首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Many studies have focused on soil nutrient heterogeneity and islands of fertility in arid ecosystems. However, few have been conducted on an oasis-desert transitional zone where there is a vegetation pattern changing from shrubs to annual herbs. The goal of the present study was to understand vegetation and soil nutrient heterogenity along an oasis-desert transitional zone in northwestern China. Three replicated sampling belts were selected at 200 m intervals along the transitional zone. Twenty-one quadrats (10 x 10m) at 50m intervals were located along each sampling belt. The vegetation cover was estimated through the quadrats, where both the soil under the canopy and the open soil were sampled simultaneously. The dominated shrub was Haloxylon ammodendron in the areas close to the oasis and Nitraria tangutorum dominated the areas close to the desert. In general, along the transitional zone the vegetation cover decreased within 660 m, increased above 660 m and decreased again above 1 020 m (close to the desert). The soil nutrients (organic matter, total N, NO3^- and NH4^+) showed significant differences along the zone. The soil nutrients except the soil NH4^+ under the canopy were higher than those in open soil, confirming "islands of fertility" or nutrient enrichment. Only a slight downward trend of the level of "islands of fertility" for soil organic matter appeared in the area within 900 m. Soil organic matter both under canopy and in interspace showed a positive correlation with the total vegetation cover, however, there was no significant correlation between the other soil nutrients and the total vegetation cover. We also analyzed the relationship between the shrubs and annuals and the soil nutrients along the zone. Similarly, there was no significant correlation between them, except soil organic matter with the annuals. The results implied that annual plants played an important role in soil nutrient enrichment in arid ecosystem.  相似文献   

2.
Soil nutrition is a key factor influencing species composition in a community, but it has clearly scaledependent heterogeneity. In the present study, geostatistics methods and canonical correspondence analysis (CCA) were used to detect: (i) the variation range of soil spatial heterogeneity; (ii) the influence of topographic factors on the distribution of soil nutrition; and (iii) the relationships between soil chemical properties and species in the community. In all, 23 soil variables were measured, including total N and organic C, AI, Ba, Ca, Cr, Cu, Fe, Ga, Li, Mg, Mn, Na, NH4-N, Ni, NO3-N, Pb, pH, P, Sr, Ti, V, and Zn. Semi-variograms of these variables were calculated and mapped. All indices showed autocorrelatlons, with ranges between 29 and 200 m. When the sample method was larger than these distances, spatial autocorrelations were avoided. The distribution patterns of Ca, Cr, Ga, K, Mg, organic C, P, Pb, and pH, and total N were related to the microtopography and the distribution of these compounds was clumped in water catchments area. The CCA method was used to investigate the relationship between plant species and soil properties in this community. Fagus engleriana Seem., Lindera obtusiloba BI. Mus., and Acer griseum (Franch.) Pax were correlated with organic C, available N, and P.  相似文献   

3.
The spatial heterogeneity of DTPA-extractable zinc in the cultivated soils of Shenyang suburbs in Liaoning Province of China was investigated, and its map was drawn by the methods of geostatistics combined with geographic information system. The data of soil DTPA-extractable zinc fitted normal distribution after logarithm transformation, and its semivariogram fitted a spherical model. The semivariogram indicated that the spatial dependence of soil DTPA-extractable zinc content was moderate, with the spatial dependence range of 1.69 km and the fractal dimension of 1.96. Stochastic factors contributed to 49.9% of the spatial variability, while structural factors contributed to 50.1% of it. The spatial heterogeneity of soil DTPA-extractable zinc shown by a kriged interpolation map was deeply influenced by stochastic factors such as city pollution, land use pattern and crop distributions. For example, the average content of Zn in vegetable garden soils was 2.5-4 times as much as in their originated soils, an  相似文献   

