首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is described for the determination of the two enantiomers of mirtazapine in human blood plasma by high-performance liquid chromatography. Measurements were performed on drug free plasma spiked with mirtazapine and used to prepare and validate standard curves. Levels of enantiomers of mirtazapine were also measured in patients being treated for depression with racemic mirtazapine. Mirtazapine was separated from plasma by solid-phase extraction using CERTIFY columns. Chromatographic separation was achieved using a Chiralpak AD column and pre-column and compounds were detected by their absorption at 290 nm. Imipramine was used as an internal standard. The assay was validated for each analyte in the concentration range 10–100 ng/ml. The coefficient of variance was 16% and 5.5% for(+)-mirtazapine for 10 and 100 ng/ml control specimens respectively and 15% and 7.3% for mirtazapine for 10 and 100 ng/ml control specimens respectively. This assay is appropriate for use in the clinical range. The range of plasma mirtazapine concentrations from eleven patients taking daily doses of 30–45 mg of racemate was <5 to 69 ng/ml for (+)-mirtazapine and 13–88 ng/ml for (−)-mirtazapine for blood specimens collected 10–17.5 h after taking the dose.  相似文献   

2.
A high-performance liquid chromatographic method is described for the determination of free captopril in human plasma. (NAC) was used as an internal standard. Plasma samples were immediately derivatized with N-(1-pyrenyl)maleimide (NPM) and stabilized with 11 M HCl. The drug of interest was isolated using a liquid-liquid extraction with ethyl acetate and separation was obtained using a reversed-phase column under isocratic conditions with fluorescence detection. The sample volume was 150 μl plasma. The intra- and inter-day accuracy and precision, determined as relative error and coefficient of variation respectively, were lessthan 10%. The lower limit of quantitation, based on standards with acceptable coefficients of variation, was 25 ng/ml. No endogenous compounds were found to interfere. The linearity was assessed in the range of 25–600 ng/ml. This method has been demonstrated to be suitable for pharmacokinetic studies in humans.  相似文献   

3.
A high-performance liquid chromatographic (HPLC) method for the simultaneous determination of cilostazol, a quinolinone derivative, and its known metabolites OPC-13015, OPC-13213, OPC-13217, OPC-13366, OPC-13269, OPC-13326 and OPC-13388 in human plasma was developed and validated. Cilostazol, its metabolites and two internal standards, OPC-3930 and OPC-13112, were extracted from human plasma by a combination of liquid–liquid and liquid–solid phase extractions, with combined organic solvents of n-butanol, methanol, chloroform, methyl-tert.-butyl ether, and a Sep-Pak silica column. The combined extract was then evaporated and the residue was reconstituted in ammonium acetate buffer (pH 6.5). The reconstituted solution was injected onto a HPLC system and was subjected to reversed-phase HPLC on a 5 μm ODS-80TM column to obtain quality chromatograph and good peak resolution. A gradient mobile phase with different percentages of acetonitrile in acetate buffer (pH 6.5) was used for the resolution of analytes. Cilostazol, its metabolites and the two internal standards were well separated at baseline from each other with resolution factor being 74 and 138. This HPLC method was demonstrated to be specific for all analytes of interest with no significant interference from the endogenous substances of human plasma. The lower limit of quantitation was 20 ng/ml for cilostazol and all metabolites. The method was validated initially for an extended linear range of 20–600 ng/ml for all metabolites and cilostazol, and has been revised later for a linear range of 20–1200 ng/ml for cilostazol and two major and active metabolites OPC-13015 and OPC-13213. The overall accuracy (relative recovery) of this method was established to be 98.5% to 104.9% for analytes with overall precision (CV) being 1.5% to 9.0%. The long-term stability of clinical plasma samples was established for at least one year at −20°C. Two internal standards of OPC-3930 and OPC-13112 were evaluated and validated. However, the data indicated that there was no significant difference for all accuracy and precision obtained by using either OPC-3930 or OPC-13112. OPC-3930 was chosen as the internal standard for the analysis of plasma samples from clinical studies due to its shorter retention time. During the validation standard curves had correlation coefficients greater than or equal to 0.998 for cilostazol and the seven metabolites. These data clearly demonstrate the reliability and reproducibility of the method.  相似文献   

