首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 951 毫秒
1.
A M Haywood  B P Boyer 《Biochemistry》1984,23(18):4161-4166
How the lipid composition of liposomes determines their ability to fuse with Sendai virus membranes was tested. Liposomes were made of compositions designed to test postulated mechanisms of membrane fusion that require specific lipids. Fusion does not require the presence of lipids that can form micelles such as gangliosides or lipids that can undergo lamellar to hexagonal phase transitions such as phosphatidylethanolamine (PE), nor is a phosphatidylinositol (PI) to phosphatidic acid (PA) conversion required, since fusion occurs with liposomes containing phosphatidylcholine (PC) and any one of many different negatively charged lipids such as gangliosides, phosphatidylserine (PS), phosphatidylglycerol, dicetyl phosphate, PI, or PA. A negatively charged lipid is required since fusion does not occur with neutral liposomes containing PC and a neutral lipid such as globoside, sphingomyelin, or PE. Fusion of Sendai virus membranes with liposomes that contain PC and PS does not require Ca2+, so an anhydrous complex with Ca2+ or a Ca2+-induced lateral phase separation is not required although the possibility remains that viral binding causes a lateral phase separation. Sendai virus membranes can fuse with liposomes containing only PS, so a packing defect between domains of two different lipids is not required. The concentration of PS required for fusion to occur is approximately 10-fold higher than that required for ganglioside GD1a, which has been shown to act as a Sendai virus receptor. When cholesterol is added as a third lipid to liposomes containing PC and GD1a, the amount of fusion decreases if the GD1a concentration is low.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Using liposomes composed of either brain phosphatidylcholine (PC), or binary mixtures of PC and phosphatidylserine (PS), galactolipids (GL), phosphatidylinositol (PI), cardiolipin (CL), phosphatidic acid (PA), or phosphatidylethanolamine (PE), we investigated the effects of graded amounts of boric acid (B, 0.5-1000 microM) on the following membrane physical properties: (a) surface potential, (b) lipid rearrangement through lateral phase separation, (c) fluidity, and (d) hydration. Incubation of the different populations of vesicles with B was associated with a small, but statistically significant, increase in membrane surface potential in PC, PC:PS, PC:GL, PC:PI, PC:PA, and PC:PE liposomes. B-induced lipid lateral rearrangement through lateral phase separation in PC, PC:PA, and PC:PE liposomes; but had no effects on PC:PS, PC:GL, and PC:PI liposomes. In PC liposomes B affected membrane fluidity at the water-lipid interface without affecting the hydrophobic core of the bilayer. In all the other binary liposomes studied, B increased membrane fluidity in both, the hydrophobic portion of the membrane and in the anionic domains. The above was associated with a decrease in the fluidity of the cationic domains. B (10-1000 microM) decreased membrane hydration regardless the composition of the liposomes. The obtained results demonstrate the ability of B to interact with membranes, and induce changes in membrane physical properties. Importantly, the extent of B-membrane interactions and the consequent effects were dependent on the nature of the lipid molecule; as such, B had greater affinity with lipids containing polyhydroxylated moieties such as GL and PI. These differential interactions may result in different B-induced modulations of membrane-associated processes in cells.  相似文献   

3.
Adriamycin (doxorubicin, AdM) is a potent antineoplastic agent which binds specifically and with high affinity to the acidic phospholipid cardiolipin (CL) [Goormaghtigh et al. (1980) Biochim. Biophys. Acta 597, 1]. Duramycin (DM), a polypeptide antibiotic, has been reported to interact selectively with phosphatidylethanolamine (PE) and monogalactosyldiacylglycerol [Navarro et al. (1985) Biochemistry 24, 4645]. The selectivity of DM-PE interaction was confirmed. AdM and DM were then used to explore the roles of CL and PE in Ca2+ translocation in a phosphatidylcholine (PC)/PE/CL liposome system modeled on the inner mitochondrial membrane with the following results: (i) AdM (100-400 microM) altered Ca2+ uptake by PC/PE/CL (4/4/1, mol/mol) liposomes in a concentration-dependent fashion which varied with temperature, external Ca2+ concentration, and liposome PE content. (ii) Addition of AdM was qualitatively equivalent to increasing temperature, Ca2+ concentration, or liposome PE content, and cooperative interactions among these parameters were observed. An increase in any one factor generally enhanced Ca2+ uptake; simultaneous increases in several factors inhibited uptake. (iii) Inhibition of Ca2+ uptake was correlated with efflux of Arsenazo III. (iv) Ca2+ uptake by PC/PE/CL liposomes is biphasic [Kester and Sokolove (1989) Biochim. Biophys. Acta 980, 127]. DM suppressed the PE-dependent slow phase and stimulated the PE-independent initial phase. Ca2+ uptake by PC/PE/CL liposomes in the presence of DM resembled uptake by PC/CL liposomes. These data confirm the ability of PE to enhance the slow, highly temperature-dependent component of CL-mediated Ca2+ translocation and suggest that this process is sensitive to lipid phase behavior.  相似文献   

