首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Coronopus didymus was examined in terms of its ability to remediate Pb-contaminated soils. Pot experiments were conducted for 4 and 6 weeks to compare the growth, biomass, photosynthetic efficiency, lead (Pb) uptake, and accumulation by C. didymus plants. The plants grew well having no visible toxic symptoms and 100% survivability, exposed to different Pb-spiked soils 100, 350, 1500, and 2500 mg kg?1, supplied as lead nitrate. After 4 weeks, root and shoot concentrations reached 1652 and 502 mg Pb kg?1 DW, while after 6 weeks they increased up to 3091 and 527 mg Pb kg?1 DW, respectively, at highest Pb concentration. As compared to the 4 week experiments, the plant growth and biomass yield were higher after 6 weeks of Pb exposure. However, the chlorophyll content of leaves decreased but only a slight decline in photosynthetic efficiency was observed on exposure to Pb at both 4 and 6 weeks. The Pb accumulation was higher in roots than in the shoots. The bioconcentration factor of Pb was > 1 in all the plant samples, but the translocation factor was < 1. This suggested C. didymus as a good candidate for phytoremediation of Pb-contaminated soils and can be used for future remediation purposes.  相似文献   

2.
The current study evaluated the effect of groundwater and wastewater irrigation on lead (Pb) accumulation in soil and vegetables, and its associated health implications. A pot experiment was conducted in which spinach (Spinacia oleracea), radish (Raphanus sativus), and cauliflower (Brassica oleracea) were irrigated with groundwater and wastewaters containing varying concentrations of Pb. Lead contents were measured in wastewaters, soils and root and shoot of vegetables. We also measured health risk index (HRI) associated with the use of vegetables irrigated by wastewaters. Results revealed that Pb contents in groundwater and wastewater samples (range: 0.18–0.31 mg/L) were below the permissible limits (0.5 mg/L) set by the Food and Agriculture Organization (FAO). Application of Pb-containing groundwater and wastewater increased Pb concentration in soil and vegetables. Lead concentrations in all soils ranged from 10 to 31 mg/kg and were below the permissible limits of 300 mg/kg set by the European Union. Significant Pb enrichment was observed in the soils whereby all types of vegetables were grown and assessed for Pb risk. Our data showed that Pb contents, in all three vegetables (21–28 mg/kg DW), were higher than the permissible Pb limit of FAO (5 mg/kg Dry Weight (DW)). The HRI values were > 1.0 for radish and cauliflower. It is proposed that Vehari city wastewater/groundwater must be treated prior to its use for irrigation to avoid vegetable contamination by Pb, and as such for reducing Pb-induced human health risk.  相似文献   

3.
Plant growth and lead (Pb) uptake by seven willow varieties were investigated in pot and field experiments to assess the suitability of willows for phytoremediation of Pb at heavily contaminated sites such as skeet ranges. Differences in uptake and translocation of Pb in Salix were observed between pot and field experiments. In the pot experiment, willows grown in Pb-contaminated field soil for 6 months showed tolerance to very high soil Pb concentration (21,360 mg kg(-1)), and with the addition of EDTA were able to take up and translocate more than 1000 mg kg(-1) Pb into above-ground tissues. In the field experiment, all willow varieties showed tolerance to heterogeneously high soil Pb concentrations. Plants were also able to take up and translocate Pb into above-ground tissues. However, after 4.5 months, the lead concentration in the above-ground tissues of willows grown in soil amended with EDTA was less than 200 mg kg(-1). The results from the pot experiment suggest that Salix varieties have the potential to take up and translocate significant amounts of Pb into above-ground tissues using EDTA. However, to verify the phytoextraction abilities of Salix in the field, additional research is needed.  相似文献   