4.
A rapid, selective, sensitive and reproducible HPLC–electrospray tandem mass spectrometric method has been developed for the analysis of novel triazole antifungal agents, SYN-2869 and its derivatives (SYN-2836, SYN-2903 and SYN-2921), in rat plasma using SYN-2506 as an internal standard. Isolation of these compounds from plasma and sample desalting were performed by a simple extraction procedure involving protein precipitation, vacuum-drying and reconstitution with acetonitrile. For all the agents, linearity was observed over the range of 10–10 000 ng/ml (r≥0.996) and the limit of quantitation was 10 ng/ml using a 100-μl plasma volume. A measurement rate of 400–500 samples/day/instrument could be achieved using this method.  相似文献   

5.
A validated HPLC method for the simultaneous quantitative analysis of the antidepressant mirtazapine and its demethyl metabolite in human plasma is described. The active constituents including internal standard were extracted from 1 ml of plasma with hexane and separated on a μBondapak Phenyl column with fluorescence detection. The lower limit of quantification was 0.5 ng/ml, without significant interferences with endogenous or exogenous components. Inter- and intra-assay accuracy determined at quality control levels of 2, 10 and 80 ng/ml were, respectively, 104.6–113.7% and 105.1–117.7% for mirtazapine, and 91.7–99.3% and 89.9–103.7% for demethylmirtazapine. In all cases the precision was below 6.8%.  相似文献   

6.
A highly sensitive and selective liquid chromatography–atmospheric pressure chemical ionization tandem mass spectrometry assay was developed and validated for simultaneous determination of epimeric budesonide (BUD) and fluticasone propionate (FP) in plasma. The drugs were isolated from human plasma using C18 solid-phase extraction cartridges, and epimeric BUD was acetylated with a mixture of 12.5% acetic anhydride and 12.5% triethylamine in acetonitrile to form the 21-acetyl derivatives following the solid-phase extraction. Deuterium-labelled BUD acetate with an isotopic purity >99% was synthesized and used as the internal standard. The assay was linear over the ranges 0.05–10.0 ng/ml for epimeric BUD, and 0.02–4.0 ng/ml for FP. The inter- and intra-day relative standard deviations were <14.3% in the assay concentration range.  相似文献   

7.
Aplidine (dehydrodidemnin B) is a new marine-derived depsipeptide with a powerful cytotoxic activity, which is under early clinical investigation in Europe and in the US. In order to investigate the pharmacokinetic properties of this novel drug, an HPLC–tandem mass spectrometry method was developed for the determination of aplidine in biological samples. Didemnin B, a hydroxy analogue, was used as internal standard. After protein precipitation with acetonitrile and extraction with chloroform, aplidine was chromatographed with a RP octadecylsilica column using a water–acetonitrile linear gradient in the presence of formic acid at the flow-rate of 500 μl/min. The method was linear over a 5–100 ng/ml range (LOD=0.5 ng/ml) in plasma and over a 1.25–125 ng/ml range (LOD=0.2 ng/ml) in urine with precision and accuracy below 14.0%. The intra- and inter-day precision and accuracy were below 12.5%. The extraction procedure recoveries for aplidine and didemnin B were 69% and 68%, respectively in plasma and 91% and 87%, respectively in urine. Differences in linearity, LOQ, LOD and recoveries between plasma and urine samples seem to be matrix-dependent. The applicability of the method was tested by measuring aplidine in rat plasma and urine after intravenous treatment.  相似文献   