4.
In order to have a basic knowledge of revegetation, one needs to deepen his understanding of the interactive effects of vegetation and soil. In this article, aboveground biomass, soil nutrients and moisture of 36 old-fields with different abandonment ages (from 2 to 45 years after abandonment), aboveground biomass of 4 typical old-fields, and growth characteristics of 7 predominant old-field species were measured. Changing pace, trend and relationship of community aboveground biomass and soil nutrition during the secondary succession were evaluated; effects of soil nutrition on community aboveground biomass were analyzed using multivariable analysis and pathway analysis, and effects of aboveground biomass on soil nutrition were further discussed. The results show that: (1) Soil nutrients, including organic matter, total nitrogen, total phosphorus, total potassium, nitrate nitrogen, ammonium nitrogen, active phosphorus and active potassium, have the same changing pace and trends as the aboveground biomass. In the process of secondary succession, both the soil nutrition and the community aboveground biomass decreased in the earlier abandonment stage of succession and then increased subsequently. (2) On the basis of the correlation of soil nutrients and abandonment ages, effects of vegetation on 0–20 cm organic matter, active phosphorus, 0–20 cm and 20–40 cm nitrate nitrogen nutrition are significant, while on the basis of the correlation of soil nutrition and aboveground biomass, no significant effects were observed. Hereinbefore, aboveground biomass accounts for only a part of vegetation-soil nutrition effects. The effects of biomass on organic matter, total nitrogen, total phosphorous, total potassium, nitrate nitrogen, active potassium and phosphorous are positive, whereas for ammonium nitrogen it is negative. (3) Abandonment ages, total nitrogen, total potassium, active potassium and soil moisture fluctuation have direct positive effects on the aboveground biomass of old-field communities; abandonment and soil moisture fluctuation have lager effects. Each ingredient of soil nutrition has relatively small effect, among which total nitrogen has larger effects than total and active potassium. The changes in aboveground biomass of old-field communities during succession are caused mainly by the changes in coverage and ecological characteristics of community species (the relatively larger direct effects of abandonment ages), and secondly by the soil moisture fluctuation (the relative smaller indirect effect of abandonment ages through soil moisture). (4) As a dependent variable, belowground biomass approaches power function of soil depth and declines in deeper layer. The root/shoot ratio of communities tends to increase in later succession stages, which also has an increasing tendency. These may influence the accumulation of biomass and decomposition of organic matter, and the vegetation-soil effects may be different.  相似文献   

5.
Du F  Liang Z S  Xu X X  Shan L  Zhang X C 《农业工程》2007,27(5):1673-1683
In order to have a basic knowledge of revegetation, one needs to deepen his understanding of the interactive effects of vegetation and soil. In this article, aboveground biomass, soil nutrients and moisture of 36 old-fields with different abandonment ages (from 2 to 45 years after abandonment), aboveground biomass of 4 typical old-fields, and growth characteristics of 7 predominant old-field species were measured. Changing pace, trend and relationship of community aboveground biomass and soil nutrition during the secondary succession were evaluated; effects of soil nutrition on community aboveground biomass were analyzed using multivariable analysis and pathway analysis, and effects of aboveground biomass on soil nutrition were further discussed. The results show that: (1) Soil nutrients, including organic matter, total nitrogen, total phosphorus, total potassium, nitrate nitrogen, ammonium nitrogen, active phosphorus and active potassium, have the same changing pace and trends as the aboveground biomass. In the process of secondary succession, both the soil nutrition and the community aboveground biomass decreased in the earlier abandonment stage of succession and then increased subsequently. (2) On the basis of the correlation of soil nutrients and abandonment ages, effects of vegetation on 0–20 cm organic matter, active phosphorus, 0–20 cm and 20–40 cm nitrate nitrogen nutrition are significant, while on the basis of the correlation of soil nutrition and aboveground biomass, no significant effects were observed. Hereinbefore, aboveground biomass accounts for only a part of vegetation-soil nutrition effects. The effects of biomass on organic matter, total nitrogen, total phosphorous, total potassium, nitrate nitrogen, active potassium and phosphorous are positive, whereas for ammonium nitrogen it is negative. (3) Abandonment ages, total nitrogen, total potassium, active potassium and soil moisture fluctuation have direct positive effects on the aboveground biomass of old-field communities; abandonment and soil moisture fluctuation have lager effects. Each ingredient of soil nutrition has relatively small effect, among which total nitrogen has larger effects than total and active potassium. The changes in aboveground biomass of old-field communities during succession are caused mainly by the changes in coverage and ecological characteristics of community species (the relatively larger direct effects of abandonment ages), and secondly by the soil moisture fluctuation (the relative smaller indirect effect of abandonment ages through soil moisture). (4) As a dependent variable, belowground biomass approaches power function of soil depth and declines in deeper layer. The root/shoot ratio of communities tends to increase in later succession stages, which also has an increasing tendency. These may influence the accumulation of biomass and decomposition of organic matter, and the vegetation-soil effects may be different.  相似文献   

