首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
采用土壤培养方法,研究了不同含砷水平土壤中添加外源磷或有机质对砷在板蓝根地下部和地上部累积与分配的影响。结果表明,在外源添加磷或者有机质的情况下,与自然土相比含砷土对板蓝根的生长有一定的促进作用;在自然土(13.4 mg/kg)中,外源磷没有明显影响板蓝根地下部对砷的累积,却显著降低了砷由地下部向地上部的转运,并且添加200 mg P2 O5/kg显著降低了砷在地上部的累积。然而,在含砷土(33.4 mg/kg)中,100 mg P2O5/kg处理显著降低了砷在地下部的累积,但随磷用量的增加反而促进了地下部砷的累积;在添加有机质试验中,10 g/kg的有机质显著降低了自然土中板蓝根地下部和地上部对砷的累积,并且砷的吸收能力也明显下降。在含砷土(23.4 mg/kg)中,添加5 g/kg的有机质不仅降低了砷在板蓝根中的富集,而且降低了其对砷的吸收能力,提高了砷由地下部向地上部的转运,但是随着有机质施用量增至10 g/kg,地下部砷含量及其吸收砷的能力均有一定程度的增大。因此,在砷水平较低的自然土壤上种植板蓝根添加200 mg P2O5/kg和10 g/kg的有机质是控制砷在该草药体内积累的适宜用量,而在砷水平较高的土壤上100 mg P2O5/kg和5 g/kg的有机质是降低板蓝根体内砷累积的适宜用量。  相似文献   

2.
Greenhouse and field trial experiments were performed to evaluate the use of Chromolaena odorata with various soil amendments for phytoextraction of Pb contaminated soil Pb mine soils contain low amount of nutrients, so the additions of organic (cow manure) and inorganic (Osmocote and NH4NO3 and KCl) fertilizers with EDTA were used to enhance plant growth and Pb accumulation. Greenhouse study showed that cow manure decreased available Pb concentrations and resulted in the highest Pb concentration in roots (4660 mg kg(-1)) and shoots (389.2 mg kg(-1)). EDTA increased Pb accumulation in shoots (17-fold) and roots (11-fold) in plants grown in soil with Osmocote with Pb uptake up to 203.5 mg plant(-1). Application of all fertilizers had no significant effects on relative growth rates of C. odorata. Field trial study showed that C. odorata grown in soil with 99545 mg kg(-1) total Pb accumulated up to 3730.2 and 6698.2 mg kg(-1) in shoots and roots, respectively, with the highest phytoextraction coefficient (1.25) and translocation factor (1.18). These results indicated that C. odorata could be used for phytoextraction of Pb contaminated soil. In addition, more effective Pb accumulation could be enhanced by Osmocote fertilizer. However, the use of EDTA in the field should be concerned with their leaching problems.  相似文献   

3.
A greenhouse experiment evaluated the effect of phytoextraction of arsenic from a contaminated soil by Chinese Brake Fern (Pteris vittata L.) and its subsequent effects on growth and uptake of arsenic by rice (Oryza sativa L.) crop. Pteris vittata was grown for one or two growing cycles of four months each with two phosphate sources, using single super phosphate (SSP) and di-ammonium phosphate (DAP). Rice was grown on phytoextracted soils followed by measurements of biomass yield (grain, straw, and root), arsenic concentration and, uptake by individual plant parts. The biomass yield (grain, straw and rice) of rice was highest in soil phytoextracted with Pteris vittata grown for two cycles and fertilized with diammonium phosphate (DAP). Total arsenic uptake in contaminated soil ranged from 8.2 to 16.9 mg pot(-1) in first growing cycle and 5.5 to 12.0 mg pot(-1) in second growing cycle of Pteris vittata. There was thus a mean reduction of 52% in arsenic content of rice grain after two growing cycle of Pteris vittata and 29% after the one growing cycle. The phytoextraction of arsenic contaminated soil by Pteris vittata was beneficial for growing rice resulted in decreased arsenic content in rice grain of <1 ppm. There was a mean improvement in rice grain yield 14% after two growing cycle and 8% after the one growing cycle of brake fern.  相似文献   