8.
A HPLC method with automated column switching and UV detection is described for the simultaneous determination of retinol and major retinyl esters (retinyl palmitate, retinyl stearate, retinyl oleate and retinyl linoleate) in human plasma. Plasma (0.2 ml) was deproteinized by adding ethanol (1.5 ml) containing the internal standard retinyl propionate. Following centrifugation the supernatant was directly injected onto the pre-column packed with LiChrospher 100 RP-18 using 1.2% ammonium acetate–acetic acid–ethanol (80:1:20, v/v) as mobile phase. The elution strength of the ethanol containing sample solution was reduced by on-line supply of 1% ammonium acetate–acetic acid–ethanol (100:2:4, v/v). The retained retinol and retinyl esters were then transferred to the analytical column (Superspher 100 RP-18, endcapped) in the backflush mode and chromatographed under isocratic conditions using acetonitrile–methanol–ethanol–2-propanol (1:1:1:1, v/v) as mobile phase. Compounds of interest were detected at 325 nm. The method was linear in the range 2.5–2000 ng/ml with a limit of quantification for retinol and retinyl esters of 2.5 ng/ml. Mean recoveries from plasma were 93.4–96.5% for retinol (range 100–1000 ng/ml) and 92.7–96.0% for retinyl palmitate (range 5–1000 ng/ml). Inter-assay precision was ≤5.1% and ≤6.3% for retinol and retinyl palmitate, respectively. The method was successfully applied to more than 2000 human plasma samples from clinical studies. Endogenous levels of retinol and retinyl esters determined in female volunteers were in good accordance with published data.  相似文献   

9.
A rapid, selective and sensitive HPLC–tandem mass spectrometry method was developed and validated for simultaneous determination of flupirtine and its active metabolite D-13223 in human plasma. The analytes and internal standard diphenhydramine were extracted from plasma samples by liquid–liquid extraction, and chromatographed on a C18 column. The mobile phase consisted of acetonitrile–water–formic acid (60:40:1, v/v/v), at a flow rate of 0.5 ml/min. Detection was performed on a triple quadrupole tandem mass spectrometer by selected reaction monitoring (SRM) mode via atmospheric pressure chemical ionization (APCI). The method has a limit of quantitation of 10 ng/ml for flupirtine and 2 ng/ml for D-13223, using 0.5-ml plasma sample. The linear calibration curves were obtained in the concentration range of 10.0–1500.0 ng/ml for flupirtine and 2.0–300.0 ng/ml for D-13223. The intra- and inter-run precision (RSD), calculated from quality control (QC) samples was less than 7.2% for flupirtine and D-13223. The accuracy as determined from QC samples was less than 5% for the analytes. The overall extraction recoveries of flupirtine and D-13223 were determined to be about 66% and 78% on average, respectively. The method was applied for the evaluation of the pharmacokinetics of flupirtine and active metabolite D-13223 in volunteers following peroral administration.  相似文献   

10.
Attempts to determine a safe plasma concentration of ropivacaine and bupivacaine in neonates have not been consistent. This might be due to an underestimation of free drug in small plasma samples by currently used techniques, e.g., ultrafiltration. We describe a simple microscale equilibrium–dialysis technique for the separation of free and bound ropivacaine and bupivacaine. The free drug in the dialysate was determined using solid-phase extraction and liquid chromatography with mass spectrometry. Pentycaine was used as an internal standard and added to the dialysates prior to extraction. The method is very selective and sensitive, as no compounds other than the analyte and internal standard were observed in the resulting chromatograms at low ng/ml levels. The limit of quantitation was 2.5 ng/ml. The calibration curve was linear in the range of 2 to 1000 ng/ml. The precision of the whole procedure was 8.1% (n=10) and 6.5% (n=7) for ropivacaine and bupivacaine, respectively. The method was tested in the analysis of plasma samples taken from neonates who had received epidural injections.  相似文献   