4.
The physical stability of six liposome systems designed as platelet substitutes was determined on storage at 4 degrees C over a 3-month period under quiescent conditions. Liposomes used were large unilamellar vesicles. Correlation of the n-average mean diameter, polydispersity, zeta-potential and the presence of aminophospholipid on liposome surface (in those preparations which contain phosphatidylethanolamine (PE) and phosphatidylserine (PS)) led to the conclusion that liposomes that mimicked the composition of platelets were the most stable. When a net charge was present in the vesicles (liposomes with PS), the likelihood of aggregation was extremely low. In the period studied, a proportion of 25% of charged lipid (PS) conferred sufficient electrostatic stabilization to prevent vesicle fusion. An increase in this charge did not modify the stability characteristics. PE-containing liposomes behaved in a particular way: when PE content was 50%, the stability of the preparation was limited to 1 month; whereas if the content was 25%, the zeta-potential rose with time, as did the presence of PE in the liposome surface.  相似文献   

5.
The effect of lipid peroxidation on membrane structure and phospholipase A2 activity was studied using liposomes composed of bovine liver phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The phospholipids were mixed at set ratios and sonicated to yield small unilamellar vesicles. The liposome preparations were subjected to lipid peroxidation as induced by cumene hydroperoxide and hematin. Under these conditions, a sharp increase in lipid peroxidation was noted over a 30 min incubation period and was accompanied by loss of polyunsaturated fatty acids (PUFA). Liposomes enriched in PE were most extensively peroxidized with a preferred oxidation of this phospholipid. The extent of PC oxidation was also greater in liposomes containing the largest proportions of PE. Analysis of liposome anisotropy, via steady-state fluorescence polarization of diphenylhexatriene indicated that progressive increases in either PE content or the level of lipid peroxidation increased the apparent microviscosity of the vesicles. Moreover, lipid peroxidation increased anisotropy more effectively than variations in the ratios of PE vs. PC. Thus, peroxidation of 5-10% of the phospholipids produced the same anisotropy increase as a 20% increase in the ratio of PE vs. PC. Analysis of vesicle turbidity suggested that fusion was also more readily achieved through lipid peroxidation. When liposomes were incubated with 0.4 U/ml of snake venom phospholipase A2, a direct correlation was found between the degree of lipid peroxidation and the extent of phospholipid hydrolysis. The more unsaturated phospholipid, PE, was most extensively hydrolyzed following peroxidation. Increasing the proportion of PE also resulted in more extensive phospholipid hydrolysis. These findings indicate that lipid peroxidation produces a general increase in membrane viscosity which is associated with vesicle instability and enhanced phospholipase A2 attack. A structural basis for membrane phospholipase A2 activation as a consequence of lipid peroxidation is discussed in light of these findings.  相似文献   

6.
The processes of membrane aggregation, permeability and fusion induced by cytotoxins from Central Asian cobra venom were investigated by studying optical density of liposome samples, permeability of liposome membranes for ferricyanide anions and exchange of lipid material between the membranes of adjacent liposomes. Cytotoxins Vc5 and Vc1 were found to induce aggregation of PC + CL and PC + PS liposomes. Cytotoxin Vc5 increased also the permeability of the liposomes for K3[Fe(CN)6] and enhanced their fusion. Cytotoxin Vc1 increased membrane permeability and enhanced fusion of PC + CL samples only. The changes in membrane permeability and fusion were found to occur within a single value of cytotoxin concentrations. The fusogenic properties of the cytotoxins studied are supposed to be due to the ability to dehydrate membrane surface and to destabilize the lipid bilayer structure. Fusion probability is largely defined by the phospholipid composition of the membranes. A model of interaction of cytotoxins with cardiolipin-containing membranes is offered.  相似文献   

