首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
肝型脂肪酸结合蛋白(liver-type fatty acid binding protein,L-FABP,FABPI)是脂肪酸结合蛋白家族的成员之一,主要在肝脏、小肠、肾脏及胰腺等组织细胞中有表达.研究发现,L-FABP与脂肪酸的摄取、转运、代谢调节有关.近年研究表明,肝型脂肪酸结合蛋白(L-FABP)与肿瘤、肾脏疾病、脂肪肝、肥胖、糖尿病等多种疾病的发生发展密切相关.本文就肝型脂肪酸结合蛋白的分子结构、功能以及与疾病的关系作一综述.  相似文献   

2.
鸡脂肪酸结合蛋白基因的克隆和测序分析   总被引:17,自引:1,他引:16  
根据哺乳动物脂肪酸结合蛋白基因序列设计一对引物对鸡基因组进行PCR扩增,将163bp扩增片段进行克隆和测序,并与猪的脂肪酸结合蛋白(fatty acid binding protein,FABP)基因序列进行同源性比较。该基因因片段与猪的心脏脂肪酸结合蛋白(heart fatty acid binding protein,H-FABP)基因有68%的同源性,与猪的脂肪型脂肪酸结合蛋白(adipocyte fatty acid binding protein,A-FABP)基因有75%的同源性,演绎成氨基酸之后与猪的脂肪型脂肪酸结合蛋白相应的氨基酸有75%的同源性。Northern结果表明该基因只在脂肪组织中表达。  相似文献   

3.
肌肉(骨骼肌)组织对脂肪酸的利用水平是影响机体能量稳态的关键因素.肌肉摄取的长链脂肪酸(long chain fatty acids,LCFAs)主要依赖细胞膜载体蛋白协助的跨膜转运过程.近年来,一系列与脂肪酸转运相关的膜蛋白被相继克隆鉴定,其中在肌肉中大量表达的有脂肪酸转运蛋白-1(fatty acid transport protein-1,FATP-1)、膜脂肪酸结合蛋白(plasma membrane fatty acid binding protein,FABPpm)、脂肪酸转位酶(fatty acid translocase,FAT/CD36)和小窝蛋白-1(caveolin-1).研究上述肌肉脂肪酸转运膜蛋白的结构功能、调控机制及相互关系,可能为肥胖等脂类代谢紊乱疾病的诊治提供新的手段.  相似文献   

4.
钟敏  吴洁 《生物磁学》2011,(7):1379-1381
脂肪细胞型脂肪酸结合蛋白(adipocyte fatty acid binding protein,AFABP/aP2)作为脂肪酸结合蛋白(FABPS)超家族成员之一,广泛存在于各种正常的组织细胞中,参与脂肪酸贮存,运输与降解等过程。近年来,对脂肪细胞型脂肪酸结合蛋白的研究已成为热点,本文就其主要特征及其与各类疾病的关系作一简要综述。  相似文献   

5.
脂肪细胞型脂肪酸结合蛋白的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
脂肪细胞型脂肪酸结合蛋白(adipocyte fatty acid binding protein,AFABP/aP2)作为脂肪酸结合蛋白(FABPS)超家族成员之一,广泛存在于各种正常的组织细胞中,参与脂肪酸贮存,运输与降解等过程。近年来,对脂肪细胞型脂肪酸结合蛋白的研究已成为热点,本文就其主要特征及其与各类疾病的关系作一简要综述。  相似文献   

6.
脂肪酸结合蛋白(fatty acid binding proteins,FABPs)家族目前已知类型有12种,主要表达在哺乳动物的各种组织中,具有组织表达的特异性。脂肪酸结合蛋白的主要功能是进行脂肪酸的转运,特别是多不饱和脂肪酸的转运。脂肪酸结合蛋白还具有许多其他的生物学功能,如影响血管的生成和细胞的增殖分化等。而在哺乳动物胎盘形成的过程中,FABPs也起着重要作用。FABPs还与许多代谢综合征等疾病的发生发展密切相关。现主要对脂肪酸结合蛋白的功能、与生殖过程和疾病的关系作一综述。  相似文献   