6.
Ge F L  Zhang J H  Su Z A  Nie X J 《农业工程》2007,27(2):459-463
Severe soil erosion of cultivated sloping land in hilly areas of Sichuan, China, has resulted in deterioration of soil quality, and therefore has an adverse impact on crop production. A hillslope of 110 m in length was selected with a slope steepness of 10.12% where the soils were classified as Regosols. Soil samples for determining 137Cs, soil organic matter (SOM), total N, P, K, available N, P, K and particle size fraction were collected at 10 m intervals along a transect of the hillslope. Loss of soil nutrients owing to soil erosion was studied by using 137Cs technique, and the relationships between 137Cs-derived soil redistribution rates and soil nutrients were established over the cultivated sloping land in hilly areas of Sichuan, China (30o26′N, 104o28′E). The values of SOM, total N, available N, P, K and the soil particle fractions of size < 0.002 mm were smaller at upper and middle slope positions where 137Cs inventories were lower (i.e., soil erosion rates were higher) than at downslope positions where 137Cs inventories were higher (i.e., soil erosion rates were lower). The lowest 137Cs inventories were found at the hilltop, showing that besides erosion owing to water flow, tillage also contributed to soil losses, and intensive tillage was mostly responsible for severe erosion at upper slope positions. There were significant differences in SOM, total N, available N, P, K and the soil particle fractions of size < 0.002 mm between different slope segments, and these properties were significantly correlated with slope length. These soil properties were also significantly correlated with 137Cs inventories, indicating that both 137Cs and nutrient concentrations varied with topographical changes. The variation in soil properties was strongly influenced by erosion-induced soil redistribution, and therefore 137Cs inventories mirroring soil redistribution rates would be considered as an integrated indicator of soil quality.  相似文献   

7.
Aims Our objectives were to study the spatial distribution of soil organic carbon (SOC) density and its influencing factors in the main forest ecosystems in Guangxi. Methods A total of 345 sample plots were established in Guangxi, and the size of each plot was 50 m × 20 m. Based on the forest resource inventory data and field investigation, the SOC storage of the main forests in Guangxi was estimated. Geostatistics was applied to analyze the spatial pattern of SOC density and the main influencing factors on SOC density were also explored by principal component analysis and stepwise regression. Important findings The total SOC storage in the main forests in Guangxi was 1 686.88 Tg, and the mean SOC density was 124.70 Mg•hm2, which is lower than that of China. The best fitted semivariogram model of SOC density was exponential model, and the spatial autocorrelation was medium. The contour map based on Kriging indicated that northeastern Guangxi had high SOC density and northwestern Guangxi had low SOC density, which corresponded to high SOC density in non-karst region and low SOC density in karst region. The SOC density followed the sequence of bamboo forest > deciduous broadleaf forest > warm coniferous forest > mixed evergreen and deciduous broadleaf forest > evergreen broadleaf forest, and yellow soil > red soil >lateritic red soil > limestone soil. The dominant environment factors affecting SOC density included soil depth, longitude, latitude, and altitude. Soil depth was the most influential factor, which was mainly attributed to the karst landscape.  相似文献   

8.
Samples of surface (0–10 cm) and subsurface soils (10–20 cm) were collected using a grid sampling method in July and September in order to study the spatial and temporal distribution patterns of all forms of nitrogen and total nitrogen (TN) and the relationships between nitrogen concentrations and selected soil properties in Fulaowenpao wetland, a typical inland alkaline wetland. Results showed that there existed obvious heterogeneity at spatial and temporal scales. Generally, higher spatial variability for nitrate nitrogen (NO3-–N), ammonium nitrogen (NH4+–N) and available nitrogen (AN) were observed compared to organic nitrogen (Org-N) and TN. At the spatial scale, concentrations of NO3-–N, NH4+–N and AN in surface soils were higher than those in subsurface soils, but no significant differences were observed between both soil layers (p < 0.05). However, concentrations of Org-N and TN were significantly higher in surface soils compared to subsurface soils (p < 0.05), and both of them had similar spatial distribution patterns. At the temporal scale, with the exception of NH4+–N in both soil layers and NO3-–N in subsurface soils, concentrations of all the other forms of nitrogen and TN were generally higher in September than them in July, while there were no significant differences between both sampling periods (p < 0.05) except for AN (p < 0.01) in both soil layers. Correlation analysis showed that AN, Org-N and TN were significantly and positively correlated with soil organic matter, total phosphorous, and clay contents, while they were significantly negatively correlated with soil pH values; NO3-–N was also correlated with soil organic matter and total phosphorous, however, NH4+–N was only closely lined to water contents.  相似文献   