4.
Alfalfa plants germinated and grown for 15 d in soil containing 80 mg Pb kg?1 were treated with ethylenediaminetetraacetic acid (EDTA) at 0.8 mM and indole-3-acetic acid-kinetin (IAA-KN) at 100 μM. Fifteen days after the treatment application, the concentration of lead (Pb), macronutrients, and micronutrients was determined using inductively coupled plasma/optical emission spectroscopy. The chlorophyll content and plant growth were also measured. Roots of plants exposed to Pb alone, Pb–EDTA, and Pb–EDTA-IAA-KN had 160, 140, and 150 mg Pb kg?1 DW, respectively. Pb was not detected in the stems of plants exposed to Pb alone; however, stems of plants treated with EDTA and EDTA–IAA-KN had 78 and 142 mg Pb kg?1 DW, respectively. While the Pb concentration in leaves of plants treated with EDTA and EDTA–IAA-KN was 92 and 127 mg kg?1 DW, respectively. In addition, EDTA and EDTA–IAA-KN significantly increased the translocation of zinc and manganese to leaves. The x-ray absorption spectroscopic studies demonstrated that Pb(II) was transported from roots to leaves without a change in the oxidation state.  相似文献   

5.
Previous studies have shown that EDTA is necessary to solubilize soil Pb and facilitate its transport from the soil to the above ground plant tissues. These studies have also suggested that Pb is accumulated in the plant tissue with transpiration as the driving force. We conducted further studies to evaluate the relationship between EDTA soil treatment, plant transpiration, and plant accumulation of Pb and EDTA. Indian mustard (Brassica juncea) plants were grown in soils containing Pb at three different concentrations (1.5, 3.0 and 4.8 mmol/kg) for 5 weeks before being treated with EDTA concentrations ranging from 0 to 10 mmol/kg. Plant shoots and xylem sap were collected and analyzed for Pb and EDTA content using ICP and HPLC, respectively. Water loss was measured for 7 days following EDTA application. Transpiration was not affected at <5 mmol/kg EDTA but, at 10 mmol/kg EDTA transpiration decreased by 80%, whereas accumulation of Pb and EDTA increased. In the Sassafras soil, Pb and EDTA accumulation in the plant shoots continued to increase as the applied EDTA concentration increased, except at the highest level (10 mmol/kg). In soil amended with 4.8 mmol/kg Pb and 10 mmol/kg EDTA, the concentrations of EDTA and Pb in shoots decreased and visible signs of phytotoxicity were observed. The results presented herein support recent studies in hydroponic systems showing that EDTA and Pb are taken up by the plant and suggest that Pb is translocated in the plant as the Pb-EDTA complex. The results also show that the maximum Pb accumulation by plants occurs by maximizing the concentration of the Pb-EDTA complex based on the EDTA extractable soil Pb. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
研究植物激素浓度和培养周期对金线莲原球茎悬浮培养生长及其代谢产物积累的影响,以增加金线莲悬浮培养的生长量,提高次生代谢产物的生产。结果表明,MS培养基添加S-3307 1.0mg/L,6-BA0.5mg/L和3%的蔗糖适合总生物量的生长(214.45g/L,FW和18.23g/L DW)。而MS培养基添加S-3307 1.0mg/L,6-BA 3.0mg/L和5%的蔗糖,总黄酮,总酚和多糖的干重(5.43mg/g,2.87mg/g和243.23mg/g)达到最大化。研究原球茎悬浮培养过程,发现经过7个星期培养就能获得最大的生物质总量(225.98 g/L的FW和18.53 g/L的DW)、总黄酮干重(5.09mg/g)和总酚干重(2.04mg/g),而多糖生产达到其峰值(229.36mg/g干重)是在培养后5个星期。  相似文献   

7.
Anthropogenic sources of lead contamination in soils include mining and smelting activities, effluents and wastes, agricultural pesticides, domestic garbage dumps, and shooting ranges. While Pb is typically considered relatively insoluble in the soil environment, some fungi may potentially contribute to mobilization of heavy metal cations by means of secretion of low-molecular-weight organic acids (LMWOAs). We sought to better understand the potential for metal mobilization within an indigenous fungal community at an abandoned shooting range in Oak Ridge, TN, where soil Pb contamination levels ranged from 24 to >2,700 mg Pb kg dry soil(-1). We utilized culture-based assays to determine organic acid secretion and Pb-carbonate dissolution of a diverse collection of soil fungal isolates derived from the site and verified isolate distribution patterns within the community by 28S rRNA gene analysis of whole soils. The fungal isolates examined included both ascomycetes and basidiomycetes that excreted high levels (up to 27 mM) of a mixture of LMWOAs, including oxalic and citric acids, and several isolates demonstrated a marked ability to dissolve Pb-carbonate at high concentrations up to 10.5 g liter(-1) (18.5 mM) in laboratory assays. Fungi within the indigenous community of these highly Pb-contaminated soils are capable of LMWOA secretion at levels greater than those of well-studied model organisms, such as Aspergillus niger. Additionally, these organisms were found in high relative abundance (>1%) in some of the most heavily contaminated soils. Our data highlight the need to understand more about autochthonous fungal communities at Pb-contaminated sites and how they may impact Pb biogeochemistry, solubility, and bioavailability, thus consequently potentially impacting human and ecosystem health.  相似文献   

