首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Matrilin-1 is the prototypical member of the matrilin protein family and is highly expressed in cartilage. However, gene targeting of matrilin-1 in mouse did not lead to pronounced phenotypes. Here we used the zebrafish as an alternative model to study matrilin function in vