首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Muscle ring finger-1 (MuRF1) is a muscle-specific E3 ubiquitin ligase that has been implicated in the regulation of cardiac mass through its control of the ubiquitin proteasome system. While it has been suggested that MuRF1 is required for cardiac atrophy, a resting cardiac phenotype has not been reported in mice with a null deletion [knockout (KO)] of MuRF1. Here, we report that MuRF1 KO mice have significantly larger hearts than age-matched wild-type (WT) littermates at ≥ 6 mo of age and that loss of cardiac mass can occur in the absence of MuRF1. The objective of this study was to determine whether changes in proteasome activity were responsible for the cardiac phenotypes observed in MuRF1 KO mice. Cardiac function, architecture, and proteasome activity were analyzed at rest and following 28 days of dexamethasone (Dex) treatment in 6-mo-old WT and MuRF1 KO mice. Echocardiography demonstrated normal cardiac function in the enlarged hearts in MURF1 KO mice. At rest, heart mass and cardiomyocyte diameter were significantly greater in MuRF1 KO than in WT mice. The increase in cardiac size in MuRF1 KO mice was related to a decrease in proteasome activity and an increase in Akt signaling relative to WT mice. Dex treatment induced a significant loss of cardiac mass in MuRF1 KO, but not WT, mice. Furthermore, Dex treatment resulted in an increase in proteasome activity in KO, but a decrease in WT, mice. In contrast, Akt/mammalian target of rapamycin signaling decreased in MuRF1 KO mice and increased in WT mice in response to Dex treatment. These findings demonstrate that MuRF1 plays an important role in regulating cardiac size through alterations in protein turnover and that MuRF1 is not required to induce cardiac atrophy.  相似文献   

2.
Muscle atrophy occurs in many pathological states, including cancer, diabetes and sepsis, whose results primarily from accelerated protein degradation and activation of the ubiquitin‐proteasome pathway. Expression of Muscle RING finger 1 (MuRF1), an E3 ubiquitin ligase, was increased to induce the loss of muscle mass in diabetic condition. However, hydrogen sulphide (H2S) plays a crucial role in the variety of physiological functions, including antihypertension, antiproliferation and antioxidant. In this study, db/db mice and C2C12 myoblasts treated by high glucose and palmitate and oleate were chose as animal and cellular models. We explored how exogenous H2S attenuated the degradation of skeletal muscle via the modification of MuRF1 S‐sulfhydration in db/db mice. Our results show cystathionine‐r‐lyase expression, and H2S level in skeletal muscle of db/db mice was reduced. Simultaneously, exogenous H2S could alleviate ROS production and reverse expression of ER stress protein markers. Exogenous H2S could decrease the ubiquitination level of MYOM1 and MYH4 in db/db mice. In addition, exogenous H2S reduced the interaction between MuRF1 with MYOM1 and MYH4 via MuRF1 S‐sulfhydration. Based on these results, we establish that H2S prevented the degradation of skeletal muscle via MuRF1 S‐sulfhydration at the site of Cys44 in db/db mice.  相似文献   

3.
The present study examined the effects of inducible nitric oxide synthase (iNOS) deficiency on skeletal muscle atrophy in single leg-immobilized iNOS knockout (KO) and wild-type (WT) mice. The left leg was immobilized for 1 wk, and the right leg was used as the control. Muscle weight and contraction-stimulated glucose uptake were reduced by immobilization in WT mice, which was accompanied with increased iNOS expression in skeletal muscle. Deficiency of iNOS attenuated muscle weight loss and the reduction in contraction-stimulated glucose uptake by immobilization. Phosphorylation of Akt, mTOR, and p70S6K was reduced to a similar extent by immobilization in both WT and iNOS KO mice. Immobilization decreased FoxO1 phosphorylation and increased mRNA and protein levels of MuRF1 and atrogin-1 in WT mice, which were attenuated in iNOS KO mice. Aconitase and superoxide dismutase activities were reduced by immobilization in WT mice, and deficiency of iNOS normalized these enzyme activities. Increased nitrotyrosine and carbonylated protein levels by immobilization in WT mice were reversed in iNOS KO mice. Phosphorylation of ERK and p38 was increased by immobilization in WT mice, which was reduced in iNOS KO mice. Immobilization-induced muscle atrophy was also attenuated by an iNOS-specific inhibitor N(6)-(1-iminoethyl)-l-lysine, and this finding was accompanied by increased FoxO1 phosphorylation and reduced MuRF1 and atrogin-1 levels. These results suggest that deficiency of iNOS attenuates immobilization-induced skeletal muscle atrophy through reduced oxidative stress, and iNOS-induced oxidative stress may be required for immobilization-induced skeletal muscle atrophy.  相似文献   

