首页 | 本学科首页   官方微博 | 高级检索  
   检索      

江西省茶园土壤肥力特征及其影响因子
引用本文:林小兵,孙永明,江新凤,黄尚书,何绍浪,余跑兰,王永刚.江西省茶园土壤肥力特征及其影响因子[J].应用生态学报,2020,31(4):1163-1174.
作者姓名:林小兵  孙永明  江新凤  黄尚书  何绍浪  余跑兰  王永刚
作者单位:1.江西省红壤研究所, 江西进贤 331717;2.江西省蚕桑茶叶研究所, 南昌 330043;3.江西省婺源县茶叶局, 江西婺源 333200
基金项目:江西省茶叶产业技术体系项目(JXARS-02)和江西省科研院所基础设施配套项目(20161BBI90007)资助
摘    要:为探明江西省典型茶园土壤养分状况和肥力特征,选取江西省21个地区372个典型茶园,分析茶园土壤养分的差异性、空间性、相关性及与地形、土壤类型、海拔和建园时间的关联性。结果表明: 江西省茶园土壤pH、有机质、碱解氮、速效磷、速效钾、全氮、全磷和全钾分别达到优质高效高产茶园土壤营养指标的53.9%、60.1%、56.1%、22.9%、38.5%、43.7%、11.1%和95.5%,其中速效磷为强变异;有效铜、锌、铁、锰和硼达到土壤微量元素含量分级一级标准的占比分别为76.3%、74.2%、96.8%、73.1%和0.0%。江西茶园土壤养分以赣中地区最高,其次是赣东北和赣西北地区,赣南地区最低。除全钾外,土壤pH与有机质、碱解氮、速效磷、速效钾、全氮和全磷均呈显著正相关。不同地形土壤养分以平地最高,高山次之,山地和丘陵最低;不同土壤类型土壤养分以水稻土、砂壤和山地黄棕壤较高,其次是黄壤、红黄壤和紫色土,红壤最低;土壤pH、有机质和全钾随海拔上升而递增,而速效磷随海拔上升而递减;土壤有机质、碱解氮、全氮、速效磷和全磷随建园时间的增加而递增,而土壤pH随建园时间的增加而递减。综上,江西省茶园土壤肥力总体水平良好,有机质、全钾、有效铜、锌、铁和锰均较丰富,但土壤偏酸,速效磷和全磷偏低,有效硼严重缺乏。赣中应提高土壤pH和钾肥,赣东北增加钾和氮肥,赣西北增加有机质和磷肥,赣南应增加氮磷钾肥并配施有机肥;高山茶园补充速效磷和钾肥,山地茶园提高氮和磷肥;红黄壤茶园提高土壤pH和全钾,红壤茶园应提高氮磷钾肥并配施有机肥,黄壤和山地黄棕壤茶园需要增施磷肥,紫色土茶园需提高土壤有机质;茶园需要逐年增加白云石粉、生理碱性肥料和有机肥等,防治茶园土壤酸化。

收稿时间:2019-08-12

Soil fertility characteristics and their influencing factors in tea plantations of Jiangxi Pro-vince,China
LIN Xiao-bing,SUN Yong-ming,JIANG Xin-feng,HUANG Shang-shu,HE Shao-lang,YU Pao-lan,WANG Yong-gang.Soil fertility characteristics and their influencing factors in tea plantations of Jiangxi Pro-vince,China[J].Chinese Journal of Applied Ecology,2020,31(4):1163-1174.
Authors:LIN Xiao-bing  SUN Yong-ming  JIANG Xin-feng  HUANG Shang-shu  HE Shao-lang  YU Pao-lan  WANG Yong-gang
Institution:1.Jiangxi Institute of Red Soil, Jinxian 331717, Jiangxi, China;2.Jiangxi Sericulture and Tea Research Institute, Nanchang 330043, China;3.Wuyuan Bureau of Tea, Wuyuan 333200, Jiangxi, China.
Abstract:To investigate soil fertility status and characteristics of typical tea plantations, we selec-ted 372 typical tea plantations of 21 areas across Jiangxi Province and analyzed the soil nutrient, spatial data, and their correlations with topography, soil type, elevation and plantation age. The results showed that soil pH, organic matter, alkaline nitrogen, available phosphorus, available potassium, total nitrogen, total phosphorus and total potassium of tea plantation in Jiangxi reached 53.9%, 60.1%, 56.1%, 22.9%, 38.5%, 43.7%, 11.1% and 95.5% of indices of high fertility, high efficiency and high yield tea plantation, respectively, with the available phosphorus showing a strong variation. Soil available copper, zinc, iron, manganese and boron reached 76.3%, 74.2%, 96.8%, 73.1% and 0.0% of the first-class standards for soil trace elements, respectively. Tea plantations with highest soil fertility located in central Jiangxi, followed by northeastern and northwestern Jiangxi, and lowest in southern Jiangxi. Soil pH was significantly positively correlated with organic matter, alkaline nitrogen, available phosphorus, available potassium, total nitrogen and total phosphorus but not for total potassium. For different topography, soil fertility was highest in the flat land, followed by the high mountains, and lowest in the mountains and hills. Across different soil types, soil fertility was higher in paddy soil, sandy soil and mountain yellow brown soil, followed by yellow soil, red-yellow soil and purple soil, and lowest in red soil. Soil pH, organic matter and total potassium increased while available phosphorus decreased with altitude. The organic matter, alkaline nitrogen, available phosphorus, total nitrogen and total phosphorus increased, but soil pH decreased with time. In summary, soil fertility of tea plantations in Jiangxi Province was generally good, with high organic matter, total potassium, available copper, zinc, iron and manganese. However, soil was acidic, available phosphorus and total phosphorus content was low, available boron was seriously limited. We suggest increase soil pH and potassium supply in central Jiangxi, increase potassium and nitrogen fertilizer supply in northeastern Jiangxi, increase organic matter and phosphorus fertilizer supply in northwestern Jiangxi, and increase nitrogen, phosphorus and potassium supply combined with organic fertilizers in southern Jiangxi. High mountain tea plantations should enhance available phosphorus and potassium supply. Mountain tea plantations should enhance nitrogen and phosphate supply. Tea plantations with red and yellow soil should increase pH and total potassium supply. Tea plantations with red soil should apply nitrogen, phosphorus and potassium fertilizers combined with organic fertilizers. Tea plantations with yellow soil and mountain yellow brown soil required additional phosphorus supply, and tea plantations with purple soil should increase soil organic matter supply. Tea plantations need to increase dolomite powder, physiological alkaline fertilizers and organic fertilizers to prevent soil acidification.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《应用生态学报》浏览原始摘要信息
点击此处可从《应用生态学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号