首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a role in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl4-treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation.  相似文献   

2.
MicroRNAs (miRNAs), small noncoding RNAs modulating messenger RNA (mRNA) and protein expression, have emerged as key regulatory molecules in chronic liver diseases, whose end stage is hepatic fibrosis, a major global health burden. Pharmacological strategies for prevention or treatment of hepatic fibrosis are still limited, what makes it necessary to establish a better understanding of the molecular mechanisms underlying its pathogenesis. In this context, we have recently shown that cyclooxygenase-2 (COX-2) expression in hepatocytes restricts activation of hepatic stellate cells (HSCs), a pivotal event in the initiation and progression of hepatic fibrosis. Here, we evaluated the role of COX-2 in the regulation of a specific set of miRNAs on a mouse model of CCl4 and bile duct ligation (BDL)-induced liver fibrosis. Our results provide evidence that COX-2 represses miR-23a-5p and miR-28-5p expression in HSC. The decrease of miR-23a-5p and miR-28-5p expression promotes protection against fibrosis by decreasing the levels of pro-fibrogenic markers α-SMA and COL1A1 and increasing apoptosis of HSC. Moreover, we demonstrate that serum levels of miR-28-5p are decreased in patients with chronic liver disease. These results suggest a protective effect exerted by COX-2-derived prostanoids in the process of hepatofibrogenesis.  相似文献   

3.
4.
目的:探讨尿液外泌小体(exosomes)中微小RNA(miRNA,miR)的变化与肾纤维化的关系,以寻找早期诊断肾纤维化的生物标志物。方法:以行肾穿刺活检术并诊断为原发性肾脏病的患者为研究对象,其中,肾活检未发现肾纤维化的患者作为对照组,而存在轻到中度肾纤维化的患者作为纤维化组。收集20 m L晨尿,用超速离心方法分离尿液exosomes,用电镜观察其形态,用定量PCR方法检测其中miRNA的含量,并分析其与肾纤维化的关系。结果:超速离心获得的尿液沉淀物呈现exosomes的形态学特征。miR-21、miR-29b、miR-29c、miR-30e、miR-192、miR-200a、miR-200c和miR-429可在所有患者的尿液exosomes中被检出,但含量存在较大差异。与对照组相比,纤维化组患者尿液exosomes中,miR-21、miR-29b、miR-30e和miR-200c的含量显著增高,miR-29c的含量显著下降,而miR-192、miR-200a和miR-429的含量无显著变化。尿液exosomes中miRNA含量与纤维化肾组织中miRNA表达量的变化并不完全一致。结论:尿液exosomes中miR-29c和miR-21的含量在肾纤维化的病变中发生显著改变,可能成为早期诊断肾纤维化的生物标志物。  相似文献   

5.
Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic fat accumulation and is presently the most common chronic liver disease. However, the mechanisms underlying the development of steatosis remain unclear. MicroRNAs (miRNAs) are small non-coding RNAs that modulate a variety of biological functions. We have investigated the role of miRNA in the development of steatosis. We found that miR-467b expression is significantly downregulated in liver tissues of high-fat diet fed mice and in steatosis-induced hepatocytes. The downregulation of miR-467b resulted in the upregulation of hepatic lipoprotein lipase (LPL), the direct target of miR-467b. Moreover, the interaction between miR-467b and LPL was associated with insulin resistance, a major cause of NAFLD. These results suggest that downregulation of miR-467b is involved in the development of hepatic steatosis by modulating the expression of its target, LPL.  相似文献   

6.
Hepatic fibrosis is a chronic inflammatory and reversible repair reaction of the liver under the continuous action of virus or various injuries. In this study, we aimed at identifying the role of miR-326 in the hepatic stellate cell (HSC) activation and liver fibrosis and its potential mechanism. In this study, the liver fibrosis mouse model was developed by injecting CCl4. Liver tissue morphology was observed and the expression level of α-smooth muscle actin, collagen1α1 and miR-326 was measured. Target gene identification was performed by loss-of-function and gain-of-function. The effect of miR-326 on the expression level of the cytokines associated with the TLR4/MyD88/nuclear factor-κB (NF-κB) pathway was assessed in vitro and in vivo. We show that miR-326 was downregulated in CCl4-induced fibrotic mice and activated HSCs. The target gene of miR-326 is TLR4. Moreover, miR-326 inhibited the activation of HSCs in vitro through TLR4/MyD88/NF-κB signaling. miR-326 attenuated hepatic fibrosis and inflammation of CCl4-induced mice in vivo. Our results demonstrate for the first time that miR-326 inhibits HSC activation through TLR4/MyD88/NF-κB signaling. Furthermore, miR-326 plays critical roles in attenuating liver fibrosis and inflammation, suggesting the therapeutic potential of miRNAs.  相似文献   