7.
分化聚类36(cluster of differentiation 36,CD36)是一种位于细胞表面的膜蛋白受体,可以结合并转运脂肪酸。内质网膜蛋白4B (Nogo-B)在肝脏中调控脂肪酸代谢而影响肝癌的发展。目前并不清楚CD36和Nogo-B的相互作用是否能够影响乳腺癌细胞的增殖和迁移。本研究在三阴性乳腺癌(triple-negative breast cancer,TNBC)细胞中同时干预CD36与Nogo-B的表达来探索它们对细胞增殖与迁移的影响。结果表明在三阴性乳腺癌细胞中,单独抑制CD36或Nogo-B的表达都能够抑制细胞的增殖与迁移;同时抑制CD36与Nogo-B的表达时,这种抑制效果更加明显,且Vimentin、B细胞淋巴瘤-2(B-cell lympoma-2,BCL2)和增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)的表达受到抑制。在小鼠移植瘤模型中,E0771细胞转染CD36或Nogo-B的siRNA后成瘤能力降低;同时敲减CD36和Nogo-B时,肿瘤生长速度显著减慢。机制研究发现,抑制CD36和Nogo-B表达能够抑制脂肪酸结合蛋白4(fatty acid binding protein 4,FABP4)和脂肪酸转运蛋白4(fatty acid transport protein 4,FATP4) mRNA的含量,同时CD36和Nogo-B过表达刺激的细胞增殖被FABP4的siRNA降低,预示着抑制乳腺癌细胞中CD36与Nogo-B的表达可能通过抑制脂肪酸的吸收和转运而抑制细胞的生长和迁移。此外,抑制CD36与Nogo-B的表达可激活P53-P21-Rb信号通路,参与抑制CD36与Nogo-B表达而抑制的细胞增殖与迁移。本研究证明同时抑制CD36和Nogo-B的表达能够协同抑制三阴性乳腺癌细胞的增殖和迁移,为临床抗三阴性乳腺癌药物的开发提供了新的靶点。  相似文献   

8.
目的探讨高糖环境中人肾小球系膜细胞(human mesangial cells,HMC)SREBP-1、FAS表达。方法体外培养HMC细胞,随机分为正常糖组、高糖组,免疫细胞化学、Western Blot和RT-PCR方法检测固醇调节元件结合蛋白1(sterol regulatory element binding protein-1,SREBP-1)和脂肪酸合酶(fatty acid synthase,FAS)表达。采用脂质体转染技术将特异性SREBP-1质粒引入细胞内并进行表达,进一步采用RT-PCR方法检测脂肪酸合酶FAS的表达。结果与正常糖组比较,高糖培养的人肾小球系膜细胞固醇调节元件结合蛋白1前体和成熟体以及FAS mRNA表达均升高,差异有统计学意义。质粒转染后HMC细胞经免疫组化和Western blot检测证实特异性质粒能够在细胞内高表达SREBP-1蛋白,进一步对FAS的检测证实了FAS mRNA表达升高。结论高糖可诱导人肾小球系膜细胞固醇调节元件结合蛋白1和FAS表达增强且SREBP-1和FAS之间存在有直接关系。  相似文献   

9.
长链脂肪酸在哺乳动物体内具有广泛的生理功能,特别是在生物膜的形成和动态特性维持中发挥着不可或缺的作用,同时,作为能量产生的重要原料,长链脂肪酸在保持心脏和骨骼肌正常功能方面也具有极其重要的作用.脂肪酸转运蛋白家族(fatty acid transport proteins,FATPs)是一组膜蛋白,在心脏、肝脏、肌肉和小肠等脂肪酸代谢活跃的组织器官中均有表达.已有研究表明,FATPs在长链脂肪酸的摄取和代谢调节中发挥着重要作用,现对FATPs的组织分布、结构特点、功能、作用机制及其与人类疾病的关系等方面进行综述.  相似文献   