9.
Bai J H  Wang Q G  Gao H F  Xiao R  Deng W  Cui B S 《农业工程》2010,30(4):210-215
Samples of surface (0–10 cm) and subsurface soils (10–20 cm) were collected using a grid sampling method in July and September in order to study the spatial and temporal distribution patterns of all forms of nitrogen and total nitrogen (TN) and the relationships between nitrogen concentrations and selected soil properties in Fulaowenpao wetland, a typical inland alkaline wetland. Results showed that there existed obvious heterogeneity at spatial and temporal scales. Generally, higher spatial variability for nitrate nitrogen (NO3-–N), ammonium nitrogen (NH4+–N) and available nitrogen (AN) were observed compared to organic nitrogen (Org-N) and TN. At the spatial scale, concentrations of NO3-–N, NH4+–N and AN in surface soils were higher than those in subsurface soils, but no significant differences were observed between both soil layers (p < 0.05). However, concentrations of Org-N and TN were significantly higher in surface soils compared to subsurface soils (p < 0.05), and both of them had similar spatial distribution patterns. At the temporal scale, with the exception of NH4+–N in both soil layers and NO3-–N in subsurface soils, concentrations of all the other forms of nitrogen and TN were generally higher in September than them in July, while there were no significant differences between both sampling periods (p < 0.05) except for AN (p < 0.01) in both soil layers. Correlation analysis showed that AN, Org-N and TN were significantly and positively correlated with soil organic matter, total phosphorous, and clay contents, while they were significantly negatively correlated with soil pH values; NO3-–N was also correlated with soil organic matter and total phosphorous, however, NH4+–N was only closely lined to water contents.  相似文献   

10.
Aims Our aim was to characterize the effects of nitrogen (N) addition on plant root standing crop, production, mortality and turnover in an alpine meadow on the Northwestern plateau of Sichuan Province, China. Methods A N addition experiment was conducted in an alpine meadow on the Northwestern plateau of Sichuan Province since 2012. Urea was applied at four levels: 0, 10, 20 and 30 g·m-2·a-1, referred to as CK, N10, N20 and N30. Root samples in surface (0-10 cm) and subsurface layers (10-20 cm) were observed using Minirhizotron from May 10th to Sept. 27th in 2015. The root standing crop, production, mortality and turnover rate were estimated using WinRHZIO Tron MF software. Repeated-measure ANOVA, one-way ANOVA and Pearson correlation were performed to analyze the effect of N addition on soil and root characteristics. Important findings N addition significantly increased soil available N content and decreased soil pH value, but did not alter soil total N and SOM contents under all treatments. N addition did not exhibit any significant effects on the mean root standing crop and cumulative root production in the 0-10 cm, but significantly reduced mean root standing crop and cumulative root production in 10-20 cm soil layer by 195.3 and 142.3 g·m-2 (N10), 235.8 and 212.1 g·m-2 (N20) and 198.0 and 204.4 g·m-2 (N30), respectively. The cumulative root mortality was significantly decreased by 206.1 g·m-2 in N10 treatment and root turnover rate was significantly increased with 17% for N30 treatment at the 0-10 cm soil depth, but the cumulative root mortality and root turnover rate was not significantly different at 10-20 cm soil depth. In addition, cumulative root production, mortality and turnover rate in 0-10 cm soil layer were significantly correlated with the soil available N content, whereas no significant associations were observed in 10-20 cm soil. Taken together, these results demonstrate that N addition alters the soil N availability and thus induces the root dynamics and changes in root distribution as well as C allocation in alpine meadow. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

11.
以贵州省安顺市西秀区旧州镇文星村为研究区域,采用地统计学方法,研究了黔中喀斯特山区土壤pH值、有机质、碱解氮、有效磷、速效钾、全氮、全磷、全钾、有效铜、有效锌、有效铁、有效锰和水稻产量的空间变异规律及其相互关系.结果表明: 土壤pH值、碱解氮、有效磷、速效钾、全磷、有效铜及水稻产量构成因素的C0/(C0+C)<25%,表现为强烈的空间相关性,有机质、全氮、全钾、有效锌、有效铁、有效锰及水稻产量的C0/(C0+C)为25%~75%,具有中等空间相关性.土壤速效钾含量与水稻产量关系最为密切,偏相关系数达到极显著水平(r=0.4669,P<0.0001),土壤碱解氮、速效钾和有效磷对有效穗数和千粒重的直接通径系数均为正值,其大小顺序与偏相关分析结果一致.克里金插值结果表明,土壤有机质、碱解氮、速效钾、全氮、有效铜、有效锌的含量在研究区均存在从西南向东北逐渐递减的趋势;产量在西北部及东南部较高.  相似文献   

12.
基于GIS和地统计学的稻田土壤养分与重金属空间变异   总被引:10,自引:0,他引:10  
以湖南省长沙县北山镇3.56 hm2的水稻田为研究区域,基于网格法(25 m×25 m)等距离取样,采用GIS和地统计学相结合的方法,对研究区土壤耕作层(0~20 cm)的pH值、有机质、全氮、速效磷、阳离子交换量(CEC)与3种典型重金属元素Cd、As、Pb的空间变异特征进行了定量分析.结果表明: 研究区内土壤pH值和Pb含量表现为弱变异,其他各项指标均表现出中等强度变异,变异顺序的大小为:速效磷>Cd>全氮>有机质>CEC>As>Pb>pH.半方差检验结果表明,有机质、速效磷、As的半方差函数的最佳拟合模型为指数模型;pH、全氮、CEC、Cd和Pb的最佳拟合模型为球状模型;除CEC呈中等空间相关外,其余指标均表现出强烈的空间相关.克里格插值分析表明: pH、全氮、CEC、Pb呈斑块状分布;有机质、速效磷、Cd、As呈块状和带状分布.植被、地形和人类活动是造成研究区土壤养分与重金属格局差异的主要因素.相关性分析表明,部分土壤养分与重金属含量的相关性达到显著水平,其中pH与有机质、Cd与Pb的相关性达到了极显著相关水平.  相似文献   

13.
基于地理信息系统(GIS)和地统计学研究了河北省遵化市土壤表层(0~20cm)碱解氮、全氮、速效钾、速效磷和有机质等5种养分要素的空间变异规律.应用GIS能够将系统变量的属性数据同地理数据相结合,使大区域范围内进行地统计学分析变得较为方便.研究表明,全氮、碱解氮、速效磷、有机质变异函数曲线的理论模型符合球状模型,速效钾的理论模型表现为指数模型和有基台值的线性模型的套合结构;碱解氮、全氮、速效磷、有机质的空间变异主要是由随机性因素引起的,但程度有所差异,全氮和有机质由随机性因素引起的空间异质性程度较高,碱解氮和速效磷较低;速效钾的空间变异则主要是由结构性因素引起;5种养分要素的空间自相关程度都属于中等的空间自相关,但空间变异的尺度范围不同,碱解氮和速效磷变异尺度基本相近,为5和5.5km;全氮较大,为14.5km;有机质为8.5km;速效钾的变异尺度有两个,0~3.5km主要以指数模型为主,3.5~25.5km范围内以有基台值的线性模型为主.5种养分要素的各向同性的范围不同,碱解氮和速效磷在整个范围(0~28km)都表现出各向同性,全氮和有机质的其次,为0~10km;速效钾的较小,为0~8km.  相似文献   

14.
基于地理信息系统(GIS)和地统计学研究了河北省遵化市土壤表层(0-20cm)碱解氮、全氮、速效钾、速效磷和有机质等5种养分要素的空间变异规律,应用GIS能够将系统变量的属性数据同地理数据相结合,使大区域范围内进行地统计分析变得较为方面,研究表明,全氮、碱解氮、速效磷、有机质变异函数曲线的理论型符合球状模型,速效钾的理论模型表现为指数模型和有基合值的线性模型的套合结构;碱解氮、全氮、速效磷、有机质  相似文献   