4.
During pathophysiological muscle wasting, a family of ubiquitin ligases, including muscle RING-finger protein-1 (MuRF1), has been proposed to trigger muscle protein degradation via ubiquitination. Here, we characterized skeletal muscles from wild-type (WT) and MuRF1 knockout (KO) mice under amino acid (AA) deprivation as a model for physiological protein degradation, where skeletal muscles altruistically waste themselves to provide AAs to other organs. When WT and MuRF1 KO mice were fed a diet lacking AA, MuRF1 KO mice were less susceptible to muscle wasting, for both myocardium and skeletal muscles. Under AA depletion, WT mice had reduced muscle protein synthesis, while MuRF1 KO mice maintained nonphysiologically elevated levels of skeletal muscle protein de novo synthesis. Consistent with a role of MuRF1 for muscle protein turnover during starvation, the concentrations of essential AAs, especially branched-chain AAs, in the blood plasma significantly decreased in MuRF1 KO mice under AA deprivation. To clarify the molecular roles of MuRF1 for muscle metabolism during wasting, we searched for MuRF1-associated proteins using pull-down assays and mass spectrometry. Muscle-type creatine kinase (M-CK), an essential enzyme for energy metabolism, was identified among the interacting proteins. Coexpression studies revealed that M-CK interacts with the central regions of MuRF1 including its B-box domain and that MuRF1 ubiquitinates M-CK, which triggers the degradation of M-CK via proteasomes. Consistent with MuRF1's role of adjusting CK activities in skeletal muscles by regulating its turnover in vivo, we found that CK levels were significantly higher in the MuRF1 KO mice than in WT mice. Glucocorticoid modulatory element binding protein-1 and 3-hydroxyisobutyrate dehydrogenase, previously identified as potential MuRF1-interacting proteins, were also ubiquitinated MuRF1-dependently. Taken together, these data suggest that, in a multifaceted manner, MuRF1 participates in the regulation of AA metabolism, including the control of free AAs and their supply to other organs under catabolic conditions, and in the regulation of ATP synthesis under metabolic-stress conditions where MuRF1 expression is induced.  相似文献   

5.
Muscle wasting is commonly seen in patients with hyperthyroidism and is mainly caused by stimulated muscle proteolysis. Loss of muscle mass in several catabolic conditions is associated with increased expression of the muscle‐specific ubiquitin ligases atrogin‐1 and MuRF1 but it is not known if atrogin‐1 and MuRF1 are upregulated in hyperthyroidism. In addition, it is not known if thyroid hormone increases the activity of proteolytic mechanisms other than the ubiquitin–proteasome pathway. We tested the hypotheses that experimental hyperthyroidism in rats, induced by daily intraperitoneal injections of 100 µg/100 g body weight of triiodothyronine (T3), upregulates the expression of atrogin‐1 and MuRF1 in skeletal muscle and stimulates lysosomal, including cathepsin L, calpain‐, and caspase‐3‐dependent protein breakdown in addition to proteasome‐dependent protein breakdown. Treatment of rats with T3 for 3 days resulted in an approximately twofold increase in atrogin‐1 and MuRF1 mRNA levels. The same treatment increased proteasome‐, cathepsin L‐, and calpain‐dependent proteolytic rates by approximately 40% but did not influence caspase‐3‐dependent proteolysis. The expression of atrogin‐1 and MuRF1 remained elevated during a more prolonged period (7 days) of T3 treatment. The results provide support for a role of the ubiquitin–proteasome pathway in muscle wasting during hyperthyroidism and suggest that other proteolytic pathways as well may be activated in the hyperthyroid state. J. Cell. Biochem. 108: 963–973, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
The muscle-specific RING finger proteins MuRF1 and MuRF2 have been proposed to regulate protein degradation and gene expression in muscle tissues. We have tested the in vivo roles of MuRF1 and MuRF2 for muscle metabolism by using knockout (KO) mouse models. Single MuRF1 and MuRF2 KO mice are healthy and have normal muscles. Double knockout (dKO) mice obtained by the inactivation of all four MuRF1 and MuRF2 alleles developed extreme cardiac and milder skeletal muscle hypertrophy. Muscle hypertrophy in dKO mice was maintained throughout the murine life span and was associated with chronically activated muscle protein synthesis. During ageing (months 4-18), skeletal muscle mass remained stable, whereas body fat content did not increase in dKO mice as compared with wild-type controls. Other catabolic factors such as MAFbox/atrogin1 were expressed at normal levels and did not respond to or prevent muscle hypertrophy in dKO mice. Thus, combined inhibition of MuRF1/MuRF2 could provide a potent strategy to stimulate striated muscles anabolically and to protect muscles from sarcopenia during ageing.  相似文献   