7.
Hepatic stellate cell (HSC) activation is a pivotal event in the initiation and progression of hepatic fibrosis since it mediates transforming growth factor beta 1 (TGF-β1)-driven extracellular matrix (ECM) deposition. MicroRNAs (miRNAs), small non-coding RNAs modulating messenger RNA (mRNA) and protein expression, have emerged as key factors to regulate cell proliferation, differentiation, and apoptosis. Although the function of miR-200a has been discussed in many cancers and fibrotic diseases, its role in hepatic fibrosis is still poorly understood. The aim of this study is to investigate whether miR-200a could attenuate hepatic fibrosis partly through Wnt/β-catenin and TGF-β-dependant mechanisms. Our study found that the expression of endogenous miR-200a was decreased in vitro in TGF-β1-induced HSC activation as well as in vivo in CCl4-induced rat liver fibrosis. Overexpression of miR-200a significantly inhibited α-SMA activity and further affected the proliferation of TGF-β1-dependent activation of HSC. In addition, we identified β-catenin and TGF-β2 as two functional downstream targets for miR-200a. Interestingly, miR-200a specifically suppressed β-catenin in the protein level, whereas miR-200a-mediated suppression of TGF-β2 was shown on both mRNA and protein levels. Our results revealed the critical regulatory role of miR-200a in HSC activation and implied miR-200a as a potential candidate for therapy by deregulation of Wnt/β-catenin and TGFβ signaling pathways, at least in part, via decreasing the expression of β-catenin and TGF-β2.  相似文献   

8.
Previous studies have indicated that female animals are more resistant to carbon tetrachloride (CCl(4))-induced liver fibrosis than male animals, and that estradiol (E(2)) treatment can inhibit CCl(4)-induced animal hepatic fibrosis. The underlying mechanism governing these phenomena, however, has not been fully elucidated. Here we reported the role of estrogen-induced miRNA-29 (miR-29) expression in CCl(4)-induced mouse liver injury. Hepatic miR-29 levels were differentially regulated in female and male mice during CCl(4) treatment. Specifically, the levels of miR-29a and miR-29b expression were significantly decreased in the livers of male, but not female, mice following 4 weeks of CCl(4) treatment. The down-regulation of miR-29a and miR-29b in male mouse livers correlated with the early development of liver fibrosis, as indicated by increased expressions of fibrotic markers in male mice relative to female mice. In addition, E(2) was maintained at a higher level in female mice than in male mice. In contrast to TGF-β1 that decreased miR-29a/b expression in murine hepatoma IAR20 cells and normal hepatocytes, E(2) enhanced the expression of miR-29a/b through suppression of the nuclear factor-κB (NF-κB) signal pathway, which negatively regulates miR-29 expression. Furthermore, both E(2) treatment and intravenous injection of the recombinant adenovirus expressing miR-29a/b markedly increased the miR-29a/b level and attenuated the expression of fibrotic markers in mouse livers during CCl(4) treatment, supporting the protective role of E(2)-induced miR-29 in CCl(4)-induced hepatic injury. In conclusion, our results collectively demonstrate that estrogen can inhibit CCl(4)-induced hepatic injury through the induction of hepatic miR-29.  相似文献   

9.
There has been an increasing number of studies about microRNAs as key regulators in the development of hepatic fibrosis. Here, we demonstrate that miR-542-3p can promote hepatic fibrosis by downregulating the expression of bone morphogenetic protein 7 (BMP-7), which is known to antagonize transforming growth factor β1 (TGFβ1)-mediated fibrogenesis effect. The expression of miR-542-3p is increased in activated hepatic stellate cells (HSCs). Downregulation of MiR-542-3p by antisense inhibitors can inhibit HSCs activation markers, including α-smooth muscle actin (α-SMA) and collagen as well as TGFβ signaling pathways. MiR-542-3p was significantly upregulated in carbon tetrachloride (CCl4)-induced hepatic fibrosis in mice, and downregulation of miR-542-3p by lentivirus could prevent the development of hepatic fibrosis. In addition, miR-542-3p can directly bind to the 3′-untranslated region of BMP-7 mRNA, indicating that its profibrotic effect appears to be caused by its inhibition of BMP-7. Our results suggest that downregulation of miR-542-3p prevents liver fibrosis both in vitro and in vivo, highlighting its potential as a novel biomarker or therapeutic target for hepatic fibrosis.  相似文献   

