首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural regeneration of timber species is critical to the sustainable management of tropical forests. To understand what determines regeneration success of timber species in the Congo Basin, we evaluated whether seedling recruitment rates differed between forest logged 30 years previously and unlogged forest and determined the environmental factors that influence seedling density, growth and survival. We monitored the fate of 2186 seedlings of seven timber species within 462, 25‐m2 plots located along 21 transects. We characterized seedling plots by light availability, soil nutrient availability and pH, and abundance of mammalian herbivores and then used linear and generalized linear mixed models to evaluate the variables that influenced seedling density, growth and survival. Light availability and canopy openness were 18% and 81% higher in logged than unlogged forest, and concentration of soil nutrients varied between sites. Seedling density was 32% higher in unlogged than logged forest. Taking all species together, seedling survival was positively correlated with calcium and negatively with magnesium and available phosphorus. Rates of seedling growth increased with available light. Taken separately, seedlings of the selected timber species responded differently to abiotic and biotic factors, demonstrating species‐specific regeneration requirements.  相似文献   

2.
Niche diversification is prominent among the mechanisms proposed to explain tropical rain forest tree diversity, with many studies focusing on trade‐offs among shade tolerance and growth. Less obvious is the impact of occasional, ephemeral and often minor disturbances on tree seedling survival. We propose that differential tolerances to soil waterlogging can contribute to the distribution of tree seedling communities along microtopographical gradients. We test this hypothesis experimentally by evaluating survival and performance of planted seedlings across microtopographical gradients in a periodically inundated tropical rain forest environment. Survival and relative growth rates were assessed for six Shorea (Dipterocarpaceae) species in Sepilok Forest Reserve (Sabah, Malaysia) over a 2‐yr period, during which seedlings were subjected to two brief flooding events. The species were selected on the basis of soil habitat affinities, with two species being primarily associated with low‐lying alluvial flats subject to inundation, two being associated with non‐flooded mudstone hills, and two species occurring in both habitats. Seedling performance was related to microtopographic elevation within and among plots and to soil moisture among plots. The faster growing species, Shorea argentifolia, Shorea leprosula and Shorea parvifolia, tended to be more vulnerable to high soil moisture in terms of mortality than the three species with lower growth rates. Within plots, soil moisture was inversely correlated with microelevation, and seedlings located at higher microelevations had an increased probability of survival. Microtopographical differences in seedling position could therefore contribute to species assembly processes through differential mortality, particularly in areas subject to minor and ephemeral flooding events.  相似文献   

3.
Seedling emergence and establishment are fragile processes that determine the direction and structure of forest succession and regeneration. However, seedling emergence and establishment are easily affected by biotic and abiotic (environmental) factors. A dense and expanding understory of dwarf bamboo is one such important factor that can seriously hinder the seedling regeneration. We conducted a field experiment to investigate the emergence and establishment of canopy tree seedlings under artificially controlled densities of dwarf bamboo. We found that understory dwarf bamboo obstructed seedling emergence but reduced the death of seedlings. Although understory dwarf bamboo reduced the median retention time of seedlings, dense bamboo increased the mean survival time of seedlings. Our results suggest that understory dwarf bamboo has multiple selectivities for tree seedling emergence and establishment: high‐density dwarf bamboo was beneficial to evergreen species but lower‐density of bamboo was conducive to the survival of deciduous species, it means the dwarf bamboo potentially alters successional trajectories of forest communities. Path analysis revealed that the most important factors affecting tree seedling emergence and death were the abundance of seeds in the seed bank and the density of emerged seedlings, and that the soil temperature promoted seedling emergence but increased seedling death, the thickness of litter limited seedling emergence, and the leaf area index of the bamboo canopy limited seedling death. The present study suggests that dwarf bamboo can directly alter the microenvironment, significantly reducing light levels and soil temperature but increasing the thickness of litter and soil humus, thereby indirectly impacting the regeneration of tree seedlings. Our results indicate that various factors affected seedling emergence, and there were complex indirect relationships among these factors. In general, biological factors had a stronger influence on tree seedling regeneration than environmental factors.  相似文献   