7.
Skeletal myopathy is a hallmark of heart failure (HF) and has been associated with a poor prognosis. HF and other chronic degenerative diseases share a common feature of a stressed system: sympathetic hyperactivity. Although beneficial acutely, chronic sympathetic hyperactivity is one of the main triggers of skeletal myopathy in HF. Considering that β2‐adrenoceptors mediate the activity of sympathetic nervous system in skeletal muscle, we presently evaluated the contribution of β2‐adrenoceptors for the morphofunctional alterations in skeletal muscle and also for exercise intolerance induced by HF. Male WT and β2‐adrenoceptor knockout mice on a FVB genetic background (β2KO) were submitted to myocardial infarction (MI) or SHAM surgery. Ninety days after MI both WT and β2KO mice presented to cardiac dysfunction and remodelling accompanied by significantly increased norepinephrine and epinephrine plasma levels, exercise intolerance, changes towards more glycolytic fibres and vascular rarefaction in plantaris muscle. However, β2KO MI mice displayed more pronounced exercise intolerance and skeletal myopathy when compared to WT MI mice. Skeletal muscle atrophy of infarcted β2KO mice was paralleled by reduced levels of phosphorylated Akt at Ser 473 while increased levels of proteins related with the ubiquitin‐–proteasome system, and increased 26S proteasome activity. Taken together, our results suggest that lack of β2‐adrenoceptors worsen and/or anticipate the skeletal myopathy observed in HF.  相似文献   

8.
Loss of mechanical stress or unloading causes disuse osteoporosis that leads to fractures and deteriorates body function and affects mortality rate in aged population. This bone loss is due to reduction in osteoblastic bone formation and increase in osteoclastic bone resorption. MuRF1 is a muscle RING finger protein which is involved in muscle wasting and its expression is enhanced in the muscle of mice subjected to disuse condition such as hind limb unloading (HU). However, whether MuRF1 is involved in bone loss due to unloading is not known. We therefore examined the effects of MuRF1 deficiency on unloading-induced bone loss. We conducted hind limb unloading of MuRF1 KO mice and wild-type control mice. Unloading induced about 60% reduction in cancellous bone volume (BV/TV) in WT mice. In contrast, MuRF1 deficiency suppressed unloading-induced cancellous bone loss. The cortical bone mass was also reduced by unloading in WT mice. In contrast, MuRF1 deficiency suppressed this reduction in cortical bone mass. To understand whether the effects of MuRF1 deficiency suppress bone loss is on the side of bone formation or bone resorption, histomorphometry was conducted. Unloading reduced bone osteoblastic formation rate (BFR) in WT. In contrast, MuRF1 deficiency suppressed this reduction. Regarding bone resorption, unloading increased osteoclast number in WT. In contrast, MURF1 deficiency suppressed this osteoclast increase. These data indicated that the ring finger protein, MURF1 is involved in disuse-induced bone loss in both of the two major bone remodeling activities, osteoblastic bone formation and osteoclastic bone resorption.  相似文献   

9.
10.
Muscle growth is determined primarily by the balance between protein synthesis and degradation. When rates of protein synthesis are similar between individuals, protein degradation is critical in explaining differences in growth efficiency. Studies in mammals showed that muscle atrophy results from increased protein breakdown, and is associated with activation of the ubiquitin proteasome pathway, including induction of the muscle-specific ubiquitin protein ligase, MuRF1. Animals lacking MuRF1 are resistant to muscle atrophy. In fish, little is known about the role of the proteasome/MuRF pathway in muscle degradation. The objectives of this study were to: 1) clone and characterize MuRF genes in rainbow trout; and 2) determine expression of MuRF genes in association with starvation- and vitellogenesis-induced muscle atrophy in rainbow trout. We have identified full-length cDNA sequences for three MuRF genes (MuRF1, MuRF2, and MuRF3). These genes encode proteins with typical MuRF structural domains, including a RING-finger, a B-box and a Leucine-rich coiled-coil domain. RT-PCR analysis showed that MuRF genes are predominantly expressed in muscle and heart tissues. Real time PCR analysis revealed that expression of all MuRF genes is up-regulated during starvation and MuRF3 is up-regulated in vitellogenesis-associated muscle degradation. These results suggest that MuRF genes have an important role in fish muscle protein degradation. Further studies are warranted to assess the potential use of MuRF genes as tools to monitor fish muscle growth and degradation.  相似文献   