7.
Synexin enhances the aggregation rate but not the fusion rate of liposomes   总被引:3,自引:0,他引:3  
The effect of synexin on the calcium-induced fusion of large unilamellar liposomes was studied by using two assays for the mixing of aqueous contents. The results were analyzed in terms of the mass action kinetic model, which describes the overall fusion reaction as a two-step sequence consisting of a second-order process of liposome aggregation followed by a first-order fusion reaction. By using several different lipid compositions and varying the electrolyte composition, it was possible to select the rate-limiting step of the overall fusion process. When aggregation was the rate-limiting step, as in the case of Ca2+-induced fusion of phosphatidylserine (PS), phosphatidate (PA)/phosphatidylethanolamine (PE) (1:3), and PS/PE (1:3) liposomes, synexin increased the overall fusion kinetics by increasing the aggregation rate constant (up to 100-fold). When aggregation was rapid compared to destabilization of apposed membranes, i.e., fusion was rate limiting, synexin either had no effect or reduced the overall fusion kinetics. In one such case involving liposomes composed of PA/PS/PE/phosphatidylcholine (PC) (10:15:65:10), synexin reduced the fusion rate constant by 50%. The effect of calcium-induced synexin polymerization was investigated by preincubation of synexin with calcium prior to addition of liposomes. Prepolymerization by Ca2+ always decreased the activity of synexin such that it was less than the activity of an equal amount of untreated monomers. However, it was found that the activity of synexin monomers polymerized to an average hexameric size was greater than that of one-sixth as many untreated monomers, with respect to the liposome aggregation rate constant. Neither polymers nor monomers increased the fusion rate constant.  相似文献   

8.
A 74-kDa protein (adseverin) derived from adrenal medulla severs actin filaments and nucleates actin polymerization in a Ca2(+)-dependent manner but does not form an EGTA-resistant complex with actin monomers, which is different from the gelsolin-actin interaction. The dissociation of gelsolin-actin complexes by phosphatidylinositol 4,5-bisphosphate (PIP2) and the inhibitory effect on actin filament severing by gelsolin was recently reported. This study shows that the activity of adseverin is inhibited not only by PIP2 but also by some common phospholipids including phosphatidylinositol (PI) and phosphatidylserine (PS). Other phospholipids such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE) showed no effect. The addition of PC or PE to PI diminished the inhibitory effect of PI. Triton X-100 and neomycin were also found effective in suppressing the effect of PI, suggesting that the arrangement of polar head groups is important in exerting the inhibitory effect. Ca2(+)-dependent binding of adseverin to PS liposomes but not to PC or PE liposomes was observed by a centrifugation assay.  相似文献   

9.
The interactions of a water-soluble nonmembrane protein aprotinin with multilamellar vesicles (MLV) and small unilamellar vesicles (SUV) from soybean phospholipids were studied using Sephadex G-75 gel chromatography combined with different methods of the analysis of the eluate fractions (fluorescence, light-scattering, turbidity; 31P NMR spectroscopy). The composition of the liposomes mainly containing soybean phosphatidylcholine (PC) was varied by the addition of phosphatidylethanolamine (PE), phosphatidylinositol (PI) and lyso-phosphatidylcholine (lyso-PC). To evaluate the lipid-protein interactions, the amount of aprotinin in the MLV-aprotinin complexes was determined. Lipid-protein interactions were found to strongly depend on the liposome composition, medium pH and ionic strength. These dependencies point to the electrostatic nature of the aprotinin-lipid interactions. 31P NMR spectroscopy of the MLV-aprotinin complexes indicated that aprotinin influences the phospholipid structure in MLV at pH 3.0. In the case of PC:PE:PI and PC:PE:PI:lyso-PC vesicles, aprotinin induced liposome aggregation and a lamellar-to-isotropic phase transition of the phospholipids.  相似文献   

10.
聚乙二醇和金属离子诱导脂质体与细胞的融合   总被引:1,自引:0,他引:1  
用荧光菜振能量转移技术检测PEG和金属离子诱导脂质体和细胞的融合,发现有TEG参与诱导时,虽然Ca^2+对膜融合的促进作用仍专一地依赖于PS的存在,但其对PS的依赖性降低;Mn^2+促进含PS和PE的脂质体与细胞的融合,而Mg^2+无作用。以PC:CL:Chol为0.5:0.5:1的脂质体包埋天花粉蛋白,经PEG诱导与骨髓瘤细胞SP20融合,提高了天花粉蛋白对骨髓瘤细胞的杀伤力。  相似文献   