10.
Recent studies have shown that microRNA-29 (miR-29) is significantly decreased in liver fibrosis, as demonstrated in human liver cirrhosis, and that its downregulation influences the activation of hepatic stellate cells. In addition, both cleaved caspase-3 production and apoptosis play a role in cholestatic liver injury. However, it is unknown if miR-29 is effective in modulating the extent of injury. We employed miR-29a transgenic mice (miR-29aTg mice) and wild-type (WT) littermates to clarify the role of miR-29 in hepatic injury and fibrogenesis, using the bile duct-ligation (BDL) mouse model. After BDL, all three members of the miR-29 family were significantly downregulated in the livers of WT mice, and miR-29b and miR-29c were significantly downregulated in the livers of the miR-29aTg mice. Liver function, as measured by alanine transaminase and aspartate transaminase activity, was significantly improved in the miR-29aTg mice than in the WT littermates, following 1 week of obstructive jaundice. In addition, overexpression of miR-29a was associated with a significant downregulation of the expression of collagen-1α1, collagen-4α1, phospho-FADD, cleaved caspase-8, cleaved caspase-3, Bax, Bcl-2, PARP, and nuclear factor-κB, as well as an upregulation of phospho-AKT expression. In addition, there were significantly fewer TUNEL-positive liver cells in the miR-29aTg group than in the WT littermates after BDL. Our results indicate that miR-29a decreases cholestatic liver injury and fibrosis after BDL, at least partially, by modulating the extrinsic rather than intrinsic pathway of apoptosis.  相似文献   

11.
L Cui  Y Shi  X Zhou  X Wang  J Wang  Y Lan  M Wang  L Zheng  H Li  Q Wu  J Zhang  D Fan  Y Han 《Cell death & disease》2013,4(11):e918
In a previous study, we elucidated the specific microRNA (miRNA) profile of hepatic differentiation. In this study, we aimed to clarify the instructive role of six overexpressed miRNAs (miR-1246, miR-1290, miR-148a, miR-30a, miR-424 and miR-542-5p) during hepatic differentiation of human umbilical cord lining-derived mesenchymal stem cells (hMSCs) and to test whether overexpression of any of these miRNAs is sufficient to induce differentiation of the hMSCs into hepatocyte-like cells. Before hepatic differentiation, hMSCs were infected with a lentivirus containing a miRNA inhibitor sequence. We found that downregulation of any one of the six hepatic differentiation-specific miRNAs can inhibit HGF-induced hepatic differentiation including albumin expression and LDL uptake. Although overexpression of any one of the six miRNAs alone or liver-enriched miR-122 cannot initiate hepatic differentiation, ectopic overexpression of seven miRNAs (miR-1246, miR-1290, miR-148a, miR-30a, miR-424, miR-542-5p and miR-122) together can stimulate hMSC conversion into functionally mature induced hepatocytes (iHep). Additionally, after transplantation of the iHep cells into mice with CCL4-induced liver injury, we found that iHep not only can improve liver function but it also can restore injured livers. The findings from this study indicate that miRNAs have the capability of directly converting hMSCs to a hepatocyte phenotype in vitro.  相似文献   