11.
A simple and sensitive HPLC method has been developed for the determination of marbofloxacin (MAR) in plasma. Sample preparations were carried out by adding phosphate buffer (pH 7.4, 0.1 M), followed by extraction with trichloromethane. MAR and the internal standard, enrofloxacin (ENR), were separated on a reversed-phase column and eluted with aqueous solution–acetonitrile (80:20). The fluorescence of the column effluent was monitored at λex=338 and λem=425 nm. The retention times were 2.20 and 3.30 min for MAR and ENR, respectively. The method was shown to be linear from 15 to 1500 ng/ml (r2=0.999). The detection limit was 15 ng/ml. Mean recovery was determined as 90% by the analysis of plasma standards containing 150, 750, and 1500 ng/ml. Inter- and intra-assay precisions were 3.3% and 2.7%, respectively.  相似文献   

12.
Morphine (MOR) is an opioid analgesic used for the treatment of moderate to severe pain. MOR is extensively metabolized to morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G). A rapid and sensitive method that was able to reliably detect at least 0.5 ng/ml of MOR and 1.0 ng/ml of M6G was required to define their pharmacokinetic profiles. An LC–MS–MS method was developed in our laboratory to quantify all three analytes with the required sensitivity and a rapid turnaround time. A solid-phase extraction (SPE) was used to isolate MOR, M3G, M6G, and their corresponding deuterated internal standards from heparinized plasma. The extract was injected on a LC tandem mass spectrometer with a turbo ion-spray interface. Baseline chromatographic separation among MOR, M3G, and M6G peaks was achieved on a silica column with an aqueous organic mobile phase consisting of formic acid, water, and acetonitrile. The total chromatographic run time was 3 min per injection, with retention times of 1.5, 1.9 and 2.4 min for MOR, M6G, and M3G, respectively. Chromatographic separation of M3G and M6G from MOR was paramount in establishing the LC–MS–MS method selectivity because of fragmentation of M3G and M6G to MOR at the LC–MS interface. The standard curve range in plasma was 0.5–50 ng/ml for MOR, 1.0–100 ng/ml for M6G, and 10–1000 ng/ml for M3G. The inter-day precision and accuracy of the quality control (QC) samples were <7% relative standard deviation (RSD) and <6% relative error (R.E.) for MOR, <9% RSD and <5% R.E. for M6G, and <3% RSD and <6% R.E. for M3G. Analyte stability during sample processing and storage were established. Method ruggedness was demonstrated by the reproducible performance from multiple analysts using several LC–MS–MS systems to analyze over one thousand samples from clinical trials.  相似文献   

13.
A simple, sensitive and reproducible high-performance liquid chromatography (HPLC) method was developed for the determination of terazosin in human plasma. The method involves a one-step single solvent extraction procedure using dichloromethane with a 0.25 ml plasma sample. Recovery values were all greater than 90% over the concentration range 0.25–100 ng/ml. Terazosin was found to adsorb to glass or plastic tubes, but this could be circumvented by using disposable plastic tubes. Also, rinsing the injector port with methanol after each injection helped to prevent any carry-over effect. The internal standard, prazosin, did not exhibit this problem. The method has a quantification limit of 0.25 ng/ml. The within- and between-day coefficient of variation and accuracy values were all less than 7% over the concentration range 0.25–100 ng/ml and hence the method is suitable for use in pharmacokinetic studies of terazosin.  相似文献   

