首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different host species harbour parasite faunas that are anywhere from very similar to very different in species composition. A priori, the similarity in the parasite faunas of any two host species should decrease with increases in either the phylogenetic distance, the distinctness of the environments occupied or the geographical distance between these hosts. We tested these predictions using extensive data on the faunas of fleas (Insecta: Siphonaptera) and gamasid mites (Acari: Parasitiformes) parasitic on rodents across the Palaearctic. For each pair of host species, we computed the similarity in parasite faunas based on both species composition as well as the phylogenetic and/or taxonomic distinctness of parasite species. Phylogenetic distances between hosts were based on patristic distances through a rodent phylogeny, geographic distances were computed from geographic range data, and environmental dissimilarity was measured from the average climatic and vegetation scores of each host range. Using multiple regressions on distance matrices to assess the separate explanatory power of each of the three dependent variables, environmental dissimilarity between the ranges of host species emerged as the best predictor of dissimilarity between parasite faunas, especially for fleas; in the case of mites, phylogenetic distance between host species was also important. A closer look at the data indicates that the flea and mite faunas of two hosts inhabiting different environments are always different, whilst hosts living in similar environments can have either very similar or dissimilar parasite faunas. Additional tests showed that dissimilarity in flea or mite faunas between host geographic ranges was best explained by dissimilarity in vegetation, followed by dissimilarity in climatic conditions. Thus, external environmental factors may play greater roles than commonly thought in the evolution of host-parasite associations.  相似文献   

2.
1. This study tested the relationships between the probability of pairwise species co-occurrence and pairwise dissimilarity in their traits in infracommunities (across assemblages harboured by conspecific individual hosts within a locality), component communities (across assemblages harboured by host species within a locality), and compound communities (across assemblages in different localities) of fleas and gamasid mites parasitic on small mammals in Western Siberia. 2. A significant, albeit weak, tendency was found for flea communities harboured by conspecific host individuals, host species, and host communities to be composed of similar species. No relationship between the probability of co-occurrence and trait dissimilarity was detected for mite communities at any hierarchical scale. 3. For fleas, this study explained the link between positive co-occurrence and trait dissimilarity by a process resembling environmental filtering realised mainly via host traits for infracommunities and component communities and via off-host environment for compound communities, thus suggesting that the identical shape of the relationships between co-occurrence and trait dissimilarity at different scales was driven by different mechanisms. 4. The explanation of the lack of this relationship in mites included: (i) the paucity of the subset of mite traits used in this study and its potential inadequacy for the question at hand; and (ii) possible masking of the effect induced by one trait on co-occurrence owing to the lack of this effect induced by another trait(s). 5. Caution is recommended regarding the compilation of a dataset involving multiple traits, its analysis, and the interpretation of the results.  相似文献   

3.
Aim We determined whether dissimilarity in species composition between parasite communities depends on geographic distance, environmental dissimilarity or host faunal dissimilarity, for different subsets of parasite species with different levels of host specificity. Location Communities of fleas parasitic on small mammals from 28 different regions of the Palaearctic. Method Dissimilarities in both parasite and host species composition were computed between each pair of regions using the Bray–Curtis index. Geographic distances between regions were also calculated, as were measures of environmental dissimilarity consisting of the pairwise Euclidean distances between regions derived from elevation, vegetation and climatic variables. The 136 flea species included in the dataset were divided into highly host‐specific species (using 1–2 host species per region, on average), moderately host‐specific species (2.2–4 hosts per region) and generalist species (>4 hosts per region). The relative influence of geographic distance, host faunal dissimilarity and environmental dissimilarity on dissimilarity of flea species composition among all regions was analysed for the entire set of flea species as well as for the three above subsets using multiple regressions on distance matrices. Results When including all flea species, dissimilarity in flea species composition was affected by all three independent variables, although the pure effect of dissimilarity in host species composition was the strongest. Results were different when the subsets of fleas differing in host specificity were treated separately. In particular, dissimilarity in species composition of highly host‐specific fleas increased solely with environmental dissimilarity, whereas dissimilarity for both moderately specific and non‐specific fleas increased with both geographic distance and dissimilarity in host species composition. Main conclusions Host specificity seems to dictate which of the three factors considered is most likely to affect the dissimilarity between flea communities. Counter‐intuitively, environmental dissimilarity played a key role in determining dissimilarity in species composition of highly host‐specific fleas, possibly because, although their presence in a region relies on the occurrence of particular host species, their abundance is itself mostly determined by climatic conditions. Our results show that deconstructing communities into subsets of species with different traits can make it easier to uncover the mechanisms shaping geographic patterns of diversity.  相似文献   