15.
以贵州省安顺市西秀区旧州镇文星村为研究区域,采用地统计学方法,研究了黔中喀斯特山区土壤容重、总孔隙度、毛管持水量、毛管孔隙度、通气孔隙度等物理特性与土壤pH、有机质、速效养分(S、Si、N、P、K、Fe、Zn、Cu、Mn)、全量养分(N、P、K)、交换性盐(Ca、Mg)及阳离子交换量等化学特性的空间变异特征及自相关性。在土壤各特征值中,pH、毛管孔隙度变异系数分别为4.59%、8.28%、9.83%,为弱变异;其他变异系数在10%-100%之间,为中等程度变异。半方差分析表明,土壤毛管持水量、通气孔隙度、毛管孔隙度、速效养分(S、Si、Cu、Mn)、全量养分(N、P、K)、交换性盐(Ca、Mg)及阳离子交换量的C0/(C0+C)<25%,表现为强烈的空间自相关性;容重、pH、速效养分(N、P、K、Fe、Zn)及有机质的C0/(C0+C)在25%-75%之间,表现为中等空间自相关性,而Moran''s I指数分析表明,除毛管孔隙度、有效S、速效P及有效Mn的空间自相关性较弱外,其他均呈正的显著空间自相关性。根据克里金插值图,在研究区域内土壤毛管孔隙度及毛管持水量与pH、速效养分(S、Si、Zn、Cu、)全P、全N、有机质、交换性Ca、Mg及阳离子交换量在东北方向和西北角分布较低,在西南角方向土壤容重及通气孔隙度分布较低,而pH、速效K、有效Cu、全P、全K、有机质、阳离子交换量分布较高,且速效养分(N、K、S、Cu)、全P、有机质的含量及阳离子交换量均存在从西南向东北方向递减的趋势。  相似文献   

16.
黄土高原小流域土壤养分的空间异质性   总被引:100,自引:6,他引:94  
王军  傅伯杰  邱扬  陈利顶  余莉 《生态学报》2002,22(8):1173-1178
利用地理信息系统的空间分析功能,通过地统计学的半变异函数定量研究了黄土高原典型小流域土壤养分的空间异质性特征。结果表明;土壤有机质,全氮,有效氮,全磷和有效磷的理论模型均为球状模型,由随机因素引起的空间变异占空间总变异的比例小,其值分别为13.333%,10.938%,22.000%,9.091%和27.536%,反映5种养分具有较强的空间自相关格局,但它们的空间自相关范围具有明显的差异。土壤全氮和有效氮变程小,分别是90m和110m,有机质次之,变程是120m,而土壤全磷和有效磷的变程最大为160m,研究成果将有效地指导土壤的取样设计,以及进行土壤养分的空间内插和制图。  相似文献   

17.
It is essential to understand the spatial variability of soil properties in tobacco planting regions, so that the right decision can be made as to how many fertilizer rates are likely to be appropriated for the highquality tobacco production. A total of 159 soil samples were taken from the surface soil (0-20 cm) in the Xiangcheng tobacco planting fields, Henan Province, in April 2002 to examine the concentration of soil organic matter, pH, available N, available P, and available K. The spatial variability was evaluated using geostatistics and geographic information system (GIS) analyses. The results show that among those five soil fertility factors, the variation coefficient of soil pH was the smallest, while that of available P was the greatest, which resulted from different cultivation methods and uneven fertilization. Analysis of the isotropic variogram indicated that the soil pH, organic matter, and available P semivariogram were well described with spherical models, with the distance of spatial dependence being 21020, 19150, and 8460 m, respectively, whereas the available N and available K semivariogram were well described with an exponential model, with the distance of spatial dependence being ranged from 7484 to 25320 m. Soil pH value was strongly spatially dependent with C0/sill being 0.1935, while the other four soil fertility factors were moderately spatially dependent with C0/sill ranging between 0.3528 to 0.5260. Through the Kriging analysis, the spatial distribution maps of soil properties were drawn using the arcview software. This study provides a scientific basis for field management, which targets soil quality improvement in the Xiangcheng tobacco planting region.  相似文献   