11.
Skeletal muscle exhibits great plasticity in response to altered activity levels, ultimately resulting in tissue remodelling and substantial changes in mass. Animal research would suggest that the ubiquitin proteasome system, in particular the ubiquitin ligases MAFbx/atrogin-1 and MuRF1, are instrumental to the processes underlying these changes. This review article therefore examines the role of proteasomal-mediated protein degradation in human skeletal muscle in health and disease. Specifically, the effects of exercise, disuse and inflammatory disease states on the ubiquitin proteasome system in human skeletal muscle are examined. The article also identifies several inconsistencies between published human studies and data obtained from animal models of muscle atrophy, highlighting the need for a more comprehensive examination of the molecular events responsible for modulating muscle mass in humans.  相似文献   

12.
Exposure to chronic hypoxia (CH) induces elevated pulmonary artery pressure/resistance, leading to an eventual maladaptive right ventricular hypertrophy (RVH). Muscle RING finger-1 (MuRF1) is a muscle-specific ubiquitin ligase that mediates myocyte atrophy and has been shown to play a role in left ventricular hypertrophy and altered cardiac bioenergetics in pressure overloaded hearts. However, little is known about the contribution of MuRF1 impacting RVH in the setting of CH. Therefore, we hypothesized that MuRF1 deletion would enhance RVH compared to their wild-type littermates, while cardiac-specific overexpression would reduce hypertrophy following CH-induced pulmonary hypertension. We assessed right ventricular systolic pressure (RVSP), right ventricle to left ventricle plus septal weight ratio (RV/LV+S) and hematocrit (Hct) following a 3-wk isobaric CH exposure. Additionally, we conducted dual-isotope SPECT/CT imaging with cardiac function agent 201Tl-chloride and cell death agent 99mTc-annexin V. Predictably, CH induced pulmonary hypertension, measured by increased RVSP, RV/LV+S and Hct in WT mice compared to normoxic WT mice. Normoxic WT and MuRF1-null mice exhibited no significant differences in RVSP, RV/LV+S or Hct. CH-induced increases in RVSP were also similar between WT and MuRF1-null mice; however, RV/LV+S and Hct were significantly elevated in CH-exposed MuRF1-null mice compared to WT. In cardiac-specific MuRF1 overexpressing mice, RV/LV+S increased significantly due to CH exposure, even greater than in WT mice. This remodeling appeared eccentric, maladaptive and led to reduced systemic perfusion. In conclusion, these results are consistent with an atrophic role for MuRF1 regulating the magnitude of right ventricular hypertrophy following CH-induction of pulmonary hypertension.  相似文献   

13.
Glucocorticoids (GCs) are important regulators of skeletal muscle mass, and prolonged exposure will induce significant muscle atrophy. To better understand the mechanism of skeletal muscle atrophy induced by elevated GC levels, we examined three different models: exogenous synthetic GC treatment [dexamethasone (DEX)], nutritional deprivation, and denervation. Specifically, we tested the direct contribution of the glucocorticoid receptor (GR) in skeletal muscle atrophy by creating a muscle-specific GR-knockout mouse line (MGR(e3)KO) using Cre-lox technology. In MGR(e3)KO mice, we found that the GR is essential for muscle atrophy in response to high-dose DEX treatment. In addition, DEX regulation of multiple genes, including two important atrophy markers, MuRF1 and MAFbx, is eliminated completely in the MGR(e3)KO mice. In a condition where endogenous GCs are elevated, such as nutritional deprivation, induction of MuRF1 and MAFbx was inhibited, but not completely blocked, in MGR(e3)KO mice. In response to sciatic nerve lesion and hindlimb muscle denervation, muscle atrophy and upregulation of MuRF1 and MAFbx occurred to the same extent in both wild-type and MGR(e3)KO mice, indicating that a functional GR is not required to induce atrophy under these conditions. Therefore, we demonstrate conclusively that the GR is an important mediator of skeletal muscle atrophy and associated gene expression in response to exogenous synthetic GCs in vivo and that the MGR(e3)KO mouse is a useful model for studying the role of the GR and its target genes in multiple skeletal muscle atrophy models.  相似文献   

