首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress can take place in marine bivalves under a series of environmental adverse conditions. The study of different systems related to oxidative stress in these organisms can give important information about their physiological status and also about environmental health. Bivalves have been proposed as good sentinel organisms in pollution monitoring studies through the analysis of biochemical biomarkers, and most of the biomarkers analyzed are those related to oxidative stress. However, it is very important to know how other environmental factors not associated to the presence of pollutants might affect these parameters. We have studied a series of mechanisms related to oxidative stress in mussels which inhabit the Brazilian coast, especially in Perna perna species, subjected to different stress conditions, such as the exposure to different contaminants in the laboratory and in the field, the exposure of mussels to air and re-submersion, simulating the tidal oscillations, and in mussels collected at different seasons. Both oxidative damage levels and antioxidant defense systems were strongly affected by the different environmental stress. This review summarizes the data obtained in some studies carried out in bivalves from the Brazilian coast.  相似文献   

2.
环境污染物对水生生物产生氧化压力的分子生物标志物   总被引:12,自引:0,他引:12  
王丽平  郑丙辉  孟伟 《生态学报》2007,27(1):380-388
为了能够建立一种简单、快速、准确的环境污染监测预警体系,人们进行了广泛的研究,其中有关环境污染物对分子生物标志物的影响已成为研究热点。生物体内的氧自由基和其它活性氧分子(ROS)对组织和细胞成分造成的伤害,称之为氧化压力,环境中的有毒物质能够对生物体产生不同程度的氧化压力。生物体内的强氧化剂或体外因素(如环境污染物)引起的强氧化物与抗氧化防御系统之间的平衡能够用于评估环境压力对生物体产生影响的程度,尤其适合于评估不同种化学物质引起氧化损伤的程度。这些抗氧化防御系统及其对氧化压力的敏感性在环境毒物学研究中占有非常重要的地位,大量研究结果表明:过渡金属、多环芳烃、有机氯和有机磷农药、多氯联苯、二氧芑和其它异型物质都能够对生物体产生氧化压力。这些有毒物质能够引起各种有害影响,如对膜脂、DNA和蛋白产生损伤;改变抗氧化酶的活性等。总结了这种氧化压力的研究进展情况,并讨论了这些分子生物标志物在水生生物中的应用。  相似文献   

3.
Deleterious effects of environmental contaminants could be due to enhanced prooxidant forces overcoming antioxidant defences. Before practical biomarkers based on free radical biology will be generally accepted and validated in situ, additional research is required concerning normal physiological and environmental influences on the relevant systems. The aims of this study were to evaluate in situ the importance of oxyradical production in the presence and absence of pollutants and to characterize some antioxidant systems in Mytilus edulis L. Specimens of M. edulis L. were transplanted from a reference site (Franquelin) to Baie Comeau (Baie des Anglais), on the North shore of the St. Lawrence maritime estuary, where are found aluminium and pulp and paper plants. An oxidative stress was observed in mussels submitted to a chronic exposure in the polluted environment. Variations of pro-and anti-oxidant molecules involved in oxidative processes were related in part to seasonal and physico-chemical influences. Catalase activity, malondialdehyde and glutathione concentrations will be useful as biomarkers of stress in situ since they react to anthropogenic influence and to abiotic factors such as emersion period and temperature.  相似文献   

4.
Inducible antioxidant defences in marine organisms such as mussel bivalves are commonly used as biomarkers of pollutant-induced oxidative stress and their variations proposed as one of the biological effect measurements for assessment of contamination impact in aquatic environments. Among them, the copper/zinc superoxide dismutases (Cu/Zn-SODs) are metalloenzymes which play a key role in the protection of cells in case of oxidative stress. In order to observe possible variations of an antioxidant response in relation to tidal oscillations, the copper/zinc superoxide dismutase activity (Cu/Zn-SOD) was characterized in the digestive gland and gills of blue mussels sampled at high and low shore throughout the tidal cycle. Determination of SOD activity was performed on gels after isoelectro-focusing, allowing the revelation of three isoforms. In both tissues, high-shore mussels exhibited a higher level of total SOD activity than low-shore mussels. During emersion, a decrease of total SOD activity appeared in digestive gland for both groups. In high-shore mussels, the less acidic form contributed to 75% of the total activity, the second one to 20% and the more acidic one to 5% in both tissues before air exposure. During emersion, the relative contribution of the three isoforms to the total activity was markedly changed with a significant decrease in intensity of the first isoform and parallel increases in the two other ones. After re-immersion a progressive recovery of proportions of SOD isoforms was observed. In low-shore mussels, the relative contribution of the three isoforms to the total SOD activity showed similar changes. The observed variations could correspond to changes in the redox status of the mussels during tidal oscillations.  相似文献   

5.
Although we have greatly benefited from the use of traditional epidemiological approaches in linking environmental exposure to human disease, we are still lacking knowledge in to how such exposure participates in disease development. However, molecular epidemiological studies have provided us with evidence linking oxidative stress with the pathogenesis of human disease and in particular carcinogenesis. To this end, oxidative stress-based biomarkers have proved to be essential in revealing how oxidative stress may be mediating toxicity induced by many known carcinogenic environmental agents. Therefore, throughout this review article, we aim to address the current state of oxidative stress-based biomarker development with major emphasis pertaining to biomarkers of DNA, lipid and protein oxidation.  相似文献   

6.
In aerobic organisms, oxygen is essential for efficient energy production but paradoxically, produces chronic toxic stress in cells. Diverse protective systems must exist to enable adaptation to oxidative environments. Oxidative stress (OS) results when production of reactive oxidative species (ROS) exceeds the capacity of cellular antioxidant defenses to remove these toxic species. Epidemiological and clinical studies have linked environmental factors such as diet and lifestyle to cancer, diabetes, atherosclerosis, and neurodegenerative disorders. All of these conditions, as well as the aging process, are associated with OS due to elevation of ROS or insufficient ROS detoxification. Many environmental pollutants engage signaling pathways that are activated in response to OS. The same sequences of events are also associated with the etiology and early pathology of many chronic diseases. Investigations of oxidative responses in different in vivo models suggest that, in complex organisms such as mammals, organs and tissues contain distinct antioxidant systems, and this may form the basis for differential susceptibility to environmental toxic agents Thus, understanding the pathways leading to the induction of antioxidant responses will enable development of strategies to protect against oxidative damage. We shall review evidence of organ-specific antioxidant responses elicited by environmental pollutants in humans and animal models.  相似文献   

7.
Cross-sectional biomarker studies can provide a snapshot of the frequency and characteristics of exposure/disease in a population at a particular point in time and, as a result, valuable insights for delineating the multi-step association between exposure and disease occurrence. Three major issues should be considered when designing biomarker studies: selection of appropriate biomarkers, the assay (laboratory validity), and the population validity of the selected biomarkers. Factors related to biomarker selection include biological relevance, specificity, sensitivity, biological half-life, stability, and so on. The assay attributes include limit of detection, reproducibility/reliability, inter-laboratory variation, specificity, time, and cost. Factors related to the population validity include the frequency or prevalence of markers, greater inter-individual variation than intra-individual variation, intra-class correlation coefficients (ICC), association with potential confounders, invasiveness of specimen collection, and subject selection. Three studies are selected to demonstrate different features of cross-sectional biomarker studies: (1) characterizing the determinants of the biomarkers (study I: urinary PAH metabolites and environmental particulate exposure), (2) relationship of multiple biomarkers of exposure and effect (study II: relationship between urinary PAH metabolites and oxidative stress), and (3) evaluating gene-environmental interaction (study III: effect of genetic polymorphisms of GSTM1 on the association of green tea consumption and urinary 1-OHPG levels in shipbuilding workers).  相似文献   

8.
Singlet oxygen and photo-oxidative stress management in plants and algae   总被引:9,自引:0,他引:9  
Photosynthetic organisms constantly face the threat of photo-oxidative stress from fluctuating light conditions and environmental stress. Plants and algae have developed an array of defences to protect the chloroplast from reactive oxygen species. Genetic and physiological studies have shown that antioxidant responses are important to high-light acclimation, both by directly scavenging or quenching reactive oxygen intermediates and by contributing reducing power for alternative electron transport pathways and excess energy dissipation. At present, the signalling events leading to up-regulation of antioxidant defences in high light remain a mystery. Recent advances toward understanding acclimation to oxidative stress in both photosynthetic and non-photosynthetic model organisms may illuminate how plants and algae respond to high-light stress. Although the role of hydrogen peroxide in high-light acclimation has been investigated, less is known about responses to singlet oxygen, a form of reactive oxygen that poses a significant threat specifically to photosynthetic organisms. This review will discuss some intriguing new findings in that area, focusing on recent findings regarding the nature of singlet-oxygen responses in the chloroplast.  相似文献   

9.
Oxidative stress, which results from an imbalance between the production of potentially damaging reactive oxygen species versus antioxidant defenses and repair mechanisms, has been proposed as an important mediator of life‐history trade‐offs. A plethora of biomarkers associated with oxidative stress exist, but few ecological studies have examined the relationships among different markers in organisms experiencing natural conditions or tested whether those relationships are stable across different environments and demographic groups. It is therefore not clear to what extent studies of different markers can be compared, or whether studies that focus on a single marker can draw general conclusions regarding oxidative stress. We measured widely used markers of oxidative damage (protein carbonyls and malondialdehyde) and antioxidant defense (superoxide dismutase and total antioxidant capacity) from 706 plasma samples collected over a 4‐year period in a wild population of Soay sheep on St Kilda. We quantified the correlation structure among these four markers across the entire sample set and also within separate years, age groups (lambs and adults), and sexes. We found some moderately strong correlations between some pairs of markers when data from all 4 years were pooled. However, these correlations were caused by considerable among‐year variation in mean marker values; correlation coefficients were small and not significantly different from zero after accounting for among‐year variation. Furthermore, within each year, age, and sex subgroup, the pairwise correlation coefficients among the four markers were weak, nonsignificant, and distributed around zero. In addition, principal component analysis confirmed that the four markers represented four independent axes of variation. Our results suggest that plasma markers of oxidative stress may vary dramatically among years, presumably due to environmental conditions, and that this variation can induce population‐level correlations among markers even in the absence of any correlations within contemporaneous subgroups. The absence of any consistent correlations within years or demographic subgroups implies that care must be taken when generalizing from observed relationships with oxidative stress markers, as each marker may reflect different and potentially uncoupled biochemical processes.  相似文献   

10.
Primary and secondary oxidative stress in Bacillus   总被引:1,自引:0,他引:1  
  相似文献   

11.
The exposure of organisms to stressing agents may affect the level and pattern of protein expression. Certain proteins with an important role in protein homeostasis and in the tolerance to stress, known as stress proteins, are especially affected. Different tissues and cells show a range of sensitivities to stress, depending on the habitat to which organisms have adapted. The response of different tissues and cells from the mussel Mytilus galloprovincialis Lmk. to heat shock has been studied in this work using different exposure times and temperatures. During the assays, protein expression was observed to vary depending on the tissue studied, the temperature or the exposure time used. But maybe the most prominent thing is the different response obtained from the cultured haemocytes and those freshly obtained from stressed mussels, which makes us think that the extraction procedure is the main cause of the response of non-cultured cells, although the haemolymph may contain components that modulate haemocyte response.  相似文献   