18.
It is essential to understand the spatial variability of soil properties in tobacco planting regions, so that the right decision can be made as to how many fertilizer rates are likely to be appropriated for the high-quality tobacco production. A total of 159 soil samples were taken from the surface soil (0-20cm) in the Xiangcheng tobacco planting fields, Henan Province, in April 2002 to examine the concentration of soil organic matter, pH, available N, available P, and available K. The spatial variability was evaluated using geostatistics and geographic information system (GIS) analyses. The results show that among those five soil fertility factors, the variation coefficient of soil pH was the smallest, while that of available P was the greatest, which resulted from different cultivation methods and uneven fertilization. Analysis of the isotropic variogram indicated that the soil pH, organic matter, and available P semivariogram were well described with spherical models, with the distance of spatial dependence being 21020, 19150, and 8460m, respectively, whereas the available N and available K semivariogram were well described with an exponential model, with the distance of spatial dependence being ranged from 7484 to 25320 m. Soil pH value was strongly spatially dependent with C0/sill being 0.1935, while the other four soil fertility factors were moderately spatially dependent with C0/sill ranging between 0.3528 to 0.5260. Through the Kriging analysis, the spatial distribution maps of soil properties were drawn using the arcview software. This study provides a scientific basis for field management, which targets soil quality improvement in the Xiangcheng tobacco planting region.  相似文献   

19.
江西省茶园土壤肥力特征及其影响因子   总被引:4,自引:0,他引:4  
为探明江西省典型茶园土壤养分状况和肥力特征,选取江西省21个地区372个典型茶园,分析茶园土壤养分的差异性、空间性、相关性及与地形、土壤类型、海拔和建园时间的关联性。结果表明: 江西省茶园土壤pH、有机质、碱解氮、速效磷、速效钾、全氮、全磷和全钾分别达到优质高效高产茶园土壤营养指标的53.9%、60.1%、56.1%、22.9%、38.5%、43.7%、11.1%和95.5%,其中速效磷为强变异;有效铜、锌、铁、锰和硼达到土壤微量元素含量分级一级标准的占比分别为76.3%、74.2%、96.8%、73.1%和0.0%。江西茶园土壤养分以赣中地区最高,其次是赣东北和赣西北地区,赣南地区最低。除全钾外,土壤pH与有机质、碱解氮、速效磷、速效钾、全氮和全磷均呈显著正相关。不同地形土壤养分以平地最高,高山次之,山地和丘陵最低;不同土壤类型土壤养分以水稻土、砂壤和山地黄棕壤较高,其次是黄壤、红黄壤和紫色土,红壤最低;土壤pH、有机质和全钾随海拔上升而递增,而速效磷随海拔上升而递减;土壤有机质、碱解氮、全氮、速效磷和全磷随建园时间的增加而递增,而土壤pH随建园时间的增加而递减。综上,江西省茶园土壤肥力总体水平良好,有机质、全钾、有效铜、锌、铁和锰均较丰富,但土壤偏酸,速效磷和全磷偏低,有效硼严重缺乏。赣中应提高土壤pH和钾肥,赣东北增加钾和氮肥,赣西北增加有机质和磷肥,赣南应增加氮磷钾肥并配施有机肥;高山茶园补充速效磷和钾肥,山地茶园提高氮和磷肥;红黄壤茶园提高土壤pH和全钾,红壤茶园应提高氮磷钾肥并配施有机肥,黄壤和山地黄棕壤茶园需要增施磷肥,紫色土茶园需提高土壤有机质;茶园需要逐年增加白云石粉、生理碱性肥料和有机肥等,防治茶园土壤酸化。  相似文献   

20.
长白山低山区森林土壤有机碳及养分空间异质性   总被引:2,自引:2,他引:0  
以吉林延边汪清林业局金仓林场境内森林土壤为对象,采用多元线性回归方法和地统计学回归克里格方法,研究了土壤有机碳及养分的垂直分布规律,预测了其空间分布,并对预测结果进行插值.结果表明: 0~60 cm深度土壤有机碳密度为(16.14±4.58) kg·m-2.随土壤深度增加,土壤有机碳含量、有机碳密度以及土壤全N、全P、全K、有效P及速效K含量都呈减小趋势,其中不同土层间土壤有机碳含量、有机碳密度差异显著(P<0.01).0~60 cm土层土壤有机碳含量和碳密度的拟合方程中,地形因子中高程和坡向余弦值是最优的拟合因子,方程的决定系数分别为0.34和0.39(P<0.01).0~20和0~60 cm土层的半方差函数模型分别为高斯模型和指数模型,利用回归克里格插值方法得到土壤有机碳的空间分布图.与普通克里格法相比,回归克里格法的空间预测精度改进了18%~58%.利用回归克里格插值方法预测了土壤全N的空间分布特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号