4.
运用系统聚类分析方法对中国云南省境内17种主要小型哺乳动物(小兽)体表革螨群落相似性进行研究,每一种小兽体表的所有外寄生革螨被定义为一个相应的革螨群落。运用SPSS11.5软件完成17种革螨群落的相似性比较。研究结果表明:小兽体表革螨群落结构复杂,物种多样性高;隶属同一个属的小兽体表的革螨群落相似程度高,在系统聚类分析中聚为一类;大多数革螨群落相似性大小与相应小兽宿主在动物分类上的近缘性高低呈现高度一致,但也有一些革螨群落是例外的。这说明小兽体表革螨群落不仅受小兽宿主分类地位的影响,可能还受宿主生境的影响  相似文献   

5.
We tested whether biogeographic patterns characteristic for biological communities can also apply to populations and investigated geographic patterns of variation in abundance of ectoparasites (fleas and mites) collected from bodies of their small mammalian hosts (rodents and shrews) in the Palearctic at continental, regional and local scales. We asked whether (i) there is a relationship between latitude and abundance and (ii) similarity in abundance follows a distance decay pattern or it is better explained by variation in extrinsic biotic and abiotic factors. We analysed the effect of latitude on mean intraspecific abundance using general linear models including proportional abundance of its principal host as an additional predictor variable. Then, we examined the relative effect of geographic distance, biotic and abiotic dissimilarities among regions, subregions or localities on the intraspecific dissimilarity in abundance among regions, subregions or localities using Generalized Dissimilarity Modelling. We found no relationship between latitude and intraspecific flea or mite abundance. In both taxa, environmental dissimilarity explained the largest part of the deviance of spatial variation in abundance, whereas the effect of the dissimilarity in the principal host abundance was of secondary importance and the effect of geographic distance was minor. These patterns were generally consistent across the three spatial scales, although environmental variation and dissimilarity in principal host abundance were equally important at the local scale in fleas but not in mites. We conclude that biogeographic patterns related to latitude and geographic distance do not apply to spatial variation of ectoparasite abundance. Instead, the geographic distribution of abundance in arthropod ectoparasites depends on their responses, mainly to the off-host environment and to a lesser extent the abundance of their principal hosts.  相似文献   

6.
Similarity in parasite community composition often decreases with both increasing geographic distance and environmental dissimilarity between localities, though it is unknown whether similarity in local abundance of selected parasite species follows similar rules. We tested this using data on metazoan parasites in 126 stickleback (Gasterosteus aculeatus) populations, with locations from Eurasia, eastern North America, and western North America treated separately. Similarity values were regressed against pairwise distances between localities; after correcting for distance, the effect of environmental dissimilarity was assessed by splitting similarity values into those between pairs of localities with either similar, moderately different or very different salinity (freshwater, marine or brackish). For selected parasite species, pairwise similarity in abundance (mean no. parasites per host) were computed across all localities, and treated as above. Similarity in parasite community composition decreased with increasing distance between localities in all three geographic regions. A significant effect of environmental difference was found in all regions: for a given distance between two sites, their parasite communities were more similar if they were of the same salinity. Slopes for distance decay in similarity were consistently higher for eastern North America than for Eurasia. Among the 12 parasite species for which sufficient data were available, only 4 showed the expected relationship, i.e. the greater the geographical separation between host populations, the greater the difference in parasite abundance; also, significant effects of environmental differences in salinity were only found for 3 of these species. Our findings show that parasite communities of sticklebacks are structured by geographical distance and local salinity conditions. The results indicate that strong effects at the community level do not translate into corresponding effects at the population level, suggesting that parasite dispersal and population dynamics are controlled by different processes.  相似文献   

7.
黄丽琴  郭宪国  吴滇  王乔花 《昆虫学报》2009,52(12):1328-1337
寄生在小兽体表的革螨可能是传播肾综合征出血热和立克次体痘等人兽共患病的媒介。本文报道了云南省28个县(市)小兽体表革螨的野外调查结果, 运用物种数、平均丰富度和Shannon多样性指数对小兽寄生革螨的群落特征和沿环境梯度的空间分布进行了研究, 并用系统聚类分析法 (SPSS 16.0软件)对18种主要小兽的革螨群落相似性进行了比较。在云南省28个县(市)共捕获到小兽14 544头, 隶属于5目(啮齿目、食虫目、攀鼩目、兔形目、食肉目)10科35属67种, 在捕获的小兽体表采集到革螨80 791头, 经鉴定属于10科33属112种。结果分析表明: 主要的宿主动物为黄胸鼠 Rattus tanezumi、齐氏姬鼠Apodemus chevrieri和大绒鼠Eothenomys miletus;纳氏厉螨Laelaps nuttalli、毒厉螨L. echidninus和贵州厉螨L. guizhouensis为革螨的优势种。齐氏姬鼠A. chevrieri、社鼠N. confucianus和黄胸鼠R. tanezumi体表寄生的革螨种类最多;臭鼩鼱Suncus murinus、齐氏姬鼠A. chevrieri和灰麝鼩Crocidura attenuata的革螨群落多样性最高。聚类分析结果表明, 大部分革螨群落的相似程度与相应小兽的亲缘关系及所处生态环境的相似性是基本一致的, 分类地位和生境选择相似的小兽, 它们的革螨群落也被聚为一类。革螨物种数沿纬度梯度的水平分布呈现两个峰值, 最大峰值出现在25°~26°N之间;沿海拔梯度的垂直分布呈单峰分布格局, 峰值在海拔2 000~2 500 m之间。革螨和小兽的多样性沿纬度梯度和海拔梯度的空间分布趋势也均表现出随着纬度和海拔的升高而先升高后降低的单峰型分布格局, 峰值分别出现在北纬25°~27°N和海拔2 000~2 500 m之间。结果提示云南革螨群落种类丰富, 多样性高。云南革螨物种数和多样性的分布格局可能直接受到古北和东洋两区系边缘效应的影响。  相似文献   

8.
Aim We test the similarity–distance decay hypothesis on a marine host–parasite system, inferring the relationships from abundance data gathered at the lowest scale of parasite community organization (i.e. that of the individual host). Location Twenty‐two seasonal samples of the bogue Boops boops (Teleostei: Sparidae) were collected at seven localities along a coastal positional gradient from the northern North‐East Atlantic to the northern Mediterranean coast of Spain. Methods We used our own, taxonomically consistent, data on parasite communities. The variations in parasite composition and structure with geographical and regional distance were examined at two spatial scales, namely local parasite faunas and component communities, using both presence–absence (neighbour joining distance) and abundance (Mahalanobis distance) data. The influence of geographical and regional distance on faunal/community divergence was assessed through the permutation of distance matrices. Results Our results revealed that: (1) geographical and regional distances do not affect the species composition in the system under study at the higher scales; (2) geographical distance between localities contributes significantly to the decay of similarity estimated from parasite abundance at the lowest scale (i.e. the individual host); (3) the structured spatial patterns are consistent in time but not across seasons; and (4) a restricted clade of species (the ‘core’ species of the bogue parasite fauna) contributes substantially to the observed patterns of both community homogenization and differentiation owing to the strong relationship between local abundance and regional distribution of species. Main conclusions The main factors that tend to homogenize the composition of parasite communities of bogue at higher regional scales are related to the dispersal of parasite colonizers across host populations, which we denote as horizontal neighbourhood colonization. In contrast, the spatial structure detectable in quantitative comparisons only, is related to a vertical neighbourhood colonization associated with larval dispersal on a local level. The stronger decline with distance in the spatial synchrony of the assemblages of the ‘core’ species indicates a close‐echoing environmental synchrony that declines with distance. Our results emphasize the importance of the parasite supracommunity (i.e. parasites that exploit all hosts in the ecosystem) to the decay of similarity with distance.  相似文献   

9.
Beta-diversity of biological communities can be decomposed into (a) dissimilarity of communities among units of finer scale within units of broader scale and (b) dissimilarity of communities among units of broader scale. We investigated compositional, phylogenetic/taxonomic and functional beta-diversity of compound communities of fleas and gamasid mites parasitic on small Palearctic mammals in a nested hierarchy at two spatial scales: (a) continental scale (across the Palearctic) and (b) regional scale (across sites within Slovakia). At each scale, we analyzed beta-diversity among smaller units within larger units and among larger units with partitioning based on either geography or ecology. We asked (a) whether compositional, phylogenetic/taxonomic and functional dissimilarities of flea and mite assemblages are scale dependent; (b) how geographical (partitioning of sites according to geographic position) or ecological (partitioning of sites according to habitat type) characteristics affect phylogenetic/taxonomic and functional components of dissimilarity of ectoparasite assemblages and (c) whether assemblages of fleas and gamasid mites differ in their degree of dissimilarity, all else being equal. We found that compositional, phylogenetic/taxonomic, or functional beta-diversity was greater on a continental rather than a regional scale. Compositional and phylogenetic/taxonomic components of beta-diversity were greater among larger units than among smaller units within larger units, whereas functional beta-diversity did not exhibit any consistent trend regarding site partitioning. Geographic partitioning resulted in higher values of beta-diversity of ectoparasites than ecological partitioning. Compositional and phylogenetic components of beta-diversity were higher in fleas than mites but the opposite was true for functional beta-diversity in some, but not all, traits.  相似文献   

10.
Decreasing similarity between ecological communities with increasing geographic distance (i.e. distance‐decay) is a common biogeographical observation in free‐living communities, and a slightly less common observation for parasite communities. Ecological networks of interacting species may adhere to a similar pattern of decreasing interaction similarity with increasing geographic distance, especially if species interactions are maintained across space. We extend this further, examining if host–parasite networks – independent of host and parasite species identities – become more structurally dissimilar with increasing geographic distance. Utilizing a global database of helminth parasite occurrence records, we find evidence for distance‐decay relationships in host and parasite communities at both regional and global scales, but fail to detect similar relationships in network structural similarity. Host and parasite community similarity were strongly related, and both decayed rapidly with increasing geographic distance, typically resulting in complete dissimilarity after approximately 2500 km. Our failure to detect a decay in network structural similarity suggests the possibility that different host and parasite species are filling the same functional roles in interaction networks, or that variation in network similarity may be better explained by other geographic variables or aspects of host and parasite ecology.  相似文献   

11.
Increasing community dissimilarity across geographic distance has been described for a wide variety of organisms and understanding its underlying causes is key to understanding mechanisms driving patterns of biodiversity. Both niche‐based and neutral processes may produce a distance decay relationship; however, disentangling their relative influence requires simultaneous examination of multiple potential drivers. Parasites represent a unique opportunity in which to study distance decay because community dissimilarity may depend on environmental requirements and dispersal capability of parasites as well also those of their hosts. We used big brown bats Eptesicus fuscus and their intestinal helminths to investigate: 1) independent contributions of geographic and environmental distances on dissimilarity of intestinal helminth component communities between populations of big brown bats; 2) which environmental variables best explained variation in community dissimilarity; and 3) whether similar patterns of decay with geographic or environmental distance were observed for within‐host population and within‐individual host parasite communities. We used compositional measures of community dissimilarity to examine how parasite communities may change with geographic distance and varying environmental conditions. Non‐spatial variables strongly influenced compositional parasite community dissimilarity over multiple community scales, and we observed little evidence for spatial processes such as distance decay. Environment surrounding roost sites better predicted helminth community dissimilarity than any other class of variables and landcover classes representing anthropogenic modification consistently explained variation in community structure. Our results indicate that human disturbance drives significant patterns of parasite community dissimilarity, most likely by changing the presence or abundance of intermediate hosts in an area.  相似文献   

12.
We studied body size ratio in gamasid mites (Acari: Mesostigmata) parasitic on Palearctic small mammals at 3 hierarchical scales, namely infracommunities (an assemblage of mites harboured by an individual host), component communities (an assemblage of mites harboured by a host population), and compound communities (an assemblage of mites harboured by a host community). We used null models and asked a) whether body size distributions in these communities demonstrate non‐random patterns; b) whether these patterns indicate segregation or aggregation of body sizes of coexisting species; and c) whether patterns of body size distribution are scale‐dependent, that is, differ among infracommunities, component communities, and compound communities. In most mite assemblages, the observed pattern of body size distribution did not differ from that expected by chance. However, meta‐analyses demonstrated that component and compound communities of gamasid mites consistently demonstrated a tendency to reduced body size overlap, while we did not find any clear trend in mite body size distribution across infracommunities. We discuss reasons for scale‐dependence of body size distribution pattern in parasite communities and propose ecological and evolutionary mechanisms that allowed the reduced body size overlap in component and compound communities of ectoparasites to arise.  相似文献   

13.
1. Understanding the processes that structure community assembly across landscapes is fundamental to ecology and for predicting and managing the consequences of anthropogenically induced changes to ecosystems. 2. We assessed the community similarity of fish, macroinvertebrate and vegetation communities against geographic distances ranging from 4 to 480 km (i.e. distance–decay relationships) to determine the balance between local environmental factors and regional dispersal processes, and thus whether species‐sorting (niche processes) or dispersal limitation (neutral processes) was more important in structuring these assemblages in Australia’s wet‐dry tropics. We investigated whether the balance between niche and dispersal processes depended on the degree of hydrological connectivity, predicting that dispersal processes would be more important at connected sites, and also whether there was spatial concordance among these three assemblage types. 3. There was significant but weak spatial concordance among the study communities, suggesting limited potential for surrogacy among them. Distance–decay in community similarity was not observed for any study assemblage at perennial sites, suggesting dispersal was not limiting and assemblages were structured more strongly by local niche processes at these connected sites. At intermittent sites, weak distance–decay relationships for each assemblage type were confounded by significant relationships with environmental dissimilarity, suggesting that dispersal limitation contributed, albeit weakly, to niche processes in structuring our three study assemblages at disconnected sites. 4. Two environmental factors, flow regime and channel width, explained significant proportions of variation in all three assemblages, potentially contributing to the observed spatial concordance between them and representing local environmental gradients along which these communities re‐assemble after the wet season, according to niche rather than dispersal processes.  相似文献   

14.
The effects of host‐related, parasite‐related and environmental factors on the diversity and abundance of two ectoparasite taxa, fleas (Insecta: Siphonaptera) and mites (Acari: Mesostigmata), parasitic on small mammals (rodents and marsupials), were studied in different localities across Brazil. A stronger effect of host‐related factors on flea than on mite assemblages, and a stronger effect of environmental factors on mite than on flea assemblages were predicted. In addition, the effects of parasite‐related factors on flea and mite diversity and abundance were predicted to manifest mainly at the scale of infracommunities, whereas the effects of host‐related and environmental factors were predicted to manifest mainly at the scale of component and compound communities. This study found that, in general, diversity and abundance of flea and mite assemblages at two lower hierarchical levels (infracommunities and component communities) were affected by host‐related, parasite‐related and environmental factors, and compound communities were affected mainly by host‐related and environmental factors. The effects of factors differed between fleas and mites: in fleas, community structure and abundance depended on host diversity to a greater extent than in mites. In addition, the effects of factors differed among parasite assemblages harboured by different host species.  相似文献   

15.
Aim Spatial variation in the diversity of fleas parasitic on small mammals was examined to answer three questions. (1) Is the diversity of flea assemblages repeatable among populations of the same host species? (2) Does similarity in the composition of flea assemblages among populations of the same host species decay with geographical distance, with decreasing similarity in the composition of local host faunas, or with both? (3) Does the diversity of flea assemblages correlate with climatic variables? Location The study used previously published data on 69 species of small mammals and their fleas from 24 different regions of the Holarctic. Methods The diversity of flea assemblages was measured as both species richness and the average taxonomic distinctness of their component species. Similarity between flea assemblages was measured using both the Jaccard and Morisita–Horn indices, whereas similarity in the composition of host faunas between regions (host ‘faunal’ distance) was quantified using the Jaccard index. Where appropriate, a correction was made for the potentially confounding influence of phylogeny using the independent contrasts method. Results Flea species richness varied less within than among host species, and is thus a repeatable host species character; the same was not true of the taxonomic distinctness of flea assemblages. In almost all host species found in at least five regions, similarity in flea assemblages decreased with increases in either or both geographical and faunal distance. In most host species, the diversity of flea assemblages correlated with one or more climatic variable, in particular mean winter temperature. Main conclusions Spatial variation in flea diversity among populations of the same mammal species is constrained by the fact that it appears to be a species character, but is also driven by local climatic conditions. The results highlight how ecological processes interact with co‐evolutionary history to determine local parasite biodiversity.  相似文献   

16.
中国云南洱海周边小兽体表革螨多样性(英文)   总被引:1,自引:0,他引:1  
董文鸽  郭宪国  门兴元  钱体军  吴滇 《昆虫学报》2008,51(11):1177-1186
云南大理洱海周边是我国流行性出血热的流行地区之一。本文目的是运用Shannon-Wiener、系统聚类分析方法(SPSS 13.0软件)和Levins'niche等对该区3 303只小兽体表寄生革螨的物种多样性、群落结构、相似性、分布和生态位进行研究。选择的洱海周边三个不同方位恰好处于东部无量山、南部哀老山和西部苍山,由于洱海的天然隔离使这三个方位形成了同地域异生境的地理景观。在调查点共捕获小兽宿主3 303只属4目(啮齿目、食虫目、攀鼩目和食肉目)7科15属21种,收集到的小兽体表寄生虫革螨23 196只被鉴定为6科16属43种。研究结果表明革螨群落结构复杂,物种多样性高。在不同方位革螨和它们相对应宿主的分布是不均匀的,但是洱海周边不同方位同样优势小兽上寄生的优势革螨种是一致的。结果暗示:生境影响着革螨和它们相对应小兽的物种构成和分布,如果小兽宿主的分类地位和生境相似,那么相对应的小兽宿主上的革螨群落就相似; 不同方位小兽体表寄生虫革螨的丰富度和物种多样性主要由宿主本身和宿主所栖息的生境决定;这可能是小兽和革螨之间协同进化在生态学上的一个佐证。但通过使用革螨的生态位宽度分析,革螨的宿主特异性很低,这又可能暗示着小兽和革螨之间有协同进化,但协同进化程度不高。  相似文献   

17.
We studied ecological correlates of body size (abundance and niche breadth) in gamasid mites parasitic on small mammals in 28 regions of the Palearctic. We predicted that smaller species would be characterized by higher abundance than larger species, all else (e.g. host species) being equal. We also predicted that host specificity of mites would decrease (that is, number of host species they use would increase) with an increase in their body size. We focused on mites collected from host bodies that include a) species that feed solely on host’s blood (obligate exclusive haematophages), b) species that feed on both host’s blood and small arthropods (obligate non‐exclusive haematophages), and c) facultative haematophages. We expected that the relationship between body size and abundance and/or host specificity would be more pronounced in obligate exclusively haematophagous mites than for obligate non‐exclusively and facultative haematophagous mites. Across all mite species across regions, mean abundance correlated negatively with body size. The same was true for obligate haematophagous species, but not for facultative haematophages. When mite communities on the same host in a location were considered, the negative body mass–abundance relationship was found in only 3 of 44 communities. Nevertheless, a meta‐analytic (across host species) estimate of the slope of this relationship appeared to be significantly negative. No significant relationship between mite body size and host specificity was found in the analyses across all mite species as well as in obligate exclusive or obligate non‐exclusive haematophages. However, the number of hosts used by facultative haematophagous mites decreased significantly with an increase in their body size. We explain the relationships between morphological (body size) and ecological (abundance and niche breadth) properties of ectoparasites by their interactions with hosts or physical environment.  相似文献   