4.
The impact of logging on plant communities was studied in forest that has been logged selectively 1, 5 and 10 years previously (following a certified procedure): diversity was compared with that of primary rain forest in the Berau region of East Kalimantan, Indonesia. Four sets of 20 transects located within an area of 6 ha were sampled for all trees, saplings and seedlings, and records were made of topographic position, structure, composition and species diversity. There was a high level of floristic similarity between primary forests at the study sites compared to primary forest elsewhere in Kalimantan. The impact of logging is therefore likely to be the most important factor determining any differences between the plant communities of the selectively logged and primary forest sites. We found differences in species composition and abundance of most plants between selectively logged and primary forest. Overall, stem densities of trees in the primary forest were higher than in the three selectively logged forest sites. Stem densities of saplings were equivalent in all four forests. Seedling stem densities were higher in the forest site logged 10 years previously than in primary forest. Our results showed that the forests logged selectively under certified regimes still have a high plant diversity, possibly indicating that biodiversity values may be conserved by following certification procedures.  相似文献   

5.
The taungya agro‐forestry system is an under‐researched means of forest restoration that may result in high tree diversity. Within a forest reserve in Ghana, the forest core and its surrounding Teak‐ and Cedrela‐taungya on logged, cropped and burned land were mapped with ALOS satellite imagery. Native trees, seedlings and saplings were enumerated in 70 random, nested plots, equally divided between forest and taungya. The native tree regeneration was assessed by species richness (SR), Shannon‐Wiener Index (SWI), Shannon Evenness Index (SEI) and species density (SeD) for seedlings, saplings and trees separately and combined and subsequently correlated with canopy covers (CC) in taungya. As anticipated, the taungya diversity was lower than the forest diversity but higher than reported from nontaungya exotic plantations. In the forest, the diversity of native trees increased from seedlings through saplings to trees. The reverse was found in the taungya. Taungya seedling diversity was not significantly different from the forest, while the sapling and tree diversity were significantly lower. Weak correlations of CC with SR, SWI, SEI and SeD were found. Our results suggest the need for treatment to maintain the tree diversity beyond the seedling stage in the taungya.  相似文献   

6.
Conspecific negative density dependence is thought to maintain diversity by limiting abundances of common species. Yet the extent to which this mechanism can explain patterns of species diversity across environmental gradients is largely unknown. We examined density‐dependent recruitment of seedlings and saplings and changes in local species diversity across a soil‐resource gradient for 38 woody‐plant species in a temperate forest. At both life stages, the strength of negative density dependence increased with resource availability, becoming relatively stronger for rare species during seedling recruitment, but stronger for common species during sapling recruitment. Moreover, negative density dependence appeared to reduce diversity when stronger for rare than common species, but increase diversity when stronger for common species. Our results suggest that negative density dependence is stronger in resource‐rich environments and can either decrease or maintain diversity depending on its relative strength among common and rare species.  相似文献   

7.
Understanding the mechanisms generating species distributions remains a challenge, especially in hyperdiverse tropical forests. We evaluated the role of rainfall variation, soil gradients and herbivory on seedling mortality, and how variation in seedling performance along these gradients contributes to habitat specialisation. In a 4‐year experiment, replicated at the two extremes of the Amazon basin, we reciprocally transplanted 4638 tree seedlings of 41 habitat‐specialist species from seven phylogenetic lineages among the three most important forest habitats of lowland Amazonia. Rainfall variation, flooding and soil gradients strongly influenced seedling mortality, whereas herbivory had negligible impact. Seedling mortality varied strongly among habitats, consistent with predictions for habitat specialists in most lineages. This suggests that seedling performance is a primary determinant of the habitat associations of adult trees across Amazonia. It further suggests that tree diversity, currently mostly harboured in terra firme forests, may be strongly impacted by the predicted climate changes in Amazonia.  相似文献   

8.
Processes of forest regeneration in two unlogged areas and in three areas that were logged nearly 25 years ago were quantified in Kibale National Park, Uganda. For forests to recover from logging, one would predict recruitment and growth processes to be accelerated in logged areas relative to unlogged areas, facilitating increased recruitment of trees into the adult size classes. We examined this prediction first by determining the growth of 4733 trees over a 51 to 56 month period and found that growth rates in the most heavily logged area were consistently slower than in the two unlogged areas. In contrast, the lightly logged forest had similar growth rates to unlogged areas in the small size classes, but trees in the 30 to 50 cm DBH size cohort exhibited elevated growth rates relative to the unlogged areas. Mortality was highest in the heavily logged areas, with many deaths occurring when healthy trees were knocked over by neighboring treefalls. We found no difference in the density or species richness of seedlings in the logged and unlogged forests. The number of seedlings that emerged from the disturbed soil (seed bank+seed rain) and initially seed-free soil (seed rain) was greater in the logged forest than in the unlogged forest. However, sapling density was lower in the heavily logged areas, suggesting that there is a high level of seedling mortality in logged areas. We suggest that the level of canopy opening created during logging, the lack of aggressive colonizing tree species, elephant activity that is concentrated in logged areas, and an aggressive herb community, all combine to delay vegetation recovery in Kibale Forest.  相似文献   

9.
Seedling dynamics play a crucial role in determining species distributions and coexistence. Exploring causes of variation in seedling dynamics can therefore provide key insights into the factors affecting these phenomena. We examined the relative importance of biotic neighborhood processes and habitat heterogeneity using survival data for 5,827 seedlings in 39 tree and shrub species over 2?years from an old-growth temperate forest in northeastern China. We found significant negative density-dependence effects on survival of tree seedlings, and limited effects of habitat heterogeneity (edaphic and topographic variables) on survival of shrub seedlings. The importance of negative density dependence on young tree seedling survival was replaced by habitat in tree seedlings ??4?years old. As expected, negative density dependence was more apparent in gravity-dispersed species compared to wind-dispersed and animal-dispersed species. Moreover, we found that a community compensatory trend existed for trees. Therefore, although negative density dependence was not as pervasive as in other forest communities, it is an important mechanism for the maintenance of community diversity in this temperate forest. We conclude that both negative density dependence and habitat heterogeneity drive seedling survival, but their relative importance varies with seedling age classes and species traits.  相似文献   

10.
Tropical forest degradation is a global environmental issue. In degraded forests, seedling recruitment of canopy trees is vital for forest regeneration and recovery. We investigated how selective logging, a pervasive driver of tropical forest degradation, impacts canopy tree seedling recruitment, focusing on an endemic dipterocarp Dryobalanops lanceolata in Sabah, Borneo. During a mast‐fruiting event in intensively logged and nearby unlogged forest, we examined four stages of the seedling recruitment process: seed production, seed predation, and negative density‐dependent germination and seedling survival. Our results suggest that each stage of the seedling recruitment process is altered in logged forest. The seed crop of D. lanceolata trees in logged forest was one‐third smaller than that produced by trees in unlogged forest. The functional role of vertebrates in seed predation increased in logged forest while that of non‐vertebrates declined. Seeds in logged forest were less likely to germinate than those in unlogged forest. Germination increased with local‐scale conspecific seed density in unlogged forest, but seedling survival tended to decline. However, both germination and seedling survival increased with local‐scale conspecific seed density in logged forest. Notably, seed crop size, germination, and seedling survival tended to increase for larger trees in both unlogged and logged forests, suggesting that sustainable timber extraction and silvicultural practices designed to minimize damage to the residual stand are important to prevent seedling recruitment failure. Overall, these impacts sustained by several aspects of seedling recruitment in a mast‐fruiting year suggest that intensive selective logging may affect long‐term population dynamics of D. lanceolata. It is necessary to establish if other dipterocarp species, many of which are threatened by the timber trade, are similarly affected in tropical forests degraded by intensive selective logging.  相似文献   

11.
Abstract. We asked whether forest structure and understory light environments across a tropical moist forest chronosequence followed predictions of a 4‐phase model of secondary succession (establishment, thinning, transition and steady‐state) and whether seedling density and diversity were functions of light availability as predicted by this model. Using aerial photographs, we identified eight second‐growth stands (two each aged ca. 20, 40, 70, and 100 yr) and two old‐growth stands within Barro Colorado Nature Monument, Panama. Trees and seedlings were sampled in nested, contiguous quadrats in 2 160‐m transects in each stand. Light was measured as percent transmittance of diffuse photosynthetically active radiation (TPAR) at each seedling quadrat and by estimation of percent total incident radiation during the growing season from hemispherical canopy photographs. Basal area, tree density, and canopy height followed predictions of the 4‐phase model. Percent total radiation, but not TPAR, declined with stand age as did seedling density. While seedlings were more likely to occur in quadrats at higher light levels, much variation in seedling density was not related to light availability. Seedling patch sizes were small irrespective of light patches, estimated as semivariance ranges. Seedling species richness was a function of seedling density; estimates of species diversity unbiased by density did not vary systematically as a function of stand age. Proximate seed sources, efficient dispersal mechanisms, and appropriate establishment conditions can promote establishment of species‐rich communities early in successions of heterogeneous tropical moist forest.  相似文献   

12.
森林结构和地形是森林生态系统最明显的特点,也是影响林下幼苗存活和物种多样性的关键因子。该研究采用半球面摄影方法提取八大公山生长监测样地(共1.2 hm2)林冠结构参数,通过调查地表层木本植物幼苗的组成和多度,获取常见植物幼苗叶片功能性状,结合详细的地形信息,利用空间同步自回归模型探究林冠结构变量及地形因子对幼苗物种多样性及功能多样性的影响。结果表明:(1)八大公山亚热带山地常绿落叶阔叶林林冠结构复杂度较高,最大林冠高的平均值达到19.94 m,叶面积指数、平均叶倾角和林冠覆盖度分别为2.94、30.88°和0.87;(2)林冠结构变量和地形因子能够解释32.6%~48.4%的林下幼苗物种多样性指数变异和28.5%~70.2%的功能多样性变异,但地形因子对幼苗物种多样性的影响很小;(3)预测在亚热带常绿落叶阔叶林高海拔的山坡上,有较低的叶面积指数和平均叶倾角群落有较高的幼苗物种多样性;而在低海拔山脊上,较低的叶面积指数和平均叶倾角群落林下幼苗层有较高的功能多样性。此结果对科研人员和林业工作者开展野外森林更新情况评估和样方调查将有所帮助。  相似文献   

13.
Predicting the fate of tropical forests under a changing climate requires understanding species responses to climatic variability and extremes. Seedlings may be particularly vulnerable to climatic stress given low stored resources and undeveloped roots; they also portend the potential effects of climate change on future forest composition. Here we use data for ca. 50,000 tropical seedlings representing 25 woody species to assess (i) the effects of interannual variation in rainfall and solar radiation between 2007 and 2016 on seedling survival over 9 years in a subtropical forest; and (ii) how spatial heterogeneity in three environmental factors—soil moisture, understory light, and conspecific neighborhood density—modulate these responses. Community‐wide seedling survival was not sensitive to interannual rainfall variability but interspecific variation in these responses was large, overwhelming the average community response. In contrast, community‐wide responses to solar radiation were predominantly positive. Spatial heterogeneity in soil moisture and conspecific density were the predominant and most consistent drivers of seedling survival, with the majority of species exhibiting greater survival at low conspecific densities and positive or nonlinear responses to soil moisture. This environmental heterogeneity modulated impacts of rainfall and solar radiation. Negative conspecific effects were amplified during rainy years and at dry sites, whereas the positive effects of radiation on survival were more pronounced for seedlings existing at high understory light levels. These results demonstrate that environmental heterogeneity is not only the main driver of seedling survival in this forest but also plays a central role in buffering or exacerbating impacts of climate fluctuations on forest regeneration. Since seedlings represent a key bottleneck in the demographic cycle of trees, efforts to predict the long‐term effects of a changing climate on tropical forests must take into account this environmental heterogeneity and how its effects on regeneration dynamics play out in long‐term stand dynamics.  相似文献   

14.
Seedlings play an important role in the processes of plant community succession. We compared seedling (dbh < 1 cm) species composition and diversity over a chronosequence (18‐, 30‐, 60‐year‐old second growth and old growth forest) after shifting cultivation in a tropical lowland rain forest area on Hainan Island, China. Seedling diversity reached a maximum in the 60‐year‐old second growth forest, which is consistent with the intermediate disturbance hypothesis. With the progression of secondary succession, canopy openness (CO), soil organic matter, soil phosphorus content, and tree abundance showed a general decreasing trend; soil water content and tree basal area showed a general trend of increase, while soil pH and other nutrients reached maximum values and tree richness reached a minimum value at intermediate stages of succession. Seedling composition and diversity were significantly affected by soil water, pH, soil nutrient content, and biotic factors in the 18‐year‐old second growth forests; by soil pH, soil nutrient content, and biotic factors in the 30‐year‐old second growth forests; by CO, soil nutrient content and tree abundance in the 60‐year‐old second growth forests; and by CO, soil pH, and soil nutrient content in the old growth forests. At earlier stages of succession, the effect of the proportion of old growth forest in the surrounding landscape on seedling diversity was greater than that of land‐use history, but the importance of these drivers was reversed at later stages of succession.  相似文献   

15.
卧龙自然保护区针阔混交林林隙更新规律   总被引:3,自引:0,他引:3       下载免费PDF全文
卧龙自然保护区五一棚大熊猫野外观测站周围的针阔混交林由于历史原因破坏严重,长期以来自然恢复较差。为调查该区林隙更新的现状及其影响因素,作者采用林隙样线调查方法研究了该区针阔混交林林隙更新规律。结果显示,历史上的自然干扰与人为干扰共同影响着该区林隙更新的格局和特征,林隙天然更新受环境因素制约,更新规律表现为:更新幼苗的种类较形成木的种类丰富,更新乔木幼苗的优势度排序与形成木不同;林隙主要树种的更新受各类环境因子的影响而存在差异,桦木(Betula spp.)更新受地形影响较大,岷江冷杉(Abies faxoniana)受土壤因素影响显著,杜鹃(Rhododendron spp.)更新则受地形因子和林隙形成木的特征影响显著;更新物种的多样性指数均表现出受土壤因子的影响显著。由此推测,林隙大小并非影响该区林隙更新的关键因素,而土壤因素可能是制约优势树种天然更新和更新物种多样性的重要原因之一。  相似文献   

16.
Barriers to Forest Regeneration in an Abandoned Pasture in Puerto Rico   总被引:9,自引:0,他引:9  
Sources of forest regeneration (soil seed bank, seed rain) and barriers to seedling establishment were examined in a recently abandoned pasture in eastern Puerto Rico. Few woody species were found in the soil seed bank or in the seed rain. The number of seeds and species in the seed rain and soil seed bank declined with distance from the adjacent secondary forest. Nine species naturally dispersed and colonized plots during the study, with the wind‐dispersed tree Tabebuia heterophylla being the predominant colonizer (91% of all seedlings). Barriers to seedling establishment were determined using a blocked field experiment with eleven woody species representative of a variety of life histories. Each species was planted under the pasture vegetation (control) or in areas where all vegetation was removed (removal). Germination was enhanced for four species in the control treatment, five species were not affected, and two species did not germinate under either treatment. Survival to 6 months was higher in the removal treatment for two species. Seedling biomass was greater in the removal treatment at 12 months for one species. Seed mass was a good predictor of germination success and final shoot biomass, but not survival. This study demonstrates that seeding recently abandoned pastures with a mix of known pioneer species may accelerate the rate of secondary succession, but some species will have to be planted in later successional stages in order to overcome strong barriers to establishment.  相似文献   

17.
The seedling stage is generally the most important bottleneck for the successful regeneration of trees in forests. The traits of seedlings, particularly biomass allocation and root traits, are more easily quantified than the traits of adults. In this study, we tested the hypothesis that seedling traits vary and trade‐off tracking the changing environment during secondary succession. We measured the major morphological traits of 27 dominant species and the major environmental factors in a chronosequence (30‐yr‐old fallow, 60‐yr‐old fallow, and old growth forest) after shifting cultivation in a tropical lowland rain forest on Hainan Island, China. The 30‐yr‐old fallow had higher light and nutrient availability, and the older forests had higher soil water content. Redundancy analysis based on species abundance and environmental factors revealed groups of seedlings that dominate in different stages of succession. Seedlings in different stages of succession had different strategies of biomass allocation for harvesting resources that varied in availability. Species characteristic of younger forest had higher allocation to roots and higher specific leaf area, while species characteristic of older forest had higher allocation to leaves. Our study suggests that the variations and trade‐offs in the major functional traits of tree seedlings among successional classes may reflect changes in environmental conditions during succession.  相似文献   