11.
Resident peritoneal macrophages from untreated mice develop potent microbicidal activity against amastigotes of Leishmania major after in vitro treatment with lymphokine (LK) from mitogen-stimulated spleen cells. LK-induced macrophage microbicidal activity was completely and selectively abrogated by treatment with phosphatidylcholine-phosphatidylserine (PC/PS) liposomes. Other macrophage effector functions (phagocytosis, tumoricidal activity) were unaffected, as was cytotoxicity by macrophages activated in vivo or by LK in vitro before liposome treatment. Activation factors in LK were not adsorbed or destroyed by liposomes. Liposome-induced inhibition was unaffected by indomethacin and was fully reversible: macrophages washed free of liposomes developed strong microbicidal activity with subsequent LK treatment. Changes in liposomal lipid composition markedly altered suppressive effects, but inhibition was not dependent on liposome size, cholesterol content, charge, or number of lamellae. Liposomes composed of PC alone or in combination with any of five different phospholipids were not suppressive. In contrast, inhibition was directly dependent on PS concentration within PC/PS liposomes. Phosphoserine was not inhibitory nor was dimyristoyl PS (synthetic saturated PS). However, the lysophospholipid metabolite of PS, lysoPS, was strongly suppressive. These studies suggest that the reversible and selective inhibition of LK-induced macrophage microbicidal activity by PC/PS liposomes is mediated by PS and its lysoPS metabolite.  相似文献   

12.
T Nomura  K Kurihara 《Biochemistry》1987,26(19):6141-6145
In a previous paper [Nomura, T., & Kurihara, K. (1987) Biochemistry (preceding paper in this issue)], we showed that azolectin liposomes are depolarized by various odorants and there is a good correlation between the responses in the liposomes and the frog or porcine olfactory responses. In this study, we examined effects of changed lipid composition on responses of liposomes to various odorants. The membrane potential changes in response to odorants were monitored with the fluorescent dye 3,3'-dipropylthiocarbocyanine iodide [diS-C3(5)]. Egg phosphatidylcholine (PC) liposomes showed depolarizing responses to nine odorants among ten odorants tested. The magnitudes of depolarization by alcohols were similar to those in azolectin liposomes, but those by other odorants were much less than those in azolectin liposomes. Addition of sphingomyelin (SM) to PC led to an increase in the magnitude of depolarization by most odorants. Addition of phosphatidylethanolamine (PE) to PC (PE/PC = 0.25) led to depolarizing responses to four odorants among six odorants tested, and a further increase in PE content (PE/PC = 0.54) led to depolarizing responses only to two odorants. Addition of SM to the lipids of this composition of PC and PE [SM/(PC + PE) = 0.22] led to depolarizing responses to four odorants again. Liposomes made of a mixture of SM, PE, and PC exhibited depolarizing responses to four odorants tested, and addition of cholesterol to the lipids [cholesterol/(PC + PE + SM) = 0.05 and 0.11] led to depolarizing responses only to two and one odorant, respectively. Thus, changes in lipid composition of liposomes led to great changes in specificity of the responses to odorants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Abstract

Previous results suggested that drug formation in macrophages is an important aspect of the mode of action of doxorubicin (DXR)-containing liposomes. Intracellular degradation of DXR-liposomes may result in the liberation of DXR molecules that subsequently are released from the macrophages. We investigated whether the rate of intracellular degradation of DXR-liposomes phagocytosed by rat liver macrophages (Kupffer's cells) in monolayer culture is dependent on the type of DXR-liposomes internalized and whether differences in degradation rate of DXR-liposomes are reflected in different DXR release profiles. Two DXR-liposome types that were previously shown to differ markedly both in antitumor activity and degradation rate in vivo were selected for this investigation: a liposome composed of egg-phosphatidylcholine (PC), phosphatidylserine (PS), and cholesterol (chol), and a liposome composed of distearoylphosphatidylcholine (DSPC), dipalmitoyl-phosphatidylglycerol (DPPG), and chol. To monitor the rate of intracellular degradation of DXR-liposomes, cholesterol-1-[14Cjoleate was used as marker of the liposomal lipid phase. DXR was monitored with the use of a high-performance liquid chromatography (HPLC) method capable of detecting not only intact DXR but also major metabolites.

Comparable amounts of both types of DXR-liposomes were taken up by in vitro cultured Kupffer's cells. Liposome-associated cholesteryloleate was metabolized by the cells in a liposome-type-dependent pattern. During the first 30 min after start of the incubation, degradation of cholesteryloleate occurred at a similar rate for both types of DXR-liposomes. During continued incubation, however, PC/PS/chol DXR-liposomes were degraded at a considerably higher rate than DSPC/DPPG/ chol DXR-liposomes. the difference in susceptibility to lysosomal degradation of the two liposome preparations was also demonstrated by incubating the DXR-liposomes with lysosomal fractions isolated from rat liver homogenates: PC/PS/chol DXR-liposomes were much more sensitive to lysosomal esterase than DSPC/DPPG/chol DXR-liposomes. DXR either free or in liposomal form was chemically stable for up to 26 hr during incubation with the lysosomal fractions. Following uptake of DXR-liposomes by the cells, DXR was released from the cells into the medium. the release of DXR from cells that internalized DSPC/DPPG/chol DXR-liposomes was significantly delayed compared to the release of DXR from cells that internalized PC/PS/chol DXR-liposomes. Correlation of the relatively slow intracellular degradation of the DSPC/DPPG/chol DXR-liposomes with the delayed release of DXR from the cells suggests that by varying the type of DXR-liposomes, the rate of intracellular degradation can be manipulated, which, in turn, determines the rate of extracellular DXR release and thereby the therapeutic availability of the drug.  相似文献   

14.
Phosphatidylcholine (PC) alone or with phosphatidylethanolamine (PE) are sufficient for the reconstitution of Na+ channels in planar lipid bilayers. However, when Na+ channels were first reconstituted into liposomes using the freeze-thaw-sonication method, addition of acidic phospholipids, such as phosphatidylserine (PS), to the neutral phospholipids was necessary to obtain a significant toxin-modulated 22Na uptake. To further investigate the acidic phospholipid effect on reconstitution into liposomes, Na+ channels purified from Electrophorus electricus electrocytes were reconstituted into liposomes of different composition by freeze-thaw sonication and the effect of batrachotoxin and tetrodotoxin on the 22Na flux was measured. The results revealed that, under our experimental conditions, the presence of an acidic phospholipid was also necessary to obtain a significant neurotoxin-modulated 22Na influx. Though neurotoxin-modulated 22Na fluxes have been reported in proteoliposomes made with purified Na+ channels and PC alone, the 22Na fluxes were smaller than those found using lipid mixtures containing acidic phospholipids. Electron microscopy of negatively stained proteoliposomes prepared with PC, PC/PS (1:1 molar ratio), and PS revealed that the acidic phospholipid increases the size of the reconstituted proteoliposomes. The increment in size caused by the acidic phospholipid, due to the associated increase in internal volume for 22Na uptake and in area for Na+ channel incorporation, appears to be responsible for the large neurotoxin-modulated 22Na fluxes observed.  相似文献   

15.
Abstract

The interactions of a water-soluble nonmembrane protein aprotinin with multilamellar vesicles (MLV) and small unilamellar vesicles (SUV) from soybean phospholipids were studied using Sephadex G-75 gel chromatography combined with different methods of the analysis of the eluate fractions (fluorescence, light-scattering, turbidity; 31P NMR spectroscopy). The composition of the liposomes mainly containing soybean phosphatidylcholine (PC) was varied by the addition of phosphatidylethanolamine (PE), phosphatidylinositol (PI) and lyso-phosphatidylcholine (lyso-PC). To evaluate the lipid-protein interactions, the amount of aprotinin in the MLV–aprotinin complexes was determined. Lipid–protein interactions were found to strongly depend on the liposome composition, medium pH and ionic strength. These dependencies point to the electrostatic nature of the aprotinin-lipid interactions. 31P NMR spectroscopy of the MLV–aprotinin complexes indicated that aprotinin influences the phospholipid structure in MLV at pH 3.0. In the case of PC:PE:PI and PC:PE:PI:lyso-PC vesicles, aprotinin induced liposome aggregation and a lamellar-to-isotropic phase transition of the phospholipids.  相似文献   

16.
When Gd3+, a trivalent lanthanide, binds phospholipids with a high affinity, it elicits strong electrostatic effects on the surface of the lipid bilayer. Two experimental methods were applied to monitor the changes in the boundary and surface potentials induced by Gd3+ adsorption on liposomes and planar lipid bilayer membranes (BLM) made from phosphatidylserine (PS), phosphatidylcholine (PC) and their mixtures. The membrane surface charge density was changed by either varying the PS/PC ratio or by changing the degree of PS headgroup ionization in the range of pH between 2.5 and 7.5. The Gouy-Chapman-Stern (GCS) theory combined with the condition of mass balance in the experimental cell was used for quantitative treatment of ion adsorption and related changes in the diffuse part of the electrical double layer (surface potential). Data obtained using microelectrophoresis of liposome suspensions were well described within the framework of the modified GCS theory with constants of 5.10(4) and 10(3) M-1 for Gd3+ association with PS and PC, respectively (Yu. A. Ermakov, A. Z. Averbakh, and S. I. Sukharev, Biol. Membrany 14:434-445 (1997) (in Russian)). The intramembrane field compensation (IFC) technique used to study Gd3+ adsorption on planar lipid bilayers by monitoring the entire boundary potential gave completely different results. An observed drastic difference (approximately 140 mV) between the changes of boundary and surface potential was interpreted as the change in the dipole potential induced by binding of Gd3+. The magnitude of the surface dipole increased with the concentration of PS in PS/PC mixtures and became significant at most negative surface charges (more than 80% of PS in the mixture) and strongly correlated with the degree of PS ionization at different pH. The nature of structural changes at the membrane/water interface induced by Gd(3+)-PS interaction and possible lipid clusterization are discussed in the context of their biological importance.  相似文献   

17.
Purified sodium channels incorporated into phosphatidylcholine (PC) vesicles mediate neurotoxin-activated 22Na+ influx but do not bind the alpha-scorpion toxin from Leiurus quinquestriatus (LqTx) with high affinity. Addition of phosphatidylethanolamine (PE) or phosphatidylserine to the reconstitution mixture restores high affinity LqTx binding with KD = 1.9 nM for PC/PE vesicles at -90 mV and 36 degrees C in sucrose-substituted medium. Other lipids tested were markedly less effective. The binding of LqTx in vesicles of PC/PE (65:35) is sensitive to both the membrane potential formed by sodium gradients across the reconstituted vesicle membrane and the cation concentration in the extravesicular medium. Binding of LqTx is reduced 3- to 4-fold upon depolarization to 0 mV from -50 to -60 mV in experiments in which [Na+]out/[Na+]in is varied by changing [Na+]in or [Na+]out at constant extravesicular ionic strength. It is concluded that the purified sodium channel contains the receptor site for LqTx in functional form and that restoration of high affinity, voltage-dependent binding of LqTx by the purified sodium channel requires an appropriate ratio of PC to PE and/or phosphatidylserine in the vesicle membrane.  相似文献   

