首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
石英晶体DNA传感器检测单链DNA   总被引:3,自引:0,他引:3  
利用自组装法,将5'末端标记有巯基醇的单链DNA探针,固定在4.43MHz AT切石英晶体的镀金表面,制成石英晶体DNA传感器,并用该DNA传感器进行了互补单链DNA定量定性检测的探索。  相似文献   

2.
DNA传感器是基于DNA分子相互作用原理设计而成的一种新型的检测技术,具有快速,简单等优点,在基因分析及其他应用领域已显示出越来越重要的价值.分子信标是一种具有发卡式结构的寡核苷酸,由于其能够很好地识别单碱基错配序列,基于发卡式DNA的传感器较传统的单链DNA传感器有更好的检测特异性,目前得到广泛的研究.本文介绍了DNA生物传感器及分子信标的有关原理,并着重介绍了发卡式DNA的结构及其在DNA生物传感器中的应用.  相似文献   

3.
 DNA被紫外线损伤后,由DNA切除修复酶切除嘧啶二聚体,随之以另一条正常的DNA链为模板修复合成DNA片段,最后由DNA连接酶将新合成的DNA片与原有的DNA链连接。本文用荧光法测定DNA修复过程中DNA单链的断裂及重接能力与衰老的关系。结果表明,不同年龄大鼠脾细胞均具有修复DNA单链断裂的能力,DNA单链断裂重接的能力与年龄有相关性,断乳鼠及青年鼠的脾细胞当保温至30min时,即开始了DNA链的重接,保温90min后则恢复到原有水平;而老年鼠脾细胞保温至90min时才开始DNA链的重接,保温150min,尚未恢复到原有水平。还发现,断乳鼠及老年鼠脾细胞的单链DNA含量高于青年鼠。  相似文献   

4.
2005年问世的第二代测序技术在古DNA领域的应用,突破了第一代测序技术在绝灭或死亡生物全基因组获取手段上的局限。借助古基因组信息,研究者能够从更为系统的实时分子证据角度,解读诸如人类起源、大型绝灭哺乳动物迁移演化、动植物家养驯化以及早期人类社会生活模式等古生物学、遗传学与演化生物学问题。引入第二代测序技术之后,传统的古DNA研究方法及流程得以改变,剔除了原有的实验流程中耗时的分子克隆步骤,引入了与第二代测序技术紧密相关的古DNA单链测序文库构建环节。古DNA单链测序文库的构建,是将古DNA双链模板变性成单链后,通过向单链古DNA两端添加人工DNA片段,将古DNA分子转变成能被测序仪识别的文库分子。针对古DNA分子微量、高度片段化以及普遍存在碱基损伤的特点,古DNA单链测序文库,能够高效获取古DNA材料中的遗传信息。本文系统介绍古DNA单链测序文库建立流程,以及对文库质量进行检测的方法,为研究者运用第二代测序技术测定绝灭或死亡生物全基因组提供方法借鉴。  相似文献   

5.
用简化的Kohn氏碱洗脱法,观察了光敏剂血卟啉衍生物(HPD)对小鼠S-180肿瘤细胞DNA单链断裂及其重接修复的影响。激光HPD能导致S-180细胞DNA单链断裂明显增加,而且这种断裂随着保温时间的延长,继续增多。在本实验条件下没有观察到HPD对X线的增敏作用,HPD不能增加X线所致的DNA单链断裂,也不能影响其重接。单链断裂重接动力学的实验进一步证明了这个论点。  相似文献   

6.
合成生物电路在生物传感及生物计算方面成为了广泛应用的工具。工程化生物电路系统具有良好的灵活性,同时也具备模块化的特征。在本文中,研究了基于单链DNA开关调控的多功能生物电路的构建方法。通过将计算机辅助设计的单链DNA开关作为核心控制元件,并利用长度为20 bp的toehold区域来激活单链DNA开关,驱动了简单的单向式、循环式以及级联的多层次的生物电路系统。在级联式电路系统中,通过调整单链DNA开关的结构,使信噪比从2.996变成5.274。同时,单链DNA开关作为长单链DNA(784 bp)的一部分,在无细胞蛋白质系统中实现了基因表达调控。因此,本文研究的工程化方法为今后复杂的人工生物电路的构建提供了坚实的技术基础。  相似文献   

7.
DNA氧化性损伤与端粒缩短   总被引:10,自引:0,他引:10  
末端复制问题(the end replication problem)不能完全解释端粒在某些细胞分裂过程中迅速缩短的现象.40%的高压氧下细胞传代次数降低,端粒缩短速率增大,细胞出现衰老特征,端粒DNA上单链断裂积累.推测端粒缩短的主要原因在于衰老过程中或氧胁迫下端粒DNA单链断裂增多,使端粒末端单链片段在DNA复制时丢失.端粒酶和活性氧对端粒长度的正负调控作用的准确机制还有待于更深入的研究.  相似文献   

8.
 用辣根过氧化物酶标记DNA的技术,制备了酶标基因探针。研究了酶标过程和产物的电泳行为;用斑点杂交和southern印迹杂交探测了单链、双链DNA,灵敏度可达pg水平,以此酶标的Y染色体特异的DNA片段作探针,进行了DNA杂交的性别分析,证明该探针能清楚地区别两性基因组DNA,这对基因的研究和诊断有一定实用价值。  相似文献   

9.
摘要:【目的】揭示腾冲嗜热菌中两个单链DNA结合蛋白SSB2和SSB3的全新的底物结合功能及其不同的体内表达模式。【方法】利用腾冲嗜热菌复制起始位点附近的长度较短的单链DNA为底物,采用非变性聚丙烯酰胺凝胶电泳及western blot方法,研究SSB2和SSB3体外单链DNA结合特征和体内表达模式。【结果】SSB2 与35nt的复制起始区单链DNA(ssDNA)结合, 形成单个SSB2-DNA复合物;当与59 nt ssDNA结合时,可以随着蛋白浓度的递增形成一个或两个SSB2-DNA复合物;而与70n  相似文献   

10.
洪益国   《微生物学通报》1992,19(6):363-366
比较了单链和双链DNA(ss和dsDNA)模板和两种不同的聚丙烯酰胺凝胶电泳对DNA序列测定的影响。结果表明:在相同的条件下,ssDNA模板明显优于dsDNA模板;缓冲液梯度聚丙烯酰胺凝胶电泳测定DNA序列的长度在40cm长的胶上可达350nt。而一般的线性聚丙烯酰胺凝胶电泳才可测150nt。对于基因组序列分析,采用单链DNA模板和缓冲液梯度聚丙烯酰胺凝胶电泳是一种有效的测定方法。  相似文献   

11.
A distinctive feature of closed circular DNA molecules is their particular topological state, which cannot be altered by any conformational rearrangement short of breaking at least one strand. This topological constraint opens unique possibilities for experimental studies of the distributions of topological states created in different ways. Primarily, the equilibrium distributions of topological properties are considered in the review. It is described how such distributions can be obtained and measured experimentally, and how they can be computed. Comparison of the calculated and measured equilibrium distributions over the linking number of complementary strands, equilibrium fractions of knots and links formed by circular molecules has provided much valuable information about the properties of the double helix. Study of the steady-state fraction of knots and links created by type II DNA topoisomerases has revealed a surprising property of the enzymes: their ability to reduce these fractions considerably below the equilibrium level.  相似文献   

12.
The maintenance of DNA methylation in nascent DNA is a critical event for numerous biological processes. Following DNA replication, DNMT1 is the key enzyme that strictly copies the methylation pattern from the parental strand to the nascent DNA. However, the mechanism underlying this highly specific event is not thoroughly understood. In this study, we identified topoisomerase IIα (TopoIIα) as a novel regulator of the maintenance DNA methylation. UHRF1, a protein important for global DNA methylation, interacts with TopoIIα and regulates its localization to hemimethylated DNA. TopoIIα decatenates the hemimethylated DNA following replication, which might facilitate the methylation of the nascent strand by DNMT1. Inhibiting this activity impairs DNA methylation at multiple genomic loci. We have uncovered a novel mechanism during the maintenance of DNA methylation.  相似文献   

13.
Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences. Using a combination of molecular genetic, biochemical, and single-molecule biophysical techniques, we provide mechanistic insight into the mode of action of the FBH1 helicase as a regulator of RAD51-dependent HR in mammalian cells. We show that FBH1 binds directly to RAD51 and is able to disrupt RAD51 filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under unperturbed growth conditions to prevent unwanted or unscheduled DNA recombination.  相似文献   

14.
HEL308 is a superfamily II DNA helicase, conserved from archaea through to humans. HEL308 family members were originally isolated by their similarity to the Drosophila melanogaster Mus308 protein, which contributes to the repair of replication-blocking lesions such as DNA interstrand cross-links. Biochemical studies have established that human HEL308 is an ATP-dependent enzyme that unwinds DNA with a 3' to 5' polarity, but little else is know about its mechanism. Here, we show that GFP-tagged HEL308 localizes to replication forks following camptothecin treatment. Moreover, HEL308 colocalizes with two factors involved in the repair of damaged forks by homologous recombination, Rad51 and FANCD2. Purified HEL308 requires a 3' single-stranded DNA region to load and unwind duplex DNA structures. When incubated with substrates that model stalled replication forks, HEL308 preferentially unwinds the parental strands of a structure that models a fork with a nascent lagging strand, and the unwinding action of HEL308 is specifically stimulated by human replication protein A. Finally, we show that HEL308 appears to target and unwind from the junction between single-stranded to double-stranded DNA on model fork structures. Together, our results suggest that one role for HEL308 at sites of blocked replication might be to open up the parental strands to facilitate the loading of subsequent factors required for replication restart.  相似文献   

15.
In eukaryotic cells, DNA replication is carried out by the coordinated action of three DNA polymerases (Pols), Pol α, δ, and ε. In this report, we describe the reconstitution of the human four-subunit Pol ε and characterization of its catalytic properties in comparison with Pol α and Pol δ. Human Pol ε holoenzyme is a monomeric complex containing stoichiometric subunit levels of p261/Pol 2, p59, p17, and p12. We show that the Pol ε p261 N-terminal catalytic domain is solely responsible for its ability to catalyze DNA synthesis. Importantly, human Pol (hPol) ε was found more processive than hPol δ in supporting proliferating cell nuclear antigen-dependent elongation of DNA chains, which is in keeping with proposed roles for hPol ε and hPol δ in the replication of leading and lagging strands, respectively. Furthermore, GINS, a component of the replicative helicase complex that is composed of Sld5, Psf1, Psf2, and Psf3, was shown to interact weakly with all three replicative DNA Pols (α, δ, and ε) and to markedly stimulate the activities of Pol α and Pol ε. In vivo studies indicated that siRNA-targeted depletion of hPol δ and/or hPol ε reduced cell cycle progression and the rate of fork progression. Under the conditions used, we noted that depletion of Pol ε had a more pronounced inhibitory effect on cellular DNA replication than depletion of Pol δ. We suggest that reduction in the level of Pol δ may be less deleterious because of its collision-and-release role in lagging strand synthesis.  相似文献   

16.
Metnase (or SETMAR) arose from a chimeric fusion of the Hsmar1 transposase downstream of a protein methylase in anthropoid primates. Although the Metnase transposase domain has been largely conserved, its catalytic motif (DDN) differs from the DDD motif of related transposases, which may be important for its role as a DNA repair factor and its enzymatic activities. Here, we show that substitution of DDN610 with either DDD610 or DDE610 significantly reduced in vivo functions of Metnase in NHEJ repair and accelerated restart of replication forks. We next tested whether the DDD or DDE mutants cleave single-strand extensions and flaps in partial duplex DNA and pseudo-Tyr structures that mimic stalled replication forks. Neither substrate is cleaved by the DDD or DDE mutant, under the conditions where wild-type Metnase effectively cleaves ssDNA overhangs. We then characterized the ssDNA-binding activity of the Metnase transposase domain and found that the catalytic domain binds ssDNA but not dsDNA, whereas dsDNA binding activity resides in the helix-turn-helix DNA binding domain. Substitution of Asn-610 with either Asp or Glu within the transposase domain significantly reduces ssDNA binding activity. Collectively, our results suggest that a single mutation DDN610 → DDD610, which restores the ancestral catalytic site, results in loss of function in Metnase.  相似文献   

17.
18.
In bacteria, RuvABC is required for the resolution of Holliday junctions (HJ) made during homologous recombination. The RuvAB complex catalyzes HJ branch migration and replication fork reversal (RFR). During RFR, a stalled fork is reversed to form a HJ adjacent to a DNA double strand end, a reaction that requires RuvAB in certain Escherichia coli replication mutants. The exact structure of active RuvAB complexes remains elusive as it is still unknown whether one or two tetramers of RuvA support RuvB during branch migration and during RFR. We designed an E. coli RuvA mutant, RuvA2(KaP), specifically impaired for RuvA tetramer-tetramer interactions. As expected, the mutant protein is impaired for complex II (two tetramers) formation on HJs, although the binding efficiency of complex I (a single tetramer) is as wild type. We show that although RuvA complex II formation is required for efficient HJ branch migration in vitro, RuvA2(KaP) is fully active for homologous recombination in vivo. RuvA2(KaP) is also deficient at forming complex II on synthetic replication forks, and the binding affinity of RuvA2(KaP) for forks is decreased compared with wild type. Accordingly, RuvA2(KaP) is inefficient at processing forks in vitro and in vivo. These data indicate that RuvA2(KaP) is a separation-of-function mutant, capable of homologous recombination but impaired for RFR. RuvA2(KaP) is defective for stimulation of RuvB activity and stability of HJ·RuvA·RuvB tripartite complexes. This work demonstrates that the need for RuvA tetramer-tetramer interactions for full RuvAB activity in vitro causes specifically an RFR defect in vivo.  相似文献   

19.
A preparative procedure for the large-scale isolation of plasmid DNA without the use of RNAse is described. Crude plasmid DNA is prepared using a standard boiling method. High-molecular-weight RNA is removed by precipitation with LiCl, and low-molecular-weight RNA is removed by sedimentation through high-salt solution. The procedure is inexpensive, rapid, simple, and particularly suitable for processing several large-scale preparations simultaneously. A similar procedure has been developed for preparation of lambda-phage DNA.  相似文献   

20.
The persistence length of DNA, a, depends both on the intrinsic curvature of the double helix and on the thermal fluctuations of the angles between adjacent base-pairs. We have evaluated two contributions to the value of a by comparing measured values of a for DNA containing a generic sequence and for an "intrinsically straight" DNA. In each 10 bp segment of the intrinsically straight DNA an initial sequence of five bases is repeated in the sequence of the second five bases, so any bends in the first half of the segment are compensated by bends in the opposite direction in the second half. The value of a for the latter DNA depends, to a good approximation, on thermal fluctuations only; there is no intrinsic curvature. The values of a were obtained from measurements of the cyclization efficiency for short DNA fragments, about 200 bp in length. This method determines the persistence length of DNA with exceptional accuracy, due to the very strong dependence of the cyclization efficiency of short fragments on the value of a. We find that the values of a for the two types of DNA fragment are very close and conclude that the contribution of the intrinsic curvature to a is at least 20 times smaller than the contribution of thermal fluctuations. The relationship between this result and the angles between adjacent base-pairs, which specify the intrinsic curvature, is analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号