12.
Various studies in captivity and in the wild have pointed to the effect of season, and temperature in particular, in the levels of the oxidative stress biomarkers currently used for environmental quality assessment. However, knowledge on how temperature affects the oxidative stress response is unavailable for most species. This study investigated the effect of increasing temperature on lipid peroxidation, catalase activity, superoxide dismutase and glutathione-S-transferase in the shrimps, Palaemon elegans and Palaemon serratus. It was concluded that increasing temperatures significantly affect all the biomarkers tested in both species, with the exception of superoxide dismutase in P. serratus which was not affected by temperature. The oxidative stress response was more intense in P. elegans, than in P. serratus, producing higher peaks of all biomarkers at temperatures between 22 °C and 26 °C, followed by low levels at higher temperatures. It was concluded that monitoring of ecosystems using oxidative stress biomarkers should take into account the species and thermal history of the organisms. Sampling should be avoided during heat waves and immediately after heat waves.  相似文献   

13.
14.
A suite of biomarkers was measured in caged mussels at areas impacted by different anthropogenic activities along the Greek coastline to assess biological effects of environmental pollution. Mussels were caged at coastal sites in the vicinity of major cities, in areas influenced by major industries, agricultural practices and in islands away from known sources of pollution. Biomarkers indicative of neurotoxicity (acetylcholinesterase, AchE), oxidative stress (catalase, CAT), phase II biotransformation of xenobiotics (glutathione S-transferase, GST), metal exposure (metallothioneins, MTs) and protein synthesis (RNA:DNA ratio) were measured to assess effects of various types of pollutants. AchE activity proved to be the most responsive biomarker with decreased values at sites influenced by agricultural, urban and industrial activities. Decreased CAT and GST activities and increased MTs levels were recorded at a number of anthropogenic-impacted sites. RNA:DNA ratio showed a biphasic response as both high and low values were found at impacted sites. Principal component analysis clearly distinguished sites receiving pollution inputs from non-polluted sites. The combination of the selected biomarkers used in caged mussels resulted useful in the assessment of the effects of environmental pollution.  相似文献   

15.
16.
Water acidification, temperature increases and changes in seawater salinity are predicted to occur in the near future. In such a global climate change (GCC) scenario, there is growing concern for the health status of both wild and farmed organisms. Bivalve molluscs, an important component of coastal marine ecosystems, are at risk. At the immunological level, the ability of an organism to maintain its immunosurveillance unaltered under adverse environmental conditions may enhance its survival capability. To our knowledge, only a few studies have investigated the effects of changing environmental parameters (as predicted in a GCC scenario) on the immune responses of bivalves. In the present study, the effects of both decreased pH values and increased temperature on the important immune parameters of two bivalve species were evaluated for the first time. The clam Chamelea gallina and the mussel Mytilus galloprovincialis, widespread along the coast of the Northwestern Adriatic Sea, were chosen as model organisms. Bivalves were exposed for 7 days to three pH values (8.1, 7.7 and 7.4) at two temperatures (22 and 28°C). Three independent experiments were carried out at salinities of 28, 34 and 40 PSU. The total haemocyte count, Neutral Red uptake, haemolymph lysozyme activity and total protein levels were measured. The results obtained demonstrated that tested experimental conditions affected significantly most of the immune parameters measured in bivalves, even if the variation pattern of haemocyte responses was not always linear. Between the two species, C. gallina appeared more vulnerable to changing pH and temperature than M. galloprovincialis. Overall, this study demonstrated that climate changes can strongly affect haemocyte functionality in bivalves. However, further studies are needed to clarify better the mechanisms of action of changing environmental parameters, both individually and in combination, on bivalve haemocytes.  相似文献   