18.
Phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)) is an important lipidic signaling molecule that is involved in a broad range of cellular processes. Its interaction with proteins and its lateral distribution are governed by the ionization state of the phosphomonoester groups and its ability to form intra- and intermolecular hydrogen bonds. In this study we have investigated the ionization state of PI(4,5)P(2) in ternary lipid vesicle systems that contain in addition to PI(4,5)P(2) and phosphatidylcholine (PC) either phosphatidylethanolamine (PE), phosphatidylserine (PS) or phosphatidylinositol (PI). In the presence of PE we find an increased ionization of PI(4,5)P(2), which can be attributed to increased deprotonation due to hydrogen bond formation between PE and the PI(4,5)P(2) phosphomonoester groups. However, the effect of PE on PI(4,5)P(2) ionization is significantly smaller than it had been found previously for phosphatidic acid in the presence of PE (Kooijman et al., 2005). The reduced impact of PE on PI(4,5)P(2) ionization can be attributed to competing intramolecular hydrogen bond formation between the phosphomonoester groups and neighboring hydroxyl groups. It is noteworthy that the presence of PE affects more strongly the ionization of the 5-phosphate group than that of the 4-phosphate, suggesting that the interaction of PE with the 5-phosphate is stronger. In PI(4,5)P(2)/PS/PC lipid vesicles, the presence of PS was expected to yield an increased protonation of the PI(4,5)P(2) phosphomonoester groups due to a decreased interfacial pH as a result of the increased negative interfacial charge. However, the effect of PS on PI(4,5)P(2) ionization is only minor, potentially suggesting that PS and PI(4,5)P(2) are demixed. The PI(4,5)P(2)/PI/PC vesicle system was characterized by a surprising mixing behavior that has potentially far reaching consequences: fluorescence microscopy measurements of giant unilammellar vesicles composed of PI(4,5)P(2)/PI/PC at physiological concentrations show that PI and PI(4,5)P(2) form macroscopic, fluid phase domains in contact with a fluid PC rich phase (fluid/fluid demixing). Despite the fact that PI and PI(4,5)P(2) co-localize, the effect of PI on PI(4,5)P(2) ionization behavior is only noticeable above pH 7. Apparently two opposing effects lead to the observed behavior: Due to the presence of the anionic PI, the interfacial pH drops, which is expected to lead to an enhanced protonation of the PI(4,5)P(2) phosphomonoester groups. In turn, hydrogen bond formation between PI and PI(4,5)P(2) would lead to the opposite, i.e. increased deprotonation of the phosphomonoester group. Apparently these two effects compensate each other for pH values smaller than about 7, while for higher pH values the increased interfacial pH in the presence of PI has a stronger impact than PI/PI(4,5)P(2) hydrogen bond formation. The cooperative formation of PI/PI(4,5)P(2) mixed domains has potentially important ramifications for the spatial organization of phosphoinositide mediated signaling events.  相似文献   

19.
The influence of the lipid environment on docking and fusion of synaptobrevin 2 (Syb2) vesicles with target SNARE complex membranes was examined in a planar supported membrane fusion assay with high time-resolution. Previously, we showed that approximately eight SNARE complexes are required to fuse phosphatidylcholine (PC) and cholesterol model membranes in ∼20 ms. Here we present experiments, in which phosphatidylserine (PS) and phosphatidylethanolamine (PE) were added to mixtures of PC/cholesterol in different proportions in the Syb2 vesicle membranes only or in both the supported bilayers and the Syb2 vesicles. We found that PS and PE both reduce the probability of fusion and that this reduction is fully accounted for by the lipid composition in the vesicle membrane. However, the docking efficiency increases when the PE content in the vesicle (and target membrane) is increased from 0 to 30%. The fraction of fast-activating SNARE complexes decreases with increasing PE content. As few as three SNARE complexes are sufficient to support membrane fusion when at least 5% PS and 10% PE are present in both membranes or 5% and 30% PE are present in the vesicle membrane only. Despite the smaller number of required SNAREs, the SNARE activation and fusion rates are almost as fast as previously reported in reconstituted PC/cholesterol bilayers, i.e., of 10 and ∼20 ms, respectively.  相似文献   

20.
Although some of the membrane glycoproteins that serve as activators or regulators of C activation have been identified, the influence of membrane lipids has not been studied extensively. A model of alternative C pathway activation was established using liposomes composed of cholesterol and synthetic phospholipids. Liposomes containing phosphatidylcholine (PC) as the sole phospholipid did not activate C as measured by C3 binding after incubation in normal human serum containing 2.5 mM MgCl2 and 10 mM EGTA. When phosphatidylethanolamine (PE) was included as 20% or more of the phospholipid, C3 binding was observed. C3 binding to liposomes was inhibited by salicylhydroxamic acid indicating binding through the C3 thioester bond. The phospholipid composition did not influence C3 binding to liposomes in an unregulated system of C3, B, D, and P indicating equivalent C3b binding sites on activating and nonactivating liposomes. When the regulatory proteins H and I were added to the other components, liposomes containing PE bound three times more C3 than PC liposomes suggesting that the phospholipid affects C3 regulation. This was tested directly in a radiolabeled H binding assay. In the presence of equal amounts of C3b, PC liposomes showed a greater number of high affinity H binding sites than PE liposomes. Using different PE derivatives, C activation could be directly related to the phospholipid polar head group. Liposomes containing PE, trinitrophenyl-PE or monomethyl-PE did activate the alternative C pathway, whereas those containing dimethyl-PE, PC, or phosphatidylserine did not. These studies provide evidence that primary and secondary amino groups on lipid membranes can decrease the interaction between H and C3b and provide sites for alternative pathway activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号