8.
In the present study, increasing ethylenediaminetetraacetic acid (EDTA) concentration from 0 to 0.5 mmol L(-1) resulted in progressive increases in root elongation and in shoot and root dry matter (DM) of Indian mustard seedlings (Brassica juncea. L.) exposed at 0.5 mmol L(-1) of lead (Pb). The highest concentration of Pb in the shoots of Indian mustard reached 1140 mg kg(-1) dry weight (DW) in the treatment with 0.5 mmol L(-1) of Pb + 0.25 mmol L(-1) of EDTA. A significantly positive correlation was found between the concentrations of Pb and EDTA in the shoots of mustard. Roots were pretreated with an MC (methanol:trichloromethane) solution, 0.1 mol L(-1) of HCl, and 65 degrees C hot water. The plants were then exposed to 0.5 mmol L(-1) of Pb + 3 mmol L(-1) of EDTA in solution for 2 d. The pretreatments with MC, HCl, and hot water all increased the concentration of Pb in shoots by 14-, 7-, and 15-fold, respectively, compared with the shoots that had not been pretreated. Therefore, some physiological damage to roots would be useful to enhance the uptake of metal by plants and to minimize the application of doses of chelates in the practical operation of chelate-assisted phytoremediation.  相似文献   

9.
10.
Several Gentle Remediation Options (GRO), e.g., plant-based options (phytoremediation), singly and combined with soil amendments, can be simultaneously efficient for degrading organic pollutants and either stabilizing or extracting trace elements (TEs). Here, a 5-month greenhouse trial was performed to test the efficiency of Medicago sativa L., singly and combined with a compost addition (30% w/w), to treat soils contaminated by petroleum hydrocarbons (PHC), Co and Pb collected at an auto scrap yard. After 5 months, total soil Pb significantly decreased in the compost-amended soil planted with M. sativa, but not total soil Co. Compost incorporation into the soil promoted PHC degradation, M. sativa growth and survival, and shoot Pb concentrations [3.8 mg kg?1 dry weight (DW)]. Residual risk assessment after the phytoremediation trial showed a positive effect of compost amendment on plant growth and earthworm development. The O2 uptake by soil microorganisms was lower in the compost-amended soil, suggesting a decrease in microbial activity. This study underlined the benefits of the phytoremediation option based on M. sativa cultivation and compost amendment for remediating PHC- and Pb-contaminated soils.  相似文献   

11.
Lead (Pb) is a major chemical pollutant in the environment. The present investigation evaluates the possible use of Meat and Bone Meal Combustion Residues (MBMCR), to sequester Pb from the soil compartment using the heterozygous tobacco model (Nicotiana tabacum var. xanthi Dulieu) characterized by the a1+ /a1 a2+ /a2 system. The toxic potential of Pb-contaminations (50, 100, 1,000, 2,000 and 10,000 mg Pb kg(-1)) as Pb(NO3) in standard soil was investigated in lab conditions according to three endpoints: (i) acute toxicity of plants (mortality, height and surface area parameters), (ii) Pb-accumulation in roots, stems and leaves, and (iii) genetic effects as the expression of reversion in the leaf of plants. Moreover, chemical investigations of Pb interactions with soil were realized to complete the toxicity evaluation. The results demonstrated that: (i) MBMCR were not acutely toxic or genotoxic to tobacco plants, (ii) Pb is acutely toxic to tobacco plants at 10,000 mg Pb kg(-1) of soil, (ii) but is not genotoxic, and (iii) Pb-bioaccumulation is significant in leaves, stems and roots (from 1,000, 2,000, and 50 mg Pb kg(-1) of soil, respectively). In contrast, in the presence of MBMCR, the toxic impacts of Pb were inhibited and Pb-accumulation in tobacco plants was reduced. In complement, chemical analyses highlighted the high capacity of the standard soil to immobilize Pb. The results suggest that even if Pb is bioavailable from soils to plants, complex mechanisms could occur in plants protecting them from the toxic impact of Pb.  相似文献   