18.
We asked whether (a) variation in species composition of parasite assemblages on the same host species follows a non‐random pattern and (b) if so, manifestation of this non‐randomness across space and time differs among parasites, hosts and scales. We assessed nestedness and its contribution to β‐diversity of fleas and gamasid mite assemblages exploiting small mammals across three scales: (a) within the same region across different locations; (b) within the same location across different times and (c) across distinct geographic regions. We estimated (a) the degree of nestedness (NCOL) and (b) the proportional contribution of nestedness to the total amount of β‐diversity across locations, times and regions (βNESP). In the majority of host species, parasite assemblages were nested significantly across all three scales. In mites, but not fleas, NCOL correlated with the contribution of nestedness to the total amount of β‐diversity. In fleas, NCOL did not differ among assemblages at the two local scales, but was significantly lower at regional scale. In mites, NCOL was the highest in assemblages at local spatial scale. βNESP was significantly higher (a) in flea than in mite assemblages at both local scales and (b) in mite than in flea assemblages at regional scale. In fleas, βNESP was higher at both local scales, whereas in mites it was higher at both local temporal and regional scales. Sheltering habits and geographic range of a host species did not affect either NCOL or βNESP in flea assemblages, but both metrics significantly decreased with an increase of geographic range of a host species in mite assemblages. We conclude that flea and mite assemblages across host populations at smaller and larger spatial scales and at temporal scale were characterized by nestedness which, in turn, contributed to an important degree to the total amount of β‐diversity of these assemblages.  相似文献   

19.
Geographical distances between host populations are key determinants of how many parasite species they share. In principle, decay in similarity should also occur with increasing distance along any other dimension that characterizes some form of separation between communities. Here, we apply the biogeographical concept of distance decay in similarity to ontogenetic changes in the metazoan parasite communities of three species of marine fish from the Atlantic coast of South America. Using differences in body length between all possible pairs of size classes as measures of ontogenetic distances, we find that, using an index of similarity (Bray-Curtis) that takes into account the abundance of each parasite species, the similarity in parasite communities showed a very clear decay pattern; using an index (Jaccard) based on presence/absence of species only, we obtained slightly weaker but nevertheless similar patterns. As we predicted, the slope of the decay relationship was significantly steeper in the fish Cynoscion guatucupa, which goes through clear ontogenetic changes in diet and therefore in exposure to parasites, than in the other species, Engraulis anchoita and Micropogonias furnieri, which maintain a roughly similar diet throughout their lives. In addition, we found that for any given ontogenetic distance, i.e. for a given length difference between two size classes, the similarity in parasite communities was almost always higher if they were adult size classes, and almost always lower if they were juvenile size classes. This, combined with comparisons among individual fish within size classes, shows that parasite communities in juvenile fish are variable and subject to stochastic effects. We propose the distance decay approach as a rigorous and quantitative method to measure rates of community change as a function of host age, and for comparisons across host species to elucidate the role of host ecology in the development of parasite assemblages.  相似文献   

20.
云南省锡金小鼠体表革螨感染分析   总被引:1,自引:0,他引:1  
为了解云南省锡金小鼠(Mus pahari)体表革螨的感染情况及分布规律,本研究基于1990至2015年云南省39个县(市)的调查数据,统计分析锡金小鼠体表革螨的基本感染情况和感染差异。使用聚块指数测定革螨空间分布型,用Jaccard指数计算革螨物种相似性。从捕获的720只锡金小鼠体表共采集到革螨14 098只,鉴定为2科12属37种。贵州厉螨(Laelaps guizhouensis)、贫毛厉螨(L. paucisetosa)和兴义厉螨(L. xingyiensis)是优势革螨,其在不同个体的锡金小鼠体表均呈聚集分布。不同地理景观中采集的锡金小鼠体表革螨的种类和数量相差大,山区景观中采集的锡金小鼠体表革螨的感染率Pm、平均多度MA和感染度MI均明显高于坝区景观中采集的个体(P0.05)。不同性别的锡金小鼠体表革螨物种中度相似,雄鼠的平均多度和感染度高于雌鼠(P 0.05)。种-样方关系图显示革螨物种数随宿主抽样量的增加而增加。结果表明,锡金小鼠体表革螨感染普遍,三个优势螨种在不同个体的宿主体表呈聚集分布,采自不同地理景观的锡金小鼠体表革螨构成差异较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号