12.
13.
BackgroundLiquiritigenin (LQ), an aglycone of liquiritin in licorice, has demonstrated antioxidant, anti-inflammatory and anti-tumor activities. Previously, LQ was found to inhibit liver fibrosis progression.PurposePhosphatase and tensin homolog (PTEN) has been reported to act as a negative regulator of hepatic stellate cell (HSC) activation. However, the roles of PTEN in the effects of LQ on liver fibrosis have not been identified to date.MethodsThe effects of LQ on liver fibrosis in carbon tetrachloride (CCl4) mice as well as primary HSCs were examined. Moreover, the roles of PTEN and microRNA-181b (miR-181b) in the effects of LQ on liver fibrosis were examined.ResultsLQ markedly ameliorated CCl4-induced liver fibrosis, with a reduction in collagen deposition as well as α-SMA level. Moreover, LQ induced an increase in PTEN and effectively inhibited HSC activation including cell proliferation, α-SMA and collagen expression, which was similar with curcumin (a positive control). Notably, loss of PTEN blocked down the effects of LQ on HSC activation. PTEN was confirmed as a target of miR-181b and miR-181b-mediated PTEN was involved in the effects of LQ on liver fibrosis. LQ led to a significant reduction in miR-181b expression. LQ-inhibited HSC activation could be restored by over-expression of miR-181b. Further studies demonstrated that LQ down-regulated miR-181b level via Sp1. Collectively, we demonstrate that LQ inhibits liver fibrosis, at least in part, via regulation of miR-181b and PTEN.ConclusionLQ down-regulates miR-181b level, leading to the restoration of PTEN expression, which contributes to the suppression of HSC activation. LQ may be a potential candidate drug against liver fibrosis.  相似文献   

14.

Background

In chronic liver disease, hepatic stellate cells (HSC) transdifferentiate into myofibroblasts, promoting extracellular matrix (ECM) synthesis and deposition. Stimulation of HSC by transforming growth factor-β (TGF-β) is a crucial event in liver fibrogenesis due to its impact on myofibroblastic transition and ECM induction. In contrast, hepatocyte growth factor (HGF), exerts antifibrotic activities. Recently, miR-29 has been reported to be involved in ECM synthesis. We therefore studied the influence of HGF and TGF-β on the miR-29 collagen axis in HSC.

Methodology

HSC, isolated from rats, were characterized for HGF and Met receptor expression by Real-Time PCR and Western blotting during culture induced myofibroblastic transition. Then, the levels of TGF-β, HGF, collagen-I and -IV mRNA, in addition to miR-29a and miR-29b were determined after HGF and TGF-β stimulation of HSC or after experimental fibrosis induced by bile-duct obstruction in rats. The interaction of miR-29 with 3′-untranslated mRNA regions (UTR) was analyzed by reporter assays. The repressive effect of miR-29 on collagen synthesis was studied in HSC treated with miR-29-mimicks by Real-Time PCR and immunoblotting.

Principal Findings

The 3′-UTR of the collagen-1 and −4 subtypes were identified to bind miR-29. Hence, miR-29a/b overexpression in HSC resulted in a marked reduction of collagen-I and -IV synthesis. Conversely, a decrease in miR-29 levels is observed during collagen accumulation upon experimental fibrosis, in vivo, and after TGF-β stimulation of HSC, in vitro. Finally, we show that during myofibroblastic transition and TGF-β exposure the HGF-receptor, Met, is upregulated in HSC. Thus, whereas TGF-β stimulation leads to a reduction in miR-29 expression and de-repression of collagen synthesis, stimulation with HGF was definitely associated with highly elevated miR-29 levels and markedly repressed collagen-I and -IV synthesis.

Conclusions

Upregulation of miRNA-29 by HGF and downregulation by TGF-β take part in the anti- or profibrogenic response of HSC, respectively.  相似文献   

15.
Cardiac fibrosis is associated with diverse heart diseases. In response to different pathological irritants, cardiac fibroblasts may be induced to proliferate and differentiate into cardiac myofibroblasts, thus contributing to cardiac fibrosis. TGF-β signaling is implicated in the development of heart failure through the induction of cardiac fibrosis. C-Ski, an inhibitory regulator of TGF-β signaling, has been reported to suppress TGF-β1-induced human cardiac fibroblasts' proliferation and ECM protein increase; however, the underlying molecular mechanism needs further investigation. In the present study, we demonstrated that c-Ski could ameliorate isoproterenol (ISO)-induced rat myocardial fibrosis model and TGF-β1-induced primary rat cardiac fibroblasts' proliferation, as well as extracellular matrix (ECM) deposition. The protein level of c-Ski was dramatically decreased in cardiac fibrosis and TGF-β1-stimulated primary rat cardiac fibroblasts. In recent decades, a family of small non-coding RNA, namely miRNAs, has been reported to regulate gene expression by interacting with diverse mRNAs and inducing either translational suppression or mRNA degradation. Herein, we selected miR-34a and miR-93 as candidate miRNAs that might target to regulate c-Ski expression. After confirming that miR-34a/miR-93 targeted c-Ski to inhibit its expression, we also revealed that miR-34a/miR-93 affected TGF-β1-induced fibroblasts' proliferation and ECM deposition through c-Ski. Taken together, we demonstrated a miR-34a/miR-93-c-Ski axis which modulates TGF-β1- and ISO-induced cardiac fibrosis in vitro and in vivo; targeting the inhibitory factors of c-Ski to rescue its expression may be a promising strategy for the treatment of cardiac fibrosis.  相似文献   