12.
The aim of this work is to investigate the effects of methyl jasmonate (MeJ) and salicylic acid (SA) on d-chiro-inositol (DCI) production in buckwheat (Fagopyrum esculentum) suspension cultures. In this study, adding optimal concentrations of MeJ and SA at an appropriate time markedly increased DCI production (yield 6.141 and 5.521 mg/g DW, respectively). In addition, treatment of buckwheat cultures with a combination of 0.2 mM MeJ and 0.6 mM SA on days 0 and 9 increased the DCI yield to 7.579 mg/g DW, which was 3.726 times higher than that in the control; furthermore, the former yield was higher than that achieved by the addition of either elicitor alone. Moreover, unlike MeJ, SA did not exert a negative effect on cell growth.  相似文献   

13.
The suitability of silages containing buckwheat (Fagopyrum esculentum) and chicory (Cichorium intybus) for the nutrition of dairy cows was determined. Buckwheat and chicory were sown in mixture with ryegrass (Lolium multilorum), and a pure ryegrass culture served as a control forage. Swards were harvested 55 d after sowing and were ensiled after wilting, without additives in small round bales. Finally, buckwheat and chicory made up the dietary dry matter (DM) proportions of 0.46 and 0.34, respectively. Concentrates were restricted to 2 kg/d. Diets were fed to 3 x 6 late-lactating cows for 15 d at ad libitum access. During the collection period (days 10-15) amounts of feed intake and faeces, urine and milk were recorded and samples were taken. Ensilability was good for buckwheat and ryegrass swards, but was so less for the chicory sward, which was rich in total ash. The buckwheat silage was rich in acid detergent fibre (445 g/kg DM) and lignin (75.7 g/kg DM) and contained less crude protein (135 g/kg DM) and ether extract (15.8 g/kg DM) than the other silages. Consistent with that, the apparent digestibility of the organic matter and fibre were lowest when feeding this silage. The potassium concentrations in the chicory and ryegrass silages were high (61 g/ kg) and lower in buckwheat (47 g/kg). No significant treatment effects on intake, body weight, milk yield or milk composition as well as plasma beta-hydroxybutyrate and non-esterified fatty acids occurred. Being lowest in nitrogen (N) content, the buckwheat silage resulted in the lowest urine N losses and the most efficient N utilisation for milk protein synthesis, but this at cost of body N retention. The results show that silages containing buckwheat and chicory may be used as components of the forage part of dairy cows' diets even though they were found to have a lower feeding value than ryegrass silage.  相似文献   

14.
对五彩湾工业区周边21个采样点的梭梭(Hadoxylon)和琵琶柴(Reaummuria soongorica)的Zn、Cu、Cr、Pb、As、Hg 6种重金属元素含量测定,运用统计学方法和地统计插值法分析其茎叶和根部重金属含量变化情况和空间分布特征,并综合评价其污染程度和潜在生态危害性。结果表明:梭梭和琵琶柴植株Hg含量的最大值和均值都超出新疆土壤背景值0.017 mg/kg,除梭梭根部的均值0.060 mg/kg未超出国家土壤背景值0.065 mg/kg,在二者其他部位的最大值和均值都已超出;琵琶柴整株中Cr最大值72.62 mg/kg和Zn最大值97.61 mg/kg均超出新疆土壤背景值49.3 mg/kg和国家土壤背景值61 mg/kg,Pb元素未被检出。插值精度方面,Hg、As的RMSE较小,分别为0.263和0.443,预测模型中Hg的R~2为0.72,Cu的R~2为0.67,能较好地估计预测样点的重金属含量,Zn的R~2为0.31,精度较低;插值结果,琵琶柴中的Zn、Cr、As、Hg含量较高的区域均在工业园区内部及周围,受人为扰动程度较大。梭梭和琵琶柴中Hg元素分别为中度污染和重度污染;Hg元素为中等潜在危害程度高于其他4种元素。  相似文献   