4.
Zinc hyperaccumulation and uptake by Potentilla griffithii Hook   总被引:8,自引:0,他引:8  
The ability of Potentilla griffithii Hook var. velutina Cardot to hypaeraccumulate zinc (Zn) was identified through field survey and hydroponic experiments. Our results showed that P. griffithii could be classified as a new Zn hyperaccumulator. Zn concentrations in the shoots of P. griffithii averaged 6250 mg kg(-1) (3870-8530 mg kg(-1)) growing in Zn-rich soils. The highest Zn concentration was observed in the leaves of P. griffithii at 22,990 mg kg(-1). The fact that P. griffithii was able to grow in a mining soil with a Zn concentration of 193,000 mg kg(-1) without showing a major sign of phytotoxicity demonstrated its high tolerance to Zn. When growing in hydroponic systems, P. griffithii accumulated a maximum 26700 mg kg(-1) zinc concentration in the shoots, indicating the ability of this species to effectively take up and translocate Zn. Translocation factors (the ratio of Zn concentration in shoot to root) of 1.1 to 1.6 were obtained. Compared to the control, dry biomass of P. griffithii in 160 mg L(-1) Zn treatment increased 66.6% (P < 0.05). The time-course experiment showed that the maximum Zn concentration at 100 mg L(-1) Zn treatment was found at 16 d, much later than that of the 10 mg L(-1) Zn treatment, which might be an attribution of a accumulating mechanism or detoxification of a plant. The report of a new Zn hyperaccumulator provides a new plant species for the phytoremediation of contaminated soil and for the research on mechanisms of Zn hyperaccumulation in plants.  相似文献   

5.
Four kinds of soil material were used in a pot experiment with velvetgrass (Holcus lanatus). Two unpolluted soils: sand (S) and loam (L) were spiked with sodium arsenite (As III) and arsenate (As V), to obtain total arsenic (As) concentrations of 500 mg As kg?1. Two other soils (ZS I, ZS III), containing 3320 and 5350 mg As kg?1, were collected from Zloty Stok where gold and arsenic ores were mined and processed for several centuries. The effects of phosphate addition on plants growth and As uptake were investigated. Phosphate was applied to soils in the form of NH4H2PO4 at the rate 0.2 g P/kg. Average concentrations of arsenic in the shoots of velvetgrass grown in spiked soils S and L without P amendment were in the range 18–210 mg As kg?1 d.wt., whereas those in plants grown on ZS I and ZS II soils were considerably lower, and varied in the range 11–52 mg As kg?1 d.wt. The addition of phosphate caused a significant increase in plant biomass and therefore the total amounts of As taken up by plants, however, the differences in As concentrations in the shoots of velvetgrass amended and non-amended with phosphate were not statistically significant.  相似文献   

6.
A greenhouse experiment was conducted to evaluate the effectiveness of diammonium phosphate (DAP), single superphosphate (SSP) and two growing cycles on arsenic removal by Chinese Brake Fern (Pteris vittata L.) from an arsenic contaminated Typic Haplustept of the Indian state of West Bengal. After harvest of Pteris vittata the total, Olsen's extractable and other five soil arsenic fractions were determined. The total biomass yield of P. vittata ranged from 10.7 to 16.2 g pot(-1) in first growing cycle and from 7.53 to 11.57 g pot(-1) in second growing cycle. The frond arsenic concentrations ranged from 990 to 1374 mg kg(-1) in first growing cycle and from 875 to 1371 mg kg(-1) in second growing cycle. DAP was most efficient in enhancing biomass yield, frond and root arsenic concentrations and total arsenic removal from soil. After first growing cycle, P. vittata reduced soil arsenic by 10 to 20%, while after two growing cycles Pteris reduced it by 18 to 34%. Among the different arsenic fractions, Fe-bound arsenic dominated over other fractions. Two successive harvests with DAP as the phosphate fertilizer emerged as the promising management strategy for amelioration of arsenic contaminated soil of West Bengal through phyotoextraction by P. vittata.  相似文献   