10.
心型脂肪酸结合蛋白(heart fatty acid binding protein, H-FABP)的水平与影响肉质性状的肌内脂肪含量有关,鱼类H-FABP的表达水平对其肌内脂肪含量是否相关仍未见报道.本研究获得齐口裂腹鱼和鲤鱼心脏型脂肪酸结合蛋白基因序列,利用半定量RT-PCR分析其表达特性并测定肌内脂肪含量,比较H-FABP基因在不同生活环境的2种鲤科鱼肌内脂肪沉积中的作用.结果显示,齐口裂腹鱼和鲤鱼H-FABP基因的ORF为402 bp,编码133个氨基酸,它们的氨基酸序列相同,与人、猪、小鼠、斑马鱼、大西洋鲑、虹鳟等的同源性为71.3%~ 90%;H-FABP基因在2种鲤科鱼的心、肌肉、脂肪、肝、脑、脾、肾和鳃等组织中均有表达,肝中的表达量显著高于其它组织(P<0.05),H-FABP基因的肌肉表达谱在齐口裂腹鱼和鲤鱼中存在明显差异:齐口裂腹鱼中的表达随生长发育呈上升趋势,在大体重鱼(500 g)中的表达显著高于小体重鱼(P<0.05),其表达与肌内脂肪含量呈显著正相关(R=0.370,P<0.05);H-FABP基因在鲤鱼生长发育中呈下降趋势,而小体重鱼(50~60 g)中的表达显著高于其它大体重鱼(P<0.05),其表达与肌内脂肪含量呈显著负相关(R=-7.083,P<0.01).据此推测,齐口裂腹鱼和鲤鱼肌肉组织H-FABP基因表达与肌内脂肪关联性的差异可能与2种鱼的生活环境不同有关.  相似文献   

11.
Summary We have studied the effects of Efamol evening primrose oil (EPO) on fatty acid-binding proteins (L-FABP) of rat liver. EPO contains 72% cis-linoleic acid and 9% cis-gamma linolenic acid. EPO has been clinically used for treatment of a number of diseases in humans and animals. EPO is also known to lower cholesterol level in humans and animals. Feeding of an EPO supplemented diet to rats (n = 9) for 2 months decreases the oleate binding capacity of purified L-FABP of rat liver whereas the palmitate binding activity was increased by 38%. However, EPO feeding did not alter the L-FABP concentrations significantly as measured by using the fluorescence fatty acid probe, dansylamino undecanoic acid. Endogenous fatty acid analysis of L-FABPs revealed significant qualititative and quantitative changes in fatty acid pattern after EPO feeding. EPO feeding decreased the endogenous palmitate level by 53% and oleate level by 64% in L-FABPs and also EPO feeding decreased the total endogenous fatty acid content from 62 nanomole per mg of protein to 42 nanomole per mg of L-FABP (n = 3).  相似文献   