15.
设置移栽时营养杯的有无及其大小作试验,研究长喙田菁在乐昌铅锌矿强酸化尾矿上的生长、固氮和积累重金属情况。结果表明,强酸性(pH<3)是限制植物定植的主要因素,在pH=5-7情况下,长喙田菁能在该尾矿库中定植、生长和固氮,表现出良好的适应性。未带营养杯移栽的长喙田菁在尾矿上生长84d,其株高117cm、茎基部直径1.35cm、单株生物量(干物质)20.2g、单位面积生物量(干物质)2828kghm-2、氮素积累量40kghm-2;带营养杯移栽的上述各指标分别达到140-144cm、1.59-1.68cm、36.6-38.8g、5124-5432kghm-2和77-107kghm-2,均显著高于未带营养杯处理的。长喙田菁根部铅、锌、铜、镉含量均最高,其次为茎,叶中最低;长喙田菁的4种重金属积累量为锌(186-221mgkg-1)>铅(96-145mgkg-1)>铜(17-30mgkg-1)>镉(3-4mgkg-1)。带营养杯移栽能有效提高长喙田菁的产量和氮积累量,且明显降低其体内的重金属含量。试验证明长喙田菁是较理想的铅锌矿尾矿废弃地植被重建的先锋植物。  相似文献   

16.
This study was conducted to investigate the uptake of lead (Pb) and arsenic (As) from contaminated soil using Melastoma malabathricum L. species. The cultivated plants were exposed to As and Pb in separate soils for an observation period of 70 days. From the results of the analysis, M. malabathricum accumulated relatively high range of As concentration in its roots, up to a maximum of 2800 mg/kg. The highest accumulation of As in stems and leaves was 570 mg/kg of plant. For Pb treatment, the highest concentration (13,800 mg/kg) was accumulated in the roots of plants. The maximum accumulation in stems was 880 mg/kg while maximum accumulation in leaves was 2,200 mg/kg. Only small amounts of Pb were translocated from roots to above ground plant parts (TF < 1). However, a wider range of TF values (0.01–23) for As treated plants proved that the translocation of As from root to above ground parts was greater. However, the high capacity of roots to take up Pb and As (BF > 1) is indicative this plants is a good bioaccumulator for these metals. Therefore, phytostabilisation is the mechanism at work in M. malabathricum's uptake of Pb, while phytoextraction is the dominant mechanism with As.  相似文献   

17.
The ability of scented geraniums (Pelargonium sp. ‘Frensham’) plants to tolerate, uptake, and accumulate lead was assessed compared with two well-established metal accumulators, Indian mustard (Brassica juncea) and sunflower (Helianthus annuus), under greenhouse conditions. The efficiency of the photosynthetic apparatus and the number and size of active photosynthetic reaction centers (expressed as chlorophyll a fluorescence ratios of variable fluorescence to maximal fluorescence [Fv/Fm] and variable fluorescence to unquenchable portion of fluorescence [Fv/Fo], respectively) were affected to varying degrees at all metal concentrations in all the plants tested. Lead exposure did not significantly affect the efficiency of photosystem II activity or the number and size of the photosynthetic reaction centers in scented geraniums, but the ratios decreased significantly in Indian mustard and sunflower plants following lead exposure. In addition to tolerating high levels of lead, the scented geraniums accumulated in excess of 3000 mg of lead per kg DW of shoot and above 60,000 mg of lead per kg DW of root tissue. Additionally, scented geraniums exposed to a mixture of metals (lead + cadmium + nickel) had the ability to uptake in excess of 4.72% Pb + 0.44% Cd + 0.52% Ni per kg of root DW, as well as 0.17% Pb + 0.07% Cd + 0.14% Ni per kg of shoot DW within 14 d, indicated the potential for existence of more than one functional tolerance and metal uptake mechanism(s). The cellular localization of lead was assessed using transmission electron microscopy coupled with an X-ray microanalyzer. Lead accumulation was observed in the apoplasm and in the cytoplasm, vacuoles, and as distinct globules (potentially as lead-lignin or lead-phosphate complexes) on the cell membrane and cell wall. We conclude that the ability of scented geraniums to tolerate high lead accumulation in its biomass is due, in part, to limiting damage to photosynthetic apparatus and metal detoxification by formation of metal complexes.  相似文献   