18.
Planting seedlings is a common technique for abandoned pastures restoration in the tropics, supposedly by increasing the seedling recruitment and accelerating succession. In this study we evaluated the role of a young restored forest (one year old) in enhancing seedling establishment from two sources (seed rain and seed bank), in the Atlantic Rainforest region in Southern Brazil. We compared abandoned pasture, young restored forest and old-growth forest with respect to the seedlings recruited from different sources, by monitoring 40 permanent plots (0.5 m x 0.5 m) over 20 months. From the three studied areas a total of 392 seedlings of 53 species were recruited. Species were mainly herbaceous (85%), pioneers (88%), zoochorous (51%) and small-seeded species (60%). Seedling recruitment from the seed bank (density and species richness) was higher and dominated by herbaceous species in the abandoned pasture and in the young restored forest; on the other hand, the recruitment of woody species from seed rain was more pronounced in the old-growth forest. The young restored forest increased the species richness of woody seedlings recruitment from the seed bank (two-fold) and from seed rain (three-fold) compared to the abandoned pasture. Also, the seedling density in young restored forest was still higher than abandoned pastures (seed bank: four times; seed rain: ten times). Our results show that even young restored areas enhance the establishment of woody species and should be considered an important step for pasture restoration.  相似文献   

19.
Seedling establishment of deciduous trees in various topographic positions   总被引:1,自引:0,他引:1  
Abstract. We investigated the effect of topography‐related environmental factors (i.e., ground‐surface stability and soil moisture) on seedling establishment of 8 deciduous tree species. A field experiment was carried out using canopy species, which were classified into 3 groups based on the spatial distribution of adult trees (ridge, slope and valley). Demographic parameters were compared among species during the early stage of seedling establishment among 3 topographic positions in combination with gap and canopy conditions. The percentage of emerging seedlings tended to be lower on the ridge irrespective of the adult topographical distribution patterns. There was no clear trend in seedling emergence among the species groups classified by their spatial distribution. Seedling survival during 2 growing seasons was significantly different among species, topographic positions and light conditions. On the ridge, seedlings of the species dominating ridge tops had greater survival than those of other species, probably due to differences in demand for soil moisture. On the slope, frequent physical damage caused by surface material movement was observed and some species showed greater adaptability to the disturbed slope habitat. Survival of all seedlings was highest in the valley plots. Light conditions were the critical factor for seedling survival in some species. The results of this study suggest that topography creates diverse habitats for the establishment of tree seedlings. In addition to soil moisture, surface material movement may be a significant factor affecting seedling establishment.  相似文献   

20.
Yan QL  Zhu JJ  Yu LZ 《PloS one》2012,7(6):e39502
Promoting the seed regeneration potential of secondary forests undergoing gap disturbances is an important approach for achieving forest restoration and sustainable management. Seedling recruitment from seed banks strongly determines the seed regeneration potential, but the process is poorly understood in the gaps of secondary forests. The objectives of the present study were to evaluate the effects of gap size, seed availability, and environmental conditions on the seed regeneration potential in temperate secondary forests. It was found that gap formation could favor the invasion of more varieties of species in seed banks, but it also could speed up the turnover rate of seed banks leading to lower seed densities. Seeds of the dominant species, Fraxinus rhynchophylla, were transient in soil and there was a minor and discontinuous contribution of the seed bank to its seedling emergence. For Quercus mongolica, emerging seedling number was positively correlated with seed density in gaps (R?=?0.32, P<0.01), especially in medium and small gaps (<500 m(2)). Furthermore, under canopies, there was a positive correlation between seedling number and seed density of Acer mono (R?=?0.43, P<0.01). Gap formation could promote seedling emergence of two gap-dependent species (i.e., Q. mongolica and A. mono), but the contribution of seed banks to seedlings was below 10% after gap creation. Soil moisture and temperature were the restrictive factors controlling the seedling emergence from seeds in gaps and under canopies, respectively. Thus, the regeneration potential from seed banks is limited after gap formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号