首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A novel strategy is proposed, using cost-saving chemical reactions to generate intact free reducing N-glycans and their fluorescent derivatives from glycoproteins for subsequent analysis. N-Glycans without core α-1,3-linked fucose are released in reducing form by selective hydrolysis of the N-type carbohydrate–peptide bond of glycoproteins under a set of optimized mild alkaline conditions and are comparable to those released by commonly used peptide-N-glycosidase (PNGase) F in terms of yield without any detectable side reaction (peeling or deacetylation). The obtained reducing glycans can be routinely derivatized with 2-aminobenzoic acid (2-AA), 1-phenyl-3-methyl-5-pyrazolone (PMP), and potentially some other fluorescent reagents for comprehensive analysis. Alternatively, the core α-1,3-fucosylated N-glycans are released in mild alkaline medium and derivatized with PMP in situ, and their yields are comparable to those obtained using commonly used PNGase A without conspicuous peeling reaction or any detectable deacetylation. Using this new technique, the N-glycans of a series of purified glycoproteins and complex biological samples were successfully released and analyzed by electrospray ionization mass spectrometry (ESI–MS) and tandem mass spectrometry (MS/MS), demonstrating its general applicability to glycomic studies.  相似文献   

2.
The “non-hydrolyzing” bacterial UDP-N-acetylglucosamine 2-epimerase catalyzes the reversible interconversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylmannosamine (UDP-ManNAc). This homodimeric enzyme is allosterically activated by its substrate, UDP-GlcNAc, and it is thought that one subunit plays a regulatory role, while that of the other plays a catalytic role. In this work, five active site mutants were prepared (D95N, E117Q, E131Q, K15A, and H213N) and analyzed in terms of their effects on binding, catalysis, and allosteric regulation. His213 appears to play a role in UDP binding and may also assist in catalysis and/or regulation, but is not a key catalytic residue. Lys15 appears to be quite important for binding. All three of the carboxylate mutants showed dramatic decreases in the value of kcat but relatively unaffected values of KM. Thus, these residues are playing key roles in catalysis and/or regulation. In the case of E117Q, the reaction intermediates are released into solution at a rate comparable to that of the overall catalysis. This may indicate that Glu117 plays the role as an acid/base catalyst in the second step of the UDP-GlcNAc epimerization reaction. All three carboxylate mutants were found to exhibit impaired allosteric control.  相似文献   

3.
A new class of topoisomerase I inhibitors containing the unprecedented benzo[g][1]benzopyrano[4,3-b]indol-6(13H)-one (abbreviated as BBPI) ring system have been developed based on structure-activity relationship studies of the cytotoxic marine alkaloid lamellarin D. The pentacyclic BBPI scaffold was constructed from N-tert-butoxycarbonylpyrrole by sequential and regioselective functionalization of the pyrrole core using directed lithiation, conventional electrophilic substitution, and palladium-catalyzed cross-coupling reactions. Further N-alkylation of the scaffold followed by selective deprotection of the O-isopropyl group produced a range of N-substituted BBPI derivatives. The BBPIs thus prepared exhibited potent topoisomerase I inhibitory activity in DNA relaxation assays. The activities of BBPIs were higher than those of lamellarin D and camptothecin; they showed potent and selective antiproliferative activity in the panel of 39 human cancer cell lines established by Japanese Foundation for Cancer Research. COMPARE analyses indicated that the inhibition patterns of the BBPIs correlated well with those of the known topoisomerase I inhibitors such as SN-38 and TAS-103. The water-soluble valine ester derivative exhibited antitumor activity in vivo against murine colon carcinoma colon 26. The activity was comparable to that of the approved anticancer agent irinotecan.  相似文献   

4.
Cultured skin fibroblasts from a patient suffering from generalized N-acetylneuraminic acid storage disease were found to accumulate large amounts (approx. 4.0 μmol/g fresh weight) of free N-acetylneuraminic acid in a lysosome-enriched subcellular fraction. However, there were no detectable deficiencies in lysosomal hydrolase activities (including neuraminidase), and the activities of CMP-N-acetylneuraminic acid synthetase and N-acetylneuraminic acid aldolase were within normal limits. The cellular glycoconjugate composition was normal, and pathologic fibroblasts labeled with either [3H]glucosamine-HCl or N-[3H]acetylmannosamine showed a marked accumulation of labeled free N-acetylneuraminic acid, along with elevated incorporation into sialoglycoconjugates. Neither normal nor pathologic fibroblasts secreted labeled free N-acetylneuraminic acid into the culture medium. These results are consistent with an inherited defect in N-acetylneuraminic acid reutilization, resulting in the lysosomal accumulation of the free monosaccharide in generalized N-acetylneuraminic acid storage disease.  相似文献   