16.
Elastin production is characteristically turned off during the maturation of elastin-rich organs such as the aorta. MicroRNAs (miRNAs) are small regulatory RNAs that down-regulate target mRNAs by binding to miRNA regulatory elements (MREs) typically located in the 3' UTR. Here we show a striking up-regulation of miR-29 and miR-15 family miRNAs during murine aortic development with commensurate down-regulation of targets including elastin and other extracellular matrix (ECM) genes. There were a total of 14 MREs for miR-29 in the coding sequences (CDS) and 3' UTR of elastin, which was highly significant, and up to 22 miR-29 MREs were found in the CDS of multiple ECM genes including several collagens. This overrepresentation was conserved throughout mammalian evolution. Luciferase reporter assays showed synergistic effects of miR-29 and miR-15 family miRNAs on 3' UTR and coding-sequence elastin constructs. Our results demonstrate that multiple miR-29 and miR-15 family MREs are characteristic for some ECM genes and suggest that miR-29 and miR-15 family miRNAs are involved in the down-regulation of elastin in the adult aorta.  相似文献   

17.
Persistent hepatic damage and chronic inflammation in liver activate the quiescent hepatic stellate cells (HSCs) and cause hepatic fibrosis (HF). Several microRNAs regulate the activation and proliferation of HSCs, thereby playing a critical role in HF progression. Previous studies have reported that miR-188-5p is dysregulated during the process of HF. However, the role of miR-188-5p in HF remains unclear. This study investigated the potential role of miR-188-5p in HSCs and HF. Firstly, we validated the miR-188-5p expression in primary cells isolated from liver of carbon tetrachloride (CCl4)-induced mice, TGF-β1-induced LX-2 cells, livers from 6-month high-fat diet (HFD)-induced rat and 4-month HFD-induced mice NASH models, and human non-alcoholic fatty liver disease (NAFLD) patients. Furthermore, we used miR-188-5p inhibitors to investigate the therapeutic effects of miR-188-5p inhibition in the HFD + CCl4 induced in vivo model and the potential role of miR-188-5p in the activation and proliferation of HSCs. This present study reported that miR-188-5p expression is significantly increased in the human NAFLD, HSCs isolated from liver of CCl4 induced mice, and in vitro and in vivo models of HF. Mimicking the miR-188-5p resulted in the up-regulation of HSC activation and proliferation by directly targeting the phosphatase and tensin homolog (PTEN). Moreover, inhibition of miR-188-5p reduced the activation and proliferation markers of HSCs through PTEN/AKT pathway. Additionally, in vivo inhibition of miR-188-5p suppressed the HF parameters, pro-fibrotic and pro-inflammatory genes, and fibrosis. Collectively, our results uncover the pro-fibrotic role of miR-188-5p. Furthermore, we demonstrated that miR-188-5p inhibition decreases the severity of HF by reducing the activation and proliferation of HSCs through PTEN/AKT pathway.  相似文献   

18.
Despite years of effort, exact pathogenesis of nonalcoholic fatty liver disease (NAFLD) remains obscure. To gain an insight into the regulatory roles of microRNAs (miRNAs) in aberrant energy metabolic status and pathogenesis of NAFLD, we analyzed the expression of miRNAs in livers of ob/ob mice, streptozotocin (STZ)-induced type 1 diabetic mice, and normal C57BL/6 mice by miRNA microarray. Compared with normal C57BL/6 mice, ob/ob mice showed upregulation of eight miRNAs and downregulation of four miRNAs in fatty livers. Upregulation of miR-34a and downregulation of miR-122 was found in livers of STZ-induced diabetic mice. These results demonstrate that distinct miRNAs are strongly dysregulated in NAFLD and hyperglycemia. Comparison between miRNA expressions in livers of ob/ob mice and STZ-administered mice further revealed upregulation of four miRNAs and downregulation of two miRNAs in livers of ob/ob mice, indicating that these miRNAs may represent a molecular signature of NAFLD. A distinctive miRNA expression pattern was identified in ob/ob mouse liver, and hierarchical clustering of this pattern could clearly discriminate ob/ob mice from either normal C57BL/6 mice or STZ-administered mice. These findings suggest an important role of miRNAs in hepatic energy metabolism and implicate the participation of miRNAs in the pathophysiological processes of NAFLD.  相似文献   

19.