14.
Inhibitors of myostatin, a negative regulator of skeletal muscle mass, are being developed to mitigate aging-related muscle loss. Knock-out (KO) mouse studies suggest myostatin also affects adiposity, glucose handling and cardiac growth. However, the cardiac consequences of inhibiting myostatin remain unclear. Myostatin inhibition can potentiate cardiac growth in specific settings ( Morissette et al., 2006) , a concern because of cardiac hypertrophy is associated with adverse clinical outcomes. Therefore, we examined the systemic and cardiac effects of myostatin deletion in aged mice (27–30 months old). Heart mass increased comparably in both wild-type (WT) and KO mice. Aged KO mice maintained twice as much quadriceps mass as aged WT; however, both groups lost the same percentage (36%) of adult muscle mass. Dual-energy X-ray absorptiometry revealed increased bone density, mineral content, and area in aged KO vs. aged WT mice. Serum insulin and glucose levels were lower in KO mice. Echocardiography showed preserved cardiac function with better fractional shortening (58.1% vs. 49.4%, P  = 0.002) and smaller left ventricular diastolic diameters (3.41 vs. 2.71, P  = 0.012) in KO vs. WT mice. Phospholamban phosphorylation was increased 3.3-fold in KO hearts ( P  < 0.05), without changes in total phospholamban, sarco(endo)plasmic reticulum calcium ATPase 2a or calsequestrin. Aged KO hearts showed less fibrosis by Masson's Trichrome staining. Thus, myostatin deletion does not affect aging-related increases in cardiac mass and appears beneficial for bone density, insulin sensitivity and heart function in senescent mice. These results suggest that clinical interventions designed to inhibit skeletal muscle mass loss with aging could have beneficial effects on other organ systems as well.  相似文献   

15.
16.
The hypothesis of the present study was that rats subjected to short-term unilateral hindlimb immobilization would incur skeletal muscle wasting and concomitant alterations in protein synthesis, controllers of translation, and indexes of protein degradation. Rats were unilaterally casted for 1, 3, or 5 days to avoid complications associated with other disuse models. In the casted limb, gastrocnemius wet weight decreased 12% after 3 days and thereafter remained constant. In contrast, the contralateral control leg displayed a steady growth rate over time. The rate of protein synthesis and translational efficiency were unchanged in the immobilized muscle at day 5. The total amount and phosphorylation state of regulators of translational initiation and elongation were unaltered. The mRNA contents of polyubiquitin and the ubiquitin ligases muscle atrophy F-box (MAFbx)/Atrogin-1 and muscle RING finger 1 (MuRF1) were elevated in immobilized muscle at all time points, with peak expression occurring at day 3. Daily injection of the type II glucocorticoid receptor antagonist RU-486 did not prevent decreases in gastrocnemius wet weight nor increases in mRNA for MAFbx/Atrogin-1 and MuRF1. However, in vivo administration of the proteasome inhibitor Velcade prevented 53% of wet weight loss associated with 3 days of immobilization. These data suggest that the loss of skeletal muscle mass in this model of disuse appears to be glucocorticoid independent, can be partially rescued with a potent proteasome inhibitor, and is associated with enhanced mRNA expression of multiple factors that contribute to ubiquitin- proteasome-dependent degradation and are likely to control the remodeling of immobilized skeletal muscle during atrophy.  相似文献   

17.
Progressive muscle wasting, also known as myopathy or muscle atrophy is a debilitating and life-threatening disorder. Myopathy is a pathological condition of many diseases including cancer, diabetes, COPD, and AIDS and is a natural consequence of inactivity and aging (sarcopenia). Muscle atrophy occurs when there is a net loss of muscle mass resulting in a change in the balance between protein synthesis and protein degradation. The ubiquitin pathway and specific ubiquitin pathway enzymes have been directly implicated in the progression of atrophy. The ubiquitin E3 ligase Muscle-specific RING Finger E3 ligase (MuRF1) is upregulated and increases protein degradation and muscle wasting in numerous muscle atrophy models. The inhibition of MuRF1 could be a novel mechanism to prevent or reverse muscle wasting associated with various pathologies. We screened a small molecule library for inhibitors to MuRF1 activity and identified P013222, an inhibitor of MuRF1 autoubiquitylation. Further, P013222 was shown to inhibit MuRF1-dependent substrate ubiquitylation, and was active in inhibiting MuRF1 in a cellular atrophy model. Thus MuRF1 can be targeted in a specific manner and produce positive results in cellular atrophy models.  相似文献   