18.
商陆是在中国境内发现的多年生、草本型锰超积累植物。通过室内土培试验,评价商陆对土壤中锰的去除潜力,确定最佳收获时间,以期达到最佳的重金属污染土壤植物修复效果。结果表明:商陆能将土壤中的锰转运到地上部位,叶片中Mn含量最高,平均值为17 043 mg/kg DW,远远大于茎和根的锰含量均值;单株的平均富集量在浓度为500 mg/kg DW时达最高,一棵商陆可富集平均13 mg的Mn;动态修复中确定的最佳收获时间为60 d,不同时间收获的商陆地下部分生物量差异不明显(P0.05),地上部分则差异较大。连续收获不改变其锰生物富集能力。这表明商陆对锰有较强的富集能力,是一种优良的修复锰污染土壤的物种,对土壤重金属污染的治理及植物修复领域数据库的完善具有重要意义。  相似文献   

19.
The potential of 6 tree species (Leucaena leucocephala, Acacia mangium, Peltophorum pterocarpum, Pterocarpus macrocarpus, Lagerstroemia floribunda, Eucalyptus camaldulensis) for phytoremediation of Pb in sand tailings (total Pb >9850 mg kg(-1)) from KEMCO Pb mine in Kanchanaburi province, Thailand, were investigated employing a pot experiment (3 months) and field trial experiment (12 months). In pot study E. camaldulensis treated with Osmocote fertilizer attained the highest total biomass (15.3 g plant(-1)) followed by P. pterocarpum (12.6 g plant(-1)) and A. mangium (10.8 g plant(-1)) both treated with cow manure. Cow manure application resulted in the highest root Pb accumulation (>10000 mg kg(-1)) in L. floribunda and P. macrocarpus. These two species also exhibited the highest Pb uptake (85-88 mg plant(-1)). Results from field trial also showed that Osmocote promoted the best growth performance in E. camaldulensis (biomass 385.7 g plant(-1), height 141.7 cm) followed by A. mangium (biomass 215.9 g plant(-1), height 102.7 cm), and they also exhibited the highest Pb uptake (600-800 microg plant(-1)). A. mangium with the addition of organic fertilizer was the best option for phytostabilization of Pb-contaminated mine tailing because it retained higher Pb concentration in the roots.  相似文献   

20.
Compartmentation of heavy metals on or within mycorrhizal fungi may serve as a protective function for the roots of forest trees growing in soils containing elevated concentrations of metals such as Cd and Zn. In this paper we present the first quantitative measurements by X‐ray microanalysis of heavy metals in high‐pressure frozen and cryosectioned ectomycorrhizal fungal hyphae. We used this technique to analyse the main sites of Cd and Zn in fungal cells of mantle and Hartig net hyphae and in cortical root cells of symbiotic Picea abies – Hebeloma crustuliniforme associations to gain new insights into the mechanisms of detoxification of these two metals in Norway spruce seedlings. The mycorrhizal seedlings were exposed in growth pouches to either 1 mM Cd or 2 mM Zn for 5 weeks. The microanalytical data revealed that two distinct Cd‐ and Zn‐binding mechanisms are involved in cellular compartmentation of Cd and Zn in the mycobiont. Whereas extracellular complexation of Cd occurred predominantly in the Hartig net hyphae, both extracellular complexation and cytosolic sequestration of Zn occurred in the fungal tissue. The vacuoles were presumed not to be a significant pool for Cd and Zn storage. Cadmium was almost exclusively localized in the cell walls of the Hartig net (up to 161 mmol kg ? 1 DW) compared with significantly lower concentrations in the cell walls of mantle hyphae (22 mmol kg ? 1 DW) and in the cell walls of cortical cells (15 mmol kg ? 1 DW). This suggests that the apoplast of the Hartig net is a primary accumulation site for Cd. Zinc accumulated mainly in the cell walls of the mantle hyphae (111 mmol kg ? 1 DW), the Hartig net hyphae (130 mmol kg ? 1 DW) and the cortical cells (152 mmol kg ? 1 DW). In addition, Zn occurred in high concentrations in the cytoplasm of the fungal mantle hyphae (up to 164 mmol kg ? 1 DW) suggesting that both the cell walls and the cytoplasm of fungal tissue are the main accumulation sites for Zn in P. abies resulting in decreased Zn transfer from the fungus to the root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号