14.
A high-performance liquid chromatographic method was developed for the determination in plasma (400-μl sample) of a vinca alkaloid, vinorelbine. The analysis was performed by using an octadecylsilane column and heptanesulfonic acid as ion-pairing agent. This method used a new internal standard, teniposide, that permitted a good compromise between sensitivity and retention times (10.6 and 15.5 min for teniposide and vinorelbine, respectively). After a liquid-liquid extraction with diethyl ether, the extracts were injected into a reversed-phase system. The extraction efficiency was approximately 80% for both vinorelbine and the internal standard. The mobile phase was phosphate buffer (pH 3)-acetonitrile-methanol (50:30:20, v/v/v). Using coulometric detection, the limit of detection in plasma (400 μl) was 1 ng.ml. The intra-assay coefficients of variation were 10.95, 3.80 and 5.71% for 5, 500 and 1000 ng/ml, respectively, and the inter-assay coefficients of variation were 20.14, 14.27 and 10.67% for 5, 500 and 1000 ng/ml, respectively. A linear response was observed for the plasma calibration graph in the ranges 2.5–50 and 50–1000 ng/ml. This method was used to follow the time course of the concentration of vinorelbine in rabbit plasma after a single intravenous dose of vinorelbine (30 mg/m2) and seems to be suitable for studying the pharmacokinetics of vinorelbine in rabbit.  相似文献   

15.
A method was developed for the determination of gemifloxacin (I) in human plasma using high-performance liquid chromatography–tandem mass spectrometry. Prior to analysis, the protein in plasma samples was precipitated with acetonitrile containing [13C2H3] gemifloxacin (II) to act as an internal standard. The supernatant was injected onto a PLRP-S column without any further clean-up. The mass spectrometer was operated in positive ion mode, employing a heat assisted nebulisation, electrospray interface. Ions were detected in multiple reaction monitoring (MRM) mode. The assay requires 50 μl of plasma and is precise and accurate within the range 10–5000 ng/ml. The average within-run and between-run coefficients of variation were <11% at 10 ng/ml and greater concentrations. The average accuracy of validation standards was generally within ±7% of the nominal concentration. There was no evidence of instability of I in human plasma following three complete freeze–thaw cycles and samples can safely be stored for at least 6 months at −20°C. The method proved very robust and was successfully applied to the analysis of clinical samples from patients dosed with gemifloxacin.  相似文献   

16.
A simple, sensitive, and rapid gas chromatographic–mass spectrometric method is described for the simultaneous detection and quantitation of nicotine and its metabolite, cotinine, in urine and serum. The analytes and their respective deuterated internal standards were extracted by liquid–liquid extraction coupled to centrifugation and evaporation. The detection limit of the assay was 0.16 ng/ml for both nicotine and cotinine. The limit of quantitation for each analyte was 1.25 ng/ml.  相似文献   

17.
Solid-phase microextraction (SPME) was investigated as a sample preparation method for assaying the neuroleptic drug clozapine in human plasma. A mixture of human plasma, water, loxapine (as internal standard) and aqueous NaOH was extracted with a 100-μm polydimethylsiloxane (PDMS) fiber (Supelco). Desorption of the fiber was performed in the injection port of a gas chromatograph at 260°C (HP 5890; 30 m×0.53 mm I.D., 1 μm film capillary; nitrogen–phosphorous selective detection). Fibers were used repeatedly in up to about 75 analyses. The recovery was found to be 3% for clozapine from plasma after 30 min of extraction. However, in spite of the low recovery, the analyte was well separated and the calibration was linear between 100 and 1000 ng/ml. The within-day and between-day precision was consistently about 8 to 15% at concentrations of 200 ng/ml to 1000 ng/ml. No interfering drug was found. The limit of detection was 30 ng/ml. The sample volume was 250 μl. The influence of the concentration of proteins, triglycerides and salt, i.e., changes in the matrix on the peak areas and peak-area ratios was studied. The method is not impaired by physiological changes in the composition of the matrix. Good agreement was found with a liquid–liquid extraction–gas–liquid chromatography (LLE–GLC) standard method and an on-line column-switching high-performance liquid chromatography (HPLC) method for patients’ samples and spiked samples, respectively. It is concluded that the method can be used in the therapeutic drug monitoring of clozapine because the therapeutic window of clozapine is from 350 to 600 ng/ml.  相似文献   