5.
A series of 13 salicylamide derivatives was assessed for antibacterial activity against three isolates of vancomycin-resistant Enterococcus faecalis (VRE) and Enterococcus faecalis ATCC 29212 as a quality standard. The minimum inhibitory concentration was determined by the broth microdilution method with subsequent subcultivation of aliquots to assess minimum bactericidal concentration. The growth kinetics was established by the time-kill assay. Ampicillin, ciprofloxacin, tetracycline and vancomycin were used as the reference antibacterial drugs. Three of the investigated compounds showed strong bacteriostatic activity against VRE (0.199–25?µM) comparable to or more potent than ampicillin and ciprofloxacin. In addition, these compounds were tested for synergistic effect with vancomycin, ciprofloxacin and tetracycline, while 5-chloro-2-hydroxy-N-[4-(trifluoromethyl)phenyl]benzamide showed the highest potency as well as synergistic activity with vancomycin against VRE 368. Screening of the cytotoxicity of the most effective compounds was performed using human monocytic leukemia THP-1 cells, and based on LD50 values, it can be stated that the compounds have insignificant toxicity against human cells.  相似文献   

6.
The characteristics of α-aminoisobutyric acid translocation were examined in membrane vesicles from obligately alkalophilic Bacillus alcalophilus and its non-alkalophilic mutant derivative, KM23. Vesicles from both strains exhibited α-aminoisobutyric acid uptake upon energization with ascorbate and N,N,N′,N′-tetramethyl-p-phenylenediamine. The presence of Na+ caused a pronounced reduction in the Km for α-aminoisobutyric acid in wild-type but not KM23 vesicles; the maximum velocity (V) was unaffected in vesicles from both strains. Passive efflux and exchange of α-aminoisobutyric acid from wild-type vesicles were Na+-dependent and occurred at comparable rates (with efflux slightly faster than exchange). This latter observation suggests that the return of the unloaded carrier to the inner surface is not rate-limiting for efflux. The rates of α-aminoisobutyric acid efflux and exchange were also comparable in KM23 vesicles, but were Na+-independent. Furthermore, in vesicles from the two strains, both efflux and exchange were inhibited by generation of a transmembrane electrochemical gradient of protons, outside positive. This suggests that the ternary complex between solute, carrier, and coupling ion bears a positive charge in both strains even though the coupling ion is changed. Evidence from experiments with an alkalophilic strain that was deficient in l-methionine transport indicated that the porters, i.e., the solute-translocating elements, used by non-alkalophilic mutants are not genetically distinct from those used by the alkalophilic parent; that is, the change in coupling ion cannot be explained by the expression of a completely new set of Na+-independent, H+-coupled porters upon mutation of B. alcalophilus to non-alkalophily.  相似文献   

7.
N-acyl-phosphatidylethanolamine (NAPE) is known to be a precursor for various bioactive N-acylethanolamines including the endocannabinoid anandamide. NAPE is produced in mammals through the transfer of an acyl chain from certain glycerophospholipids to phosphatidylethanolamine (PE) by Ca2+-dependent or -independent N-acyltransferases. The ε isoform of mouse cytosolic phospholipase A2 (cPLA2ε) was recently identified as a Ca2+-dependent N-acyltransferase (Ca-NAT). In the present study, we first showed that two isoforms of human cPLA2ε function as Ca-NAT. We next purified both mouse recombinant cPLA2ε and its two human orthologues to examine their catalytic properties. The enzyme absolutely required Ca2+ for its activity and the activity was enhanced by phosphatidylserine (PS). PS enhanced the activity 25-fold in the presence of 1?mM CaCl2 and lowered the EC50 value of Ca2+ >8-fold. Using a PS probe, we showed that cPLA2ε largely co-localizes with PS in plasma membrane and organelles involved in the endocytic pathway, further supporting the interaction of cPLA2ε with PS in living cells. Finally, we found that the Ca2+-ionophore ionomycin increased [14C]NAPE levels >10-fold in [14C]ethanolamine-labeled cPLA2ε-expressing cells while phospholipase A/acyltransferase-1, acting as a Ca2+-independent N-acyltransferase, was insensitive to ionomycin for full activity. In conclusion, PS potently stimulated the Ca2+-dependent activity and human cPLA2ε isoforms also functioned as Ca-NAT.  相似文献   

8.
The synthesis and characterization of Pd(II) complexes with the general formula cis-[Pd(L-O,S)2] (HL = N,N-diethyl-N′-benzoylthiourea, N,N-diisobutyl-N′-benzoylthiourea or N,N-dibenzyl-N′-benzoylthiourea) and trans-[PdCl2(HL-S)2] (HL = N,N-diphenyl-N′-benzoylthiourea, N,N-di-n-butyl-N′-benzoylthiourea or N,N-diisopropyl-N′-benzoylthiourea) are reported. These complexes were formed from the reaction between PdCl2 and N,N-di(alky/aryl)-N′-benzoylthiourea in acetonitrile with the formulation dependent on the nature of HL. The new Pd(II) complexes have been characterized by analytical and spectral (FT-IR, UV-Vis, 1H NMR and 13C NMR, Mass) techniques. The molecular structures of two of the complexes (1 and 5) have been conformed by X-ray crystallography. Complex 1 shows cytotoxicity against human breast cancer cells.  相似文献   

9.
A series of novel imidazo[4,5-d]azepine compounds derived from marine natural product ceratamine A were designed and synthesized in 7 steps. Most compounds exhibited comparable cytotoxicity against five human cancer cell lines (HCT-116, HepG2, BGC-823, A549 and A2780) to natural product ceratamine A. Compound 1k, bearing methoxy group at C-14, C-15 and C-16, showed the best in vitro cytotoxicity, which was better than ceratamine A. The structure and activity relationships study showed that the benzyloxymethyl group on N-3 played an important role on the cytotoxicity.  相似文献   

10.
2-Aminopurine, 2-amino-N6-hydroxyadenine and N6-hydroxyaminopurine were compared in suspension test with growing and non-growing cells for their mutagenic and recombinogenic (reciprocal and nonreciprocal) activities in Saccharomyces cerevisiae strain D7. Ethyl methanesulfonate was used as a positive control. No increases above spontaneous frequencies were observed when non- growing cells were treated with the base analogues although EMS induced concentration- dependent responses at all 3 genetic end-points. When growing cells were treated, HAP was recombinogenic and mutagenic and AHA was mutagenic, but only weakly recombinogenic. HAP induced comparable numbers of revertants at much lower concentrations than AHA. 2AP failed to induce any detectable response even at concentrations as high as 2400 μg/ml.  相似文献   

11.
In this study, a series of 22 ring-substituted 1-hydroxynaphthalene-2-carboxanilides were prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Mycobacterium marinum, Mycobacterium kansasii and Mycobacterium smegmatis. The compounds were also tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Most of tested compounds showed the antimycobacterial activity against the three strains comparable or higher than the standard isoniazid. N-(3-Fluorophenyl)-1-hydroxynaphthalene-2-carboxamide showed the highest biological activity (MIC = 28.4 μmol/L) against M. marinum, N-(4-fluorophenyl)-1-hydroxynaphthalene-2-carboxamide showed the highest biological activity (MIC = 14.2 μmol/L) against M. kansasii, and N-(4-bromophenyl)-1-hydroxynaphthalene-2-carboxamide expressed the highest biological activity (MIC = 46.7 μmol/L) against M. smegmatis. This compound and 1-hydroxy-N-(3-methylphenyl)naphthalene-2-carboxamide were the most active compounds against all three tested strains. The PET inhibition expressed by IC50 value of the most active compound 1-hydroxy-N-(3-trifluoromethylphenyl)naphthalene-2-carboxamide was 5.3 μmol/L. The most effective compounds demonstrated insignificant toxicity against the human monocytic leukemia THP-1 cell line. For all compounds, structure–activity relationships are discussed.  相似文献   

12.
Three partially substituted N-carboxyacyl and six N-carboxyacyl-N-acyl derivatives of chitosan were prepared and their practical use as media for gel chromatography was examined. N-(3′-Carboxy-2′-propenoyl)-N-stearoyl-chitosan gel was a relatively good medium for gel chromatography (solvent, water), and had a wide fractionation range (MW = 2 × 104?6 × 105). Its chromatographic properties were compared with those of N-methylene-chitosan gel (solvent, 0·5 m NaCl).  相似文献   

13.
Classical swine fever virus (CSFV) outer surface E2 glycoprotein represents an important target to induce protective immunization during infection but the influence of N-glycosylation pattern in antigenicity is yet unclear. In the present work, the N-glycosylation of the E2-CSFV extracellular domain expressed in goat milk was determined. Enzymatic N-glycans releasing, 2-aminobenzamide (2AB) labeling, weak anion-exchange and normal-phase HPLC combined with exoglycosidase digestions and mass spectrometry of 2AB-labeled and unlabeled N-glycans showed a heterogenic population of oligomannoside, hybrid and complex-type structures. The detection of two Man8GlcNAc2 isomers indicates an alternative active pathway in addition to the classical endoplasmic reticulum processing. N-acetyl or N-glycolyl monosialylated species predominate over neutral complex-type N-glycans. Asn207 site-specific micro-heterogeneity of the E2 most relevant antigenic and virulence site was determined by HPLC-mass spectrometry of glycopeptides. The differences in N-glycosylation with respect to the native E2 may not disturb the main antigenic domains when expressed in goat milk.  相似文献   

14.
郑燕  侯海军  秦红灵  朱亦君  魏文学 《生态学报》2012,32(11):3386-3393
以紫潮泥和红黄泥两种不同质地的水稻土壤作为研究对象,通过室内培养试验,分析施用硝态氮肥对N2O释放和反硝化基因(narG/nosZ)丰度的影响,并探讨反硝化基因丰度与N2O释放之间的关系。结果表明,施用硝态氮显著增加两种水稻土的N2O释放量。在72h培养过程中,施氮改变了紫潮泥反硝化基因(narG/nosZ)的丰度,但并未明显影响红黄泥反硝化基因(narG/nosZ)丰度。通过双变量相关分析发现,除了紫潮泥narG基因外,其它的反硝化基因丰度和N2O释放之间并没有显著相关性。  相似文献   

15.
In order to examine a procedure whereby the points of covalent attachment between the components of a protein-polymer conjugate could be determined, horse heart cytochrome c was attached to a beaded copolymer of N-acrylylpyrrolidine, N,N′-bis(acrylyl)-1,2-diaminoethane and N-acrylyl-1,6-aminohexane through a cleavable azo linkage. Studies of protein removed from this conjugate showed that attachment of the polymer to cytochrome occurred predominantly through single lysine residues on the protein surface; lysine-25 was tentatively identified as the residue most extensively utilized in this way. Protein was also linked to the polymer by two lysine residues and a significant amount of protein was irreversibly attached to the polymer under the reaction conditions used.  相似文献   

16.
The capability of octanoate, N-acetyl-l-tryptophanate (N-AcTrp) and other ions of fatty acids and amino acids to stabilize human serum albumin (HSA) against thermal and oxidative stress was studied. Native-PAGE showed that octanoate, and more hydrophobic fatty acids anions, stabilizes the monomeric form of HSA during heating at 60 °C for 30 min. Heating in the presence of octanoate did not change the far-UV CD-spectrum. The stabilizing role of octanoate also showed as an increase in denaturation temperature and calorimetric enthalpy, determined by differential scanning calorimetry (DSC). N-AcTrp, which was found to compete with octanoate for a common high-affinity site, has only a minor stabilizing effect. By contrast, no effect was found for l-tryptophanate or N-acetyl-l-cysteinate. Any ligand effect on oxidation was examined by using 2,2′-azobis(2-amidino-propane)dihydrochloride (AAPH) as oxidizing agent. One hour of incubation resulted in the formation of the same number of carbonyl groups, whether octanoate or one of the abovementioned amino acids was present or not. However, the number of groups formed after 24 h of incubation was significantly decreased in the presence of l-tryptophanate and, especially, N-AcTrp. The effect of 1-h incubation with AAPH on the oxidative status of 34-Cys was studied by the HPLC technique. It was found that N-AcTrp, but not octanoate, has a large protecting effect on the sulfhydryl group. Thus, octanoate has the greatest stabilizing effect against heat, whereas the presence of N-AcTrp diminishes oxidation of HSA.  相似文献   

17.
Both long term and batch experiments were carried out to identify the sources of the N2O emission in anoxic/aerobic sequencing batch reactors (A/O SBRs) under different aeration rates. The obtained results showed that aeration rate has an important effect on the N2O emission of A/O SBR and most of the N2O was emitted during the aerobic phase. During the anoxic phase, nitrate ammonification was the major source of N2O emission while denitrification performed as a sink of N2O, in all three bioreactors. The N2O emission mechanisms during the aerobic phase differed with the aeration rate. At low and high aeration rates (Run 1 and Run 3), both coupled-denitrification and nitrifier denitrification were ascribed to be the source of N2O emission. At mild aeration rate (Run 2), nitrifier denitrification by Nitrosomonas-like ammonia oxidizing-bacterial (AOB) was responsible for N2O emission while coupled-denitrification turned out to be a sink of N2O because of the presence of inner anaerobic region in sludge flocs.  相似文献   

18.
The conjugation of 4-N-(3-aminopropanyl)-2′-deoxy-2′,2′-difluorocytidine with 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (SCN-Bn-NOTA) ligand in 0.1?M Na2CO3 buffer (pH 11) at ambient temperature provided 4-N-alkylgemcitabine-NOTA chelator. Incubation of latter with excess of gallium(III) chloride (GaCl3) (0.6?N AcONa/H2O, pH?=?9.3) over 15?min gave gallium 4-N-alkylgemcitabine-NOTA complex which was characterized by HRMS. Analogous [68Ga]-complexation of 4-N-alkylgemcitabine-NOTA conjugate proceeded with high labeling efficiency (94%–96%) with the radioligand almost exclusively found in the aqueous layer (~95%). The high polarity of the gallium 4-N-alkylgemctiabine-NOTA complex resulted in rapid renal clearance of the 68Ga-labelled radioligand in BALB/c mice.  相似文献   

19.
We have developed four 99mTc(CO)3-labeled lipophilic tracers as potential radiolabeling agents for cells based on a hexadecyl tail. 99mTc(CO)3-hexadecylamino-N,N′-diacetic acid (negatively charged), 99mTc(CO)3-hexadecylamino-N-α-picolyl-N′-acetic acid (uncharged), 99mTc(CO)3-N,N′-dipicolylhexadecylamine (positively charged), 99mTc(CO)3-N-hexadecylaminoethyl-N′-aminoethylamine (positively charged) were prepared in a radiolabeling yield: >90%. Preliminary cell uptake studies were performed in mixed blood cells with or without plasma and were compared with 99mTc-d,l-HMPAO and [18F]FDG. In plasma-free blood cells, maximum uptake (78%) was obtained for 99mTc(CO)3-N-hexadecylaminoethyl-N′-aminoethylamine after 60 min incubation (compared to 55% and 23% for 99mTc-d,l-HMPAO and [18F]FDG, respectively) while in plasma-rich medium, 99mTc(CO)3-N,N′-dipicolylhexadecylamine was best bound (54%, similar to the binding of 99mTc-d,l-HMPAO). Biodistribution in normal mice showed mainly hepatobiliary clearance of the agents and initial high lung uptake. The radiolabeled compounds showed good blood clearance with maximally 7.9% injected dose per gram at 60 min post injection. While the least lipophilic agent (99mTc(CO)3-N,N′-dipicolylhexadecylamine, log P = 1.3) showed the best cell uptake, there appears to be no direct correlation between lipophilicity and tracer uptake in mixed blood cells. In view of its comparable cell uptake to well known cell labeling agent 99mTc-d,l-HMPAO, 99mTc(CO)3-N,N′-dipicolylhexadecylamine merits further evaluation as a potential cell labeling agent.  相似文献   

20.
N-Acyl phosphatidylethanolamines are negatively charged phospholipids, which are naturally occurring albeit at low abundance. In this study, we have examined how the amide-linked acyl chain affected the membrane behavior of the N-acyl-1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (N-acyl-POPE) or N-acyl-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (N-acyl-DPPE), and how the molecules interacted with cholesterol. The gel → liquid crystalline transition temperature of sonicated N-acyl phosphatidylethanolamine vesicles in water correlated positively with the number of palmitic acyl chains in the molecules. Based on diphenylhexatriene steady state anisotropy measurements, the presence of 33 mol% cholesterol in the membranes removed the phase transition from N-oleoyl-POPE bilayers, but failed to completely remove it from N-palmitoyl-DPPE and N-palmitoyl-POPE bilayers, suggesting rather weak interaction of cholesterol with the N-saturated NAPEs. The rate of cholesterol desorption from mixed monolayers containing N-palmitoyl-DPPE and cholesterol (1:1 molar ratio) was much higher compared to cholesterol/DPPE binary monolayers, suggesting a weak cholesterol interaction with N-palmitoyl-DPPE also in monolayers. In bilayer membranes, both N-palmitoyl-POPE and N-palmitoyl-DPPE failed to form sterol-rich domains, and in fact appeared to displace sterol from sterol/N-palmitoyl-sphingomyelin domains. The present data provide new information about the effects of saturated NAPEs on the lateral distribution of cholesterol in NAPE-containing membranes. These findings may be of relevance to neural cells which accumulate NAPEs during stress and cell injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号