7.
The aim of this work was to study, in a rhizobox experiment, the phytoextraction of metals by the hyperaccumulator plant Thlaspi caerulescens in relation to the heterogeneity of metal pollution. Six treatments were designed with soils containing various levels of metals. Homogeneous soils and inclusions of soils in other soil matrices were prepared in order to vary metal concentration and localization. Growth parameters of the plant (rosette diameter and shoot biomass) and localization of roots and shoot uptake of Zn, Cd, Ca, and Mg were determined after 10 weeks of growth. The plants grown on the polluted industrial soils provided a larger biomass and had lower mortality rates than those grown on the agricultural soil. Moreover, these plants accumulated more Zn and Cd (up to 17,516 and 375 mg kg(-1) DM, respectively) than plants grown on the agricultural soil (up to 7300 mg Zn kg(-1) and 83 mg Cd kg(-1) DM). The roots preferentially explored metal-contaminated areas. The exploration of polluted soil inclusions by the roots was associated with a higher extraction of metals. Zinc and Cd in the shoots of Thlaspi caerulescens were negatively correlated with Ca and Mg concentrations; however, the soil supply for these two elements was identical. This suggests that there is competition for the uptake of these elements and that Zn is preferentially accumulated.  相似文献   

8.
Many studies have been conducted on phytoextraction; however, non-native hyperaccumulator species are not suitable for the natural environment of Taiwan in many cases. Drawing upon previous results, the growth and heavy metal accumulation in artificially cadmium-contaminated soils were compared for five local garden flower species. The treatments included a control (CK), 9.73 +/- 0.05 mg kg(-1) (Cd-10), and 17.6 +/- 0.8 mg kg(-1) (Cd-20). All plants were harvested at 35 days after transplanting and analyzed for Cd content. Cd accumulation in the shoot of French marigold (Tagetes patula L.) and Impatiens (Impatiens walleriana Hook. f.) grown in Cd-20 treatment were 66.3 +/- 6.5 and 100 +/- 11 mg kg(-1), which equated to a removal of 0.80 +/- 0.11 and 0.60 +/- 0.37 mg Cd plant(-1), respectively. The maximum Cd accumulation of Impatiens reached the threshold value (100 mg kg(-1)) characteristic of a Cd hyperaccumulator and its bioconcentration factor (BCF) and translocation factor (TF) were greater than one. Impatiens therefore has the potential to hyperaccumulate Cd from Cd-contaminated soils. With the exception of Garden verbena, significant relationships were found between Cd concentrations in soil extracted by 0.05 M EDTA, 0.005 M DTPA, and 0.01 M CaCl2 and the concentration of Cd in the shoots of the tested garden flowers.  相似文献   

9.
Revegetation of mine tailings usually requires amendments of phosphorus. However, phosphate addition can mobilize arsenic (As) from the tailings. A 5-mo lysimeter field trial was conducted to quantify As mobilization in gold mine tailings, in association with different P amendment products and different plant species (barley Hordeum vulgare, blue lupin Lupinus angustifolius, rye corn Secale cereale) necessary for short-term revegetation of mine tailings. A simultaneous laboratory experiment was run to examine As mobilization in 1-cm-deep tailings in relation to different P amendment rates. The experimental results showed that the amount of As leached was proportional to the amount of P added. In the larger scale lysimeters, P amendment of < 3 g m(-2) caused As leaching of 0.5 mg L(-1) from unplanted lysimeters and up to 0.9 mg L(-1) on average in planted lysimeters. Variable species-amendment combinations produced differences in the amount of As leached and uptaken. Leachates and uptakes were higher with an organic fertilizer amendment than Superphosphate, particularly in combination with barley. Arsenic accumulated in plant biomass to 126 mg kg(-1) in shoots and 469 mg kg(-1) in roots.  相似文献   

10.
ARSENIC CHEMISTRY AND REMEDIATION IN HAWAIIAN SOILS   总被引:1,自引:0,他引:1  
Past use of arsenical pesticides has resulted in elevated levels of arsenic (As) in some Hawaiian soils. Total As concentrations of 20–100 mg/kg are not uncommon, and can exceed 900 mg/kg in some lands formerly planted with sugarcane. With high contents of amorphous aluminosilicates and iron oxides in many Hawaii's volcanic ash-derived Andisols, a high proportion (25–30%) of soil As was associated with either these mineral phases or with organic matter. Less than 1% of the total As was water soluble or exchangeable. Furthermore, the soils can sorb As strongly: the addition of 1000 mg/kg as As (+5) resulted in only between 0.03 and 0.30 mg/L As in soil solution. In contrast, soils having more crystalline minerals (e.g., Oxisols) sorb less As and thus often contain less As. Phosphate fertilization increases As bioaccessibility, whereas the addition of Fe(OH)3 decreases it. Brake fern (Pteris vittata L.) can be used to remove some soil As. Concentrations of As in fronds varied on average from 60 mg/kg when grown on a low-As Oxisol to 350 mg/kg when grown on a high-As Andisol. Ratios of leaf As to CaCl2-extractable soil As were 12 and 222 for the Oxisol and Andisol, respectively.  相似文献   

11.
Wetland aquatic plants including Canna glauca L., Colocasia esculenta L. Schott, Cyperus papyrus L. and Typha angustifolia L. were used in the phytoremediation of submerged soil polluted by arsenic (As). Cyperus papyrus L. was noticed as the largest biomass producer which has arsenic accumulation capacity of 130-172 mg As/kg plant. In terms of arsenic removal rate, however, Colocasia esculenta L. was recognized as the largest and fastest arsenic remover in this study. Its arsenic removal rate was 68 mg As/m2/day while those rates of Canna glauca L., Cyperus papyrus L. and Typha angustifolia L. were 61 mg As/m2/day, 56 mg As/m2/day, and 56 mg As/m2/day, respectively. Although the 4 aquatic plants were inferior in arsenic accumulation, their high arsenic removal rates were observed. Phytostabilization should be probable for the application of these plants.  相似文献   

12.
This study examined the phytoextraction potential of two arsenic (As) hyperaccumulators, Pteris vittata L. and Pityrogramma calomelanos var. austroamericana at a historical As-contaminated cattle dip site in northern New South Wales (NSW), Australia. Total As concentration in the surface soil (0-20 cm) showed a better spatial structure than phosphate-extractable As in the surface and sub-surface soil at this site. P. calomelanos var. austroamericana produced greater frond dry biomass (mean = 130 g plant(-1)) than P. vittata (mean = 81 g plant(-1)) after 10 months of growth. Arsenic concentration and uptake in fronds were also significantly higher in P. calomelanos var. austroamericana (means = 887 mg kg(-1) and 124 mg plant(-1)) than in P. vittata (means = 674 mg kg(-1) and 57 mg plant(-1)). Our results showed that under the field conditions and highly variable soil As at the site, P. calomelanos var. austroamericana performed better than P. vittata. We predict that P. calomelanos var. austroamericana would take approximately 100 years to reduce the total As to below 20 mg kg(-1) at the site compared to > or =200 years estimated for P. vittata. However, long-term data are required to confirm these observations under field conditions.  相似文献   

13.
Summary Protocols and media constituents for efficient in vitro plant regeneration of Native Spearmint (Mentha spicata L. cultivar ‘Native Spearmint’) have been defined. Adventitious shoots were initiated either directly from morphogenetically competent cells of explants or primary callus. Leaf explants from at least 2-mo.-old in vitro-maintained shoots exhibited the greatest morphogenetic capacity. Explants derived from basal portions of leaves at the bottom of the shoot were most responsive, with up to a 100% regeneration frequency and greater than nine shoots per explant. Highest frequency of meristemoids and morphogenetic callus were initiated from explants cultured onto a basal medium containing Murashige and Skoog (MS) salts, supplemented with 4 mg thidiazuron (TDZ) per L and 25% (vol/vol) coconut water (CW) for 10 to 14 d in darkness. Bud and shoot development required removal of both TDZ and CW from the medium. Shoot propagules were transferred to basal medium supplemented with 0.01 mg α-naphthaleneacetic acid (NAA) per L and grown under low light for about 2 wk to facilitate shoot elongation. Individual shoots about 1 cm tall were dissected and retransferred onto the same medium. Root initiation began within 4 to 6 d and a functional root system developed within 2 to 3 wk. These plantlets were transferred to soil and acclimated successfully for growth and development in a greenhouse. This is the first report of an efficient regeneration system for Native Spearmint based on adventitious organogenesis.  相似文献   

14.
Leptoplax emarginata and Bornmuellera tymphaea are nickel hyperaccumulators of the Brassicaceae family endemic to serpentine soils in Greece. The aims of this work were to compare the growth and uptake behavior of these plants with the Ni hyperaccumulator species Thlaspi caerulescens and Alyssum murale, and to evaluate their effect on soil Ni availability. Plants were grown for 3 mo on three soils that differ in Ni availability. Ni availability in soils was measuredby isotopic exchange kinetics and DTPA-TEA extractions. Results showed that L. emarginata produced significantly more biomass than other plants. On the serpentine soil, B. tymphaea showed the highest Ni concentration in shoots. However, Niphytoextraction on the three soils was maximal with L. emarginata. The high initial Ni availability of soil Serp (470.5 mg kg(-1)) was the main explanation for the high Ni concentrations measured in plant shoots grown on this soil, compared to those grown on soils Calc and Silt A. murale was the least efficient in reducing Ni availability on the serpentine soil L. emarginata appeared as the most efficient species for Ni phytoextraction and decrease of the Ni available pool.  相似文献   

15.
Soils from the alluvial flats of the Turia River, Valencia, Spain, which were highly contaminated by decades of industrial activity, were surveyed for native plant species that could be candidates useful in phytoremediation. Concentrations of heavy metals and arsenic (As) in soils reached 25,000 mg Kg(-1) Pb, 12,000 mg Kg(-1) Zn, 70 mg Kg(-1) Cd, and 13500 mg Kg(-1) As. The predominant vegetation was collected and species identified. Soil samples and the corresponding plant shoots were analyzed to determine the amount of As accumulated by the various plant species. Several were able to tolerate more than 1000 mg Kg(-1) As in the soil. Bassia scoparia (Chenopodiaceae) survive in soil with 8375 mg Kg(-1) As. Arsenic accumulation in shoots of the various plant species investigated ranged from 0.1 to 107 mg Kg(-1) dw. Bassia scoparia (Chenopodiaceae), Inula viscosa (Asteraceae), Solanum nigrum (Solanaceae), and Hirschfeldia incana (Brassicaceae) had the highest values for As accumulation.  相似文献   

16.
Common buckwheat grown in Pb-contaminated soil was found to accumulate a large amount of Pb in its leaves (8,000 mg/kg DW), stem (2,000 mg/kg DW), and roots (3,300 mg/kg DW), without significant damage. This indicates that buckwheat is a newly recognized Pb hyperaccumulator, which is defined as a plant containing over 1,000 mg/kg of Pb in its shoots on a dry-weight basis. Moreover, it was shown that application of the biodegradable chelator methylglycinediacetic acid trisodium salt at concentrations of up to 20 mmol/kg resulted in a more than five times higher concentration of Pb in the shoot without notable growth inhibitation at up to 10 mmol/kg. These results indicate that buckwheat is a potential phytoremediator of Pb-contaminated soils.  相似文献   

17.
In the present study, increasing ethylenediaminetetraacetic acid (EDTA) concentration from 0 to 0.5 mmol L(-1) resulted in progressive increases in root elongation and in shoot and root dry matter (DM) of Indian mustard seedlings (Brassica juncea. L.) exposed at 0.5 mmol L(-1) of lead (Pb). The highest concentration of Pb in the shoots of Indian mustard reached 1140 mg kg(-1) dry weight (DW) in the treatment with 0.5 mmol L(-1) of Pb + 0.25 mmol L(-1) of EDTA. A significantly positive correlation was found between the concentrations of Pb and EDTA in the shoots of mustard. Roots were pretreated with an MC (methanol:trichloromethane) solution, 0.1 mol L(-1) of HCl, and 65 degrees C hot water. The plants were then exposed to 0.5 mmol L(-1) of Pb + 3 mmol L(-1) of EDTA in solution for 2 d. The pretreatments with MC, HCl, and hot water all increased the concentration of Pb in shoots by 14-, 7-, and 15-fold, respectively, compared with the shoots that had not been pretreated. Therefore, some physiological damage to roots would be useful to enhance the uptake of metal by plants and to minimize the application of doses of chelates in the practical operation of chelate-assisted phytoremediation.  相似文献   

18.
The potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for accumulation of cadmium and zinc was investigated. Plants have been grown in lysimetres containing dredging sludge, a substratum naturally rich in trace metals. Biomass production was determined. Sludge and water percolating from lysimeters were analyzed by atomic absorption spectrometry. No visible symptoms of toxicity were observed during the three- month culture. Kenaf and corn tolerate trace metals content in sludge. Results showed that Zn and Cd were found in corn and kenaf shoots at different levels, 2.49 mg/kg of Cd and 82.5 mg/kg of Zn in kenaf shoots and 2.1 mg/kg of Cd and 10.19 mg/kg in corn shoots. Quantities of extracted trace metals showed that decontamination of Zn and Cd polluted substrates is possible by corn and kenaf crops. Tolerance and bioaccumulation factors indicated that both species could be used in phytoremediation.  相似文献   

19.
This study examined the relationship between oxalic acid and Cr tolerance in an accumulating plant Leersia hexandra Swartz. The plants grown in hydroponics were exposed to Cr at 0, 5, 30, and 60 mg/L (without oxalate), and 0, 40, and 80 mg/L concentrations of Cr (with 70 mg/L oxalate or without oxalate). The results showed that more than 50% of Cr in shoots was found in HCl-extracted fraction (chromium oxalate) when the plants were exposed to Cr. Cr supply significantly increased oxalate concentration in shoots of L. hexandra (p < 0.05), but did not increase oxalate concentration in roots. Under 80 mg/L Cr stress, electrolyte leakages from roots and shoots with oxalate treatment were both significantly lower than those without oxalate treatment (p < 0.05), indicating exogenous oxalate supply alleviated Cr-induced membrane damage. Oxalate added to growth solution ameliorated reduction of biomass and inhibition of root growth induced by Cr, which demonstrated that application of oxalate helped L. hexandra tolerate Cr stress. However, oxalate supply did not affect the Cr concentrations both in roots and shoots of L. hexandra. These results suggest that oxalic acid may act as an important chelator and takes part in detoxifying chromium in internal process of L. hexandra.  相似文献   

20.
In the 21st century, remediation of the soil beneath animal waste lagoons will become an important issue, as they are closed due to environmental regulations or to abandonment. The possibility of growing crops in the soil, which has high concentrations of ammonium-N, has not been studied. The objective of this experiment was to determine if crop species would germinate and grow in lagoon soil. Soil was gathered from a lagoon that had received wastes from swine (Sus scrofa) and beef (Bos taurus) since 1968. Eight crops were grown in greenhouse pots containing the lagoon soil: winter barley (Hordeum vulgare L. 'Weskan'); field corn (Zea mays L., Cargill's hybrid 7997); 'Plainsman' winter rapeseed [Brassica napus L. spp. oleifera (Metzg.) Sinsk. f. biennis]; soybean [Glycine max (L.) Merr. 'KS 4694'); forage sorghum [Sorghum bicolor (L.) Moench 'Norkan']; sunflower (Helianthus annuus L. 'Hysun 354'); and winter wheat (Triticum aestivum L.)--two cultivars: '2137' and 'Turkey.' Plants were grown for 35 days in lagoon soil or an agricultural soil (Haynie very fine sandy loam; coarse-silty, mixed, superactive, calcareous, mesic Mollic Udifluvent) obtained from a field near the closed lagoon. Ammonium-N (average value of 692 mg/kg) was about 70-85 times greater than the average value of 8-10 mg/kg NH4-N in Kansan soils. The lagoon soil was nonsodic and had a salinity ranking of "medium" with an electrical conductivity averaging 2.29 dS/m. The high ammonium-N concentration in the lagoon soil was not inhibitory to emergence and growth. The eight crops grew taller in the lagoon soil than in the agricultural soil. Except for '2137' wheat, dry weight was higher in the lagoon soil than in the agricultural soil. The results showed that the lagoon soil is not detrimental to early growth of eight crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号