12.
Summary Liver fatty acid-binding protein (L-FABP) is expressed in a declining gradient between the portal and central zones of the liver acinus. This paper discusses the results of experimental studies which address the questions: (a) What factors regulate L-FABP expression in liver and produce its acinar gradient? (b) What is the relationship between the acinar gradient of L-FABP and acinar gradients in the transport and metabolism of long-chain fatty acids? Both high-fat diets and clofibrate-treatment increase L-FABP proportionally at both extremes of the liver acinus and the small intestine, with preservation of the L-FABP gradient in both tissues. Female rats differ from males, however, in showing a greater hepatic abundance of L-FABP which is expressed almost equally throughout the acinus. Dietary studies show that L-FABP is induced with increased fatty acid flux derived from dietary fat but not from de novo hepatic fatty acid synthesis. Studies of the synthesis and utilization of fatty acids by hepatocytes isolated from the periportal and pericentral zones of the liver acinus suggest that the acinar gradient of L-FABP is not associated with differences in the instrinsic capacity of zone 1 and zone 3 hepatocytes to utilize or synthesize fatty acids. In addition, studies of the acinar uptake pattern of a fluorescent fatty acid derivative by isolated perfused livers indicate that the acinar distribution of L-FABP does not determine the pattern of fatty acid uptake in the intact acinus. Rather, the acinar gradient of L-FABP is most likely to represent a response to physiological conditions existing in the intact acinus which may include gradients in the flux of fatty acids, fatty acid metabolites and hormones.Abbreviations ALT Alanine Aminotransferase - FABP Fatty Acid Binding Protein - I-FABP Intestinal-type Fatty Acid Binding Protein - L-FABP Liver-type Fatty Acid Binding Protein - 12-NBD-stearate 12-(N-methyl)-N-(7-nitrobenzo-2-oxa-1, 3,-diazol-4-yl)amino)-octadecanoic acid  相似文献   

13.
Fatty acid-binding proteins (FABP) are abundant cytosolic proteins whose level is responsive to nutritional, endocrine, and a variety of pathological states. Although FABPs have been investigatedin vitro for several decades, little is known of their physiological function. Liver L-FABP binds both fatty acids and cholesterol. Competitive binding analysis and molecular modeling studies of L-FABP indicate the presence of two ligand binding pockets that accomodate one fatty acid each. One fatty acid binding site is identical to the cholesterol binding site. To test whether these observations obtainedin vitro were physiologically relevant, the cDNA encoding L-FABP was transfected into L-cells, a cell line with very low endogenous FABP and sterol carrier proteins. Uptake of both ligands did not differ between control cells and low expression clones. In contrast, both fatty acid uptake and cholesterol uptake were stimulated in the high expression cells. In high expression cells, uptake of fluorescent cis-parinaric acid was enhanced more than that of trans-parinaric acid. This is consistent with the preferential binding of cis-fatty acids to L-FABP but in contrast to the preferential binding of trans-parinaric acid to the L-cell plasma membrane fatty acid transporter (PMFABP). These data show that the level of cytosolic fatty acids in intact cells can regulate both the extent and specificity of fatty acid uptake. Last, sphingomyelinase treatment of L-cells released cholesterol from the plasma membrane to the cytoplasm and stimulated microsomal acyl-CoA: cholesteryl acyl transferase (ACAT). This process was accelerated in high expression cells. These observations show for the first time in intact cells that L-FABP, a protein most prevalent in liver and intestine where much fat absorption takes place, may have a role in fatty acid and cholesterol absorption.Abbreviations FABP fatty acid-binding protein - L-FABP liver fatty acid-binding protein - I-FABP intestinal fatty acid-binding protein - H-FABP heart fatty acid-binding protein - A-FABP adipocyte fatty acid-binding protein - PMFABP plasma membrane fatty acid-binding protein - SCP-2 sterol carrier protein-2 - Dehydroergosterol (DHE) d-5,7,9(11),22-ergostatetraene-3b-ol - cis-parinaric acid-9Z, 11E, 13E, 15Z-octatetraenoic acid - trans parinaric acid, 9E, 11E, 13E, 14E-octatetraenoic acid - BSA bovine serum albumin - KRH Krebs-Ringer-Henseleit buffer  相似文献   

14.
It was shown previously that the intestinal fatty acid binding protein (I-FABP) is not essential for the absorption of dietary fat. One notable feature of I-FABP deficiency was the enhancement of body weight gain in male mice but not in female mice. To explore a possible cause for this gender dimorphic effect, we examined the changes in expression of genes that encode liver fatty acid binding protein (L-FABP) and ileal lipid binding protein in the small intestine resulting from I-FABP deficiency. The results indicate that both L-FABP and ilbp levels are modestly increased in the small intestine of chow-fed mice lacking I-FABP. There was no discernible alteration of overall morphology or histology in the small intestine but changes in liver histology were evident in I-FABP deficient male mice. Glucose tolerance was also investigated in aged mice. I-FABP deficiency had no effect on glucose tolerance in male mice but it appeared to be improved in female mice. Thus, male and female mice clearly respond differently to the loss of I-FABP from the small intestine but the observed changes in the abundance of L-FABP and ilbp protein do not readily account for this phenomenon. (Mol Cell Boichem xxx: 1–8, 2005)  相似文献   