Background

The classical paradigm of liver injury asserts that hepatic stellate cells (HSC) produce, remodel and turnover the abnormal extracellular matrix (ECM) of fibrosis via matrix metalloproteinases (MMPs). In extrahepatic tissues MMP production is regulated by a number of mechanisms including expression of the glycoprotein CD147. Previously, we have shown that CD147 is expressed on hepatocytes but not within the fibrotic septa in cirrhosis [1]. Therefore, we investigated if hepatocytes produce MMPs, regulated by CD147, which are capable of remodelling fibrotic ECM independent of the HSC.

Methods

Non-diseased, fibrotic and cirrhotic livers were examined for MMP activity and markers of fibrosis in humans and mice. CD147 expression and MMP activity were co-localised by in-situ zymography. The role of CD147 was studied in-vitro with siRNA to CD147 in hepatocytes and in-vivo in mice with CCl4 induced liver injury using ãCD147 antibody intervention.

Results

In liver fibrosis in both human and mouse tissue MMP expression and activity (MMP-2, -9, -13 and -14) increased with progressive injury and localised to hepatocytes. Additionally, as expected, MMPs were abundantly expressed by activated HSC. Further, with progressive fibrosis there was expression of CD147, which localised to hepatocytes but not to HSC. Functionally significant in-vitro regulation of hepatocyte MMP production by CD147 was demonstrated using siRNA to CD147 that decreased hepatocyte MMP-2 and -9 expression/activity. Further, in-vivo α-CD147 antibody intervention decreased liver MMP-2, -9, -13, -14, TGF-β and α-SMA expression in CCl4 treated mice compared to controls.

Conclusion

We have shown that hepatocytes produce active MMPs and that the glycoprotein CD147 regulates hepatocyte MMP expression. Targeting CD147 regulates hepatocyte MMP production both in-vitro and in-vivo, with the net result being reduced fibrotic matrix turnover in-vivo. Therefore, CD147 regulation of hepatocyte MMP is a novel pathway that could be targeted by future anti-fibrogenic agents.  相似文献   

20.
Objective

Atrial fibrillation (AF) is a major cause of stroke with lifetime risks. microRNAs (miRNAs) are associated with AF attenuation, yet the mechanism remains unknown. This study investigated the functional mechanism of miR-29b in atrial fibrosis in AF.

Methods

The AF rat model was established by a 7-day intravenous injection of Ach-CaCl2 mixture. AF rats were injected with adeno-associated virus (AAv)-miR-29b and TGFβRΙ overexpression plasmid. AF duration was recorded by electrocardiogram. Atrial fibrosis was observed by Masson staining. Expressions of COL1A1, COL3A1, TGFβRΙ, TGFβΙ, miR-29b and Smad-2/3 pathway-related proteins in atrial tissues were detected by RT-qPCR and Western blot. Binding sites of miR-29b and TGFβRΙ were predicted and their target relationship was verified by dual-luciferase reporter assay.

Results

miR-29b was poorly expressed and expressions of COL1A1, COL3A1, TGFβRΙ, and TGFβ1 were increased in atrial tissues of AF rats. miR-29b overexpression alleviated atrial fibrosis, reduced expressions of COL1A1, COL3A1, and TGFβ1, and shortened AF duration in AF rats. TGFβRΙ was highly expressed in atrial tissues of AF rats. miR-29b targeted TGFβRΙ. TGFβRΙ overexpression overcame the improving effect of miR-29b overexpression on AF. miR-29b overexpression decreased ratios of p-Smad-2/3 and Smad-2/3 and inhibited the Smad-2/3 pathway.

Conclusion

miR-29b might mitigate atrial fibrosis in AF rats by targeting TGFβRΙ and inhibiting the Smad-2/3 pathway.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号