18.
Olanzapine is a commonly used atypical antipsychotic medication for which therapeutic drug monitoring has been proposed as clinically useful. A sensitive method was developed for the determination of olanzapine concentrations in plasma and urine by high-performance liquid chromatography with low-wavelength ultraviolet absorption detection (214 nm). A single-step liquid–liquid extraction procedure using heptane-iso-amyl alcohol (97.5:2.5 v/v) was employed to recover olanzapine and the internal standard (a 2-ethylated olanzapine derivative) from the biological matrices which were adjusted to pH 10 with 1 M carbonate buffer. Detector response was linear from 1–5000 ng (r2>0.98). The limit of detection of the assay (signal:noise=3:1) and the lower limit of quantitation were 0.75 ng and 1 ng/ml of olanzapine, respectively. Interday variation for olanzapine 50 ng/ml in plasma and urine was 5.2% and 7.1% (n=5), respectively, and 9.5 and 12.3% at 1 ng/ml (n=5). Intraday variation for olanzapine 50 ng/ml in plasma and urine was 8.1% and 9.6% (n=15), respectively, and 14.2 and 17.1% at 1 ng/ml (n=15). The recoveries of olanzapine (50 ng/ml) and the internal standard were 83±6 and 92±6% in plasma, respectively, and 79±7 and 89±7% in urine, respectively. Accuracy was 96% and 93% at 50 and 1 ng/ml, respectively. The applicability of the assay was demonstrated by determining plasma concentrations of olanzapine in a healthy male volunteer for 48 h following a single oral dose of 5 mg olanzapine. This method is suitable for studying olanzapine disposition in single or multiple-dose pharmacokinetic studies.  相似文献   

19.
A gas chromatographic procedure is reported for the determination of caffeine in plasma, saliva, and xanthine beverages. Using a 75 cm column packed with OV-17, nitrogen-sensitive detection, and 1 ml samples, a suitable limit of analysis (coefficient of variation (CV)=10.2%) of 50 ng/ml was obtained in plasma. Within-day CVs at caffeine concentrations of 0.1–0.5–2.0–7.5–15.0 g/ml in plasma were 7.7–5.6–4.8–3.8–3.4%, respectively. The limit of detection, defined as the injected quantity of caffeine giving rise to a signal to noise ratio of 2, is 40 pg, corresponding to a plasma concentration of 1 ng/ml.The procedure involves addition of the internal standard 7-pentyl theophylline and alkaline extraction of the sample with dichloromethane. The method described rivals any gaschromatographic assay published so far in rapidness and accuracy.Plasma and saliva caffeine concentrations were determined in a healthy male volunteer after swallowing 400 ml of coffee. The calculated pharmacokinetic parameters, assuming complete absorption of caffeine from the G.I. tract, agree well with previously published values.  相似文献   

20.
A rapid, selective and very sensitive ion-pairing reversed-phase HPLC method was developed for the simultaneous determination of trimebutine (TMB) and its major metabolite, N-monodesmethyltrimebutine (NDTMB), in rat and human plasma. Heptanesulfonate was employed as the ion-pairing agent and verapamil was used as the internal standard. The method involved the extraction with a n-hexane–isopropylalcohol (IPA) mixture (99:1, v/v) followed by back-extraction into 0.1 M hydrochloric acid and evaporation to dryness. HPLC analysis was carried out using a 4-μm particle size, C18-bonded silica column and water–sodium acetate–heptanesulfonate–acetonitrile as the mobile phase and UV detection at 267 nm. The chromatograms showed good resolution and sensitivity and no interference of plasma. The mean recoveries for human plasma were 95.4±3.1% for TMB and 89.4±4.1% for NDTMB. The detection limits of TMB and its metabolite, NDTMB, in human plasma were 1 and 5 ng/ml, respectively. The calibration curves were linear over the concentration range 10–5000 ng/ml for TMB and 25–25000 ng/ml for NDTMB with correlation coefficients greater than 0.999 and with within-day or between-day coefficients of variation not exceeding 9.4%. This assay procedure was applied to the study of metabolite pharmacokinetics of TMB in rat and the human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号