15.
The protective effects of Platycodi radix (PR), the root of Platycodon grandiflorum A. DC, on alcohol-induced fatty liver and possible mechanisms involved in this protection were investigated in rats. Administration of PR significantly prevented alcohol-induced elevation of serum and liver lipids. Furthermore, PR treatment normalized hepatic liver fatty acid binding protein (L-FABP) expression and cytochrome P450 2E1 (CYP2E1) activity in alcohol-treated rats. These results suggest that inhibition of CYP2E1 and regulation of L-FABP by PR play an important role in alcohol-induced hepatoprotection.  相似文献   

16.
17.
Among the large family of fatty acid binding proteins, the liver L-FABP is unique in that it not only binds fatty acids but also interacts with sterols to enhance sterol transfer between membranes. Nevertheless, the mechanism whereby L-FABP potentiates intermembrane sterol transfer is unknown. Both fluorescence and dialysis data indicate L-FABP mediated sterol transfer between L-cell fibroblast plasma membranes occurs by a direct membrane effect: First, dansylated-L-FABP (DNS-L-FABP) is bound to L-cell fibroblast plasma membranes as indicated by increased DNS-L-FABP steady state polarization and phase resolved limiting anisotropy. Second, coumarin-L-FABP (CPM-L-FABP) fluorescence lifetimes were significantly increased upon interaction with plasma membranes. Third, dialysis studies with3H-cholesterol loaded plasma membranes showed that L-FABP added to the donor compartment of the dialysis cell stimulated3H-cholesterol transfer whether or not the dialysis membrane was permeable to L-FABP. However, L-FABP mediated intermembrane sterol transfer did require a sterol binding site on L-FABP. Chemically blocking the ligand binding site also inhibited L-FABP activity in intermembrane sterol transfer. Finally, L-FABP did not act either as an aqueous carrier or in membrane fusion. The fact that L-FABP interacted with plasma membrane vesicles and required a sterol binding site was consistent with a mode of action whereby L-FABP binds to the membrane prior to releasing sterol from the bilayer.Abbreviations 3H-CHO [1,2-3H(N)]-cholesterol - ANTS 8-aminonaphthalene-1,3,6-trisulfonic acid - CF carboxyfluorescein - CHO cholesterol - CPM (coumarin maleimide) 7-diethylamino-3-(4-maleimidylphenyl)-4-methylcoumarin - cPNA cisparinaric acid - DHE (dehydroergosterol) 5,7,9(11),22-ergostatetraen-3-ol - DMF dimethyl formamide - DMPOPOP 1,4-bis[4-methyl-5-phenyl-2-oxazolyl]benzene - DNS (dansyl chloride) 5-dimethylaminonaphthalene-1-sulfonylchloride - DPX p-xylene-bis-pyridinium bromide - FBS fetal bovine serum - fluorescamine 4-phenylspiro[furan-2(3H), 1 phthalan]-3,3-dione - L-FABP liver fatty acid binding protein - NPG p-nitrophenylglyoxal - PIPES piperazine-N,N-bis(2-ethanesulfonic acid) - POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine - SUV small unilamellar vesicle(s) - TNM tetranitromethane This work was supported in part by the National Institutes of Health United States Public Health Service (GM31651 and DK41402) and the American Heart Association (Postdoctoral Fellowship to JKW). The helpful assistance of Dr. Scott M. Colles and Mr. Daniel R. Prows in isolating L-FABP was much appreciated.  相似文献   