18.
Muscle atrophy is caused by accelerated protein degradation and occurs in many pathological states. Two muscle-specific ubiquitin ligases, MAFbx/atrogin-1 and muscle RING-finger 1 (MuRF1), are prominently induced during muscle atrophy and mediate atrophy-associated protein degradation. Blocking the expression of these two ubiquitin ligases provides protection against muscle atrophy. Here we report that miR-23a suppresses the translation of both MAFbx/atrogin-1 and MuRF1 in a 3'-UTR-dependent manner. Ectopic expression of miR-23a is sufficient to protect muscles from atrophy in vitro and in vivo. Furthermore, miR-23a transgenic mice showed resistance against glucocorticoid-induced skeletal muscle atrophy. These data suggest that suppression of multiple regulators by a single miRNA can have significant consequences in adult tissues.  相似文献   

19.
A lack of the REDD1 promotes dysregulated growth signaling, though little has been established with respect to the metabolic role of REDD1. Therefore, the goal of this study was to determine the role of REDD1 on glucose and insulin tolerance, as well as insulin stimulated growth signaling pathway activation in skeletal muscle. First, intraperitoneal (IP) injection of glucose or insulin were administered to REDD1 wildtype (WT) versus knockout (KO) mice to examine changes in blood glucose over time. Next, alterations in skeletal muscle insulin (IRS-1, Akt, ERK 1/2) and growth (4E-BP1, S6K1, REDD1) signaling intermediates were determined before and after IP insulin treatment (10 min). REDD1 KO mice were both glucose and insulin intolerant when compared to WT mice, evident by higher circulating blood glucose concentrations and a greater area under the curve following IP injections of glucose or insulin. While the REDD1 KO exhibited significant though blunted insulin-stimulated increases (p < 0.05) in Akt S473 and T308 phosphorylation versus the WT mice, acute insulin treatment has no effect (p < 0.05) on REDD1 KO skeletal muscle 4E-BP1 T37/46, S6K1 T389, IRS-1 Y1222, and ERK 1/2 T202/Y204 phosphorylation versus the WT mice. Collectively, these novel data suggest that REDD1 has a more distinct role in whole body and skeletal muscle metabolism and insulin action than previously thought.  相似文献   

20.
Under various pathophysiological muscle-wasting conditions, such as diabetes and starvation, a family of ubiquitin ligases, including muscle-specific RING-finger protein 1 (MuRF1), are induced to target muscle proteins for degradation via ubiquitination. We have generated transgenic mouse lines over-expressing MuRF1 in a skeletal muscle-specific fashion (MuRF1-TG mice) in an attempt to identify the in vivo targets of MuRF1. MuRF1-TG lines were viable, had normal fertility and normal muscle weights at eight weeks of age. Comparison of quadriceps from MuRF1-TG and wild type mice did not reveal elevated multi-ubiquitination of myosin as observed in human patients with muscle wasting. Instead, MuRF1-TG mice expressed lower levels of pyruvate dehydrogenase (PDH), a mitochondrial key enzyme in charge of glycolysis, and of its regulator PDK2. Furthermore, yeast two-hybrid interaction studies demonstrated the interaction of MuRF1 with PDH, PDK2, PDK4, PKM2 (all participating in glycolysis) and with phosphorylase β (PYGM) and glycogenin (both regulating glycogen metabolism). Consistent with the idea that MuRF1 may regulate carbohydrate metabolism, MuRF1-TG mice had twofold elevated insulin blood levels and lower hepatic glycogen contents. To further examine MuRF1's role for systemic carbohydrate regulation, we performed glucose tolerance tests (GTT) in wild type and MuRF1-TG mice. During GTT, MuRF1-TG mice developed striking hyperinsulinaemia and hepatic glycogen stores, that were depleted at basal levels, became rapidly replenished. Taken together, our data demonstrate that MuRF1 expression in skeletal muscle re-directs glycogen synthesis to the liver and stimulates pancreatic insulin secretion, thereby providing a regulatory feedback loop that connects skeletal muscle metabolism with the liver and the pancreas during metabolic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号