17.
近几十年期间,在种群和个体受干扰后,对作为早期指示剂的生物标记物的研究受到越来越多的关注。我们用对水生生态系统污染敏感的生物标记物双壳类软体动物(文蛤)来评估两种有机磷杀虫剂(甲基毒死蜱、草甘膦)的影响。文蛤是水生生态系统污染的一种敏感的指示物种。在不同时间段测定文蛤中不同组织的非酶的(谷胱苷肽)和酶的(过氧化氢酶)抗氧化剂,作为文蛤中生物标记物的反应。在实验室条件下,测定了脂质过氧化作用、蛋白羰基含量、总蛋白含量、总脂质含量以及胆碱酯酶的活性。对不同的生物标记与杀虫剂的生物体内积累的相互关系进行了研究。甲基毒死蜱在文蛤组织中具有最大的诱导氧化胁迫的潜能,导致脂质过氧化反应增加并抑制抗氧化剂。而且,鳃是对该反应最敏感的器官。文蛤是一种极好的甲基毒死蜱的积聚者,因为暴露60天后,可以测定到其组织中浓度为824.0 mg/kg w.w的甲基毒死蜱。随着在草甘膦中暴露时间的增加,与背景水平相比,组织中草甘膦的浓度增加大约8×103mg/kg w.w。可以得出这样的结论:在一种生物中测定几种生物标记物是有用的。在双壳类中,蛋白质的羰基诱导可用于双壳类中化学污染物诱导的氧化胁迫的生物指示剂。抗氧化剂的防御成分是敏感的参数,是评估污染的水生生态系统的有用的生物标记物。辅以蛤组织的化学分析,生物标记参数能够提供一种有力的监测工具。  相似文献   

18.
Stress is a widespread phenomenon that all organisms must endure. Common in nature is oxidative stress, which can interrupt cell homeostasis to cause cell damage and may be derived from respiration or from environmental exposure through diet. As a result of the routine exposure from respiration, many organisms can mitigate the effects of oxidative stress, but less is known about responses to oxidative stress from other sources. Helicoverpa armigera is a major agricultural pest moth that causes significant damage to crops worldwide. Here, we examined the effects of oxidative stress on H. armigera by chronically exposing individuals to paraquat—a free radical producer—and measuring changes in development (weight, developmental rate, lifespan), and gene expression. We found that oxidative stress strongly affected development in H. armigera, with stressed samples spending more time as caterpillars than control samples (>24 vs. ~15 days, respectively) and therefore living longer overall. We found 1,618 up‐ and 761 down‐regulated genes, respectively, in stressed versus control samples. In the up‐regulated gene set, was an over‐representation of biological processes related to cuticle and chitin development, glycine metabolism, and oxidation–reduction. Oxidative stress clearly impacts physiology and biochemistry in H. armigera and the interesting finding of an extended lifespan in stressed individuals could demonstrate hormesis, the phenomenon whereby toxic compounds can actually be beneficial at low doses. Collectively, our findings provide new insights into physiological and gene expression responses to oxidative stress in invertebrates.  相似文献   

19.
《Autophagy》2013,9(2):254-256
This conceptual paper addresses the role of lysosomal autophagy in cellular defense against environmentally-induced oxidative stress using a marine mollusc (the blue mussel) as an experimental model. It is proposed that augmented autophagic removal of oxidatively damaged organelles and proteins provides a second level or tier of defense against oxidative stress. Age pigment or lipofuscin is a product of oxidative attack on proteins and lipids and can accumulate in lysosomes, where it may generate further reactive oxygen species (ROS) and inhibit lysosomal function, resulting in autophagic failure. The previously observed protective role of augmented autophagy, induced by nutritional deprivation, against oxidative stress can be explained by this model, where autophagy boosts “cellular housekeeping” through enhanced removal of ROS-damaged proteins and organelles minimizing formation of potentially harmful stress/age pigment, and has been proposed as an anti-aging mechanism. Finally, the probable low level triggering of autophagy in mussels by fluctuating environmental regimes is considered as a potential protective mechanism that will contribute to resistance to environmentally induced oxidative stress. It is further conjectured that organisms making up functional ecological assemblages (communities) in fluctuating environments, where upregulation of autophagy should provide a selective advantage, may be pre-selected to be tolerant of pollutant-induced oxidative stress.

Addendum to: Moore MN, Viarengo A, Donkin P, Hawkins AJS. Autophagic and lysosomal reactions to stress in the hepatopancreas of blue mussels. Aquat Toxicol 2007; 84:80–91.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号