18.
Summary FABPs in the various tissues play an important role in the intracellular fatty acid transport and metabolism. Reye's syndrome (RS) and multisystemic lipid storage (MLS) are human disorders characterized by a disturbance of lipid metabolism of unknown etiology. We investigated for the first time L-FABP in these two conditions. Affinity purified antibodies against chicken L-FABP were raised in rabbits, and found to cross-react specifically with partially purified human L-FABP. L-FABP content in liver samples of two patients with RS and MLS was investigated by immuno-histochemistry, SDS-PAGE and ELISA. L-FABP immuno-histochemistry showed increased reactivity in the liver of RS patient and normal reactivity in MLS liver. L-FABP increase in RS liver was confirmed by densitometry of SDS-PAGE and ELISA method. By these two methods the increase amounted to 180% and 199% (p < 0.02), respectively, as compared to controls. A possible role of L-FABP in the pathogenesis of RS is discussed.  相似文献   

19.
Liver and intestinal cytosol contain abundant levels of long chain fatty acyl-CoA binding proteins such as liver fatty acid binding protein (L-FABP) and acyl-CoA binding protein (ACBP). However, the relative function and specificity of these proteins in microsomal utilization of long chain fatty acyl-CoAs (LCFA-CoAs) for sequential transacylation of glycerol-3-phosphate to form phosphatidic acid is not known. The results showed for the first time that L-FABP and ACBP both stimulated microsomal incorporation of the monounsaturated oleoyl-CoA and polyunsaturated arachidonoyl-CoA 8–10-fold and 2–3-fold, respectively. In contrast, these proteins inhibited microsomal utilization of the saturated palmitoyl-CoA by 69% and 62%, respectively. These similar effects of L-FABP and ACBP on microsomal phosphatidic acid biosynthesis were mediated primarily through the activity of glycerol-3-phosphate acyltransferase (GPAT), the rate limiting step, rather than by protecting the long chain acyl-CoAs from microsomal hydrolase activity. In fact, ACBP but not L-FABP protected long chain fatty acyl-CoAs from microsomal acyl-CoA hydrolase activity in the order: palmitoyl-CoA>oleoyl-CoA>arachidonoyl-CoA. In summary, the data established for the first time a role for both L-FABP and ACBP in microsomal phosphatidic acid biosynthesis. By preferentially stimulating microsomal transacylation of unsaturated long chain fatty acyl-CoAs while concomitantly exerting their differential protection from microsomal acyl-CoA hydrolase, L-FABP and ACBP can uniquely function in modulating the pattern of fatty acids esterified to phosphatidic acid, the de novo precursor of phospholipids and triacylglycerols. This may explain in part the simultaneous presence of these proteins in cell types involved in fatty acid absorption and lipoprotein secretion.  相似文献   

20.
Although expression of liver fatty acid binding protein (L-FABP) modulates cell growth, it is not known if L-FABP also alters cell morphology and differentiation. Therefore, pluripotent embryonic stem cells were transfected with cDNA encoding L-FABP and a series of clones expressing increasing levels of L-FABP were isolated. Untransfected ES cells, as well as ES cells transfected only with empty vector, spontaneously differentiated from rounded adipocyte-like to fibroblast-like morphology, concomitant with marked reduction in expression of stage-specific embryonic antigen (SSEA-1). These changes in morphology and expression of SSEA-1 were greatest in ES cell clones expressing L-FABP above a threshold level. Immunofluorescence confocal microscopy revealed that L-FABP was primarily localized in a diffuse-cytosolic pattern along with a lesser degree of punctate L-FABP expression in the nucleus. Nuclear localization of L-FABP was preferentially increased in clones expressing higherlevels of L-FABP. In summary, L-FABP expression altered ES cell morphology and expression of SSEA-1. Taken together with the fact that L-FABP was detected in the nucleus, these data suggested that L-FABP may play a more direct, heretofore unknown, role in regulating ES cell differentiation by acting in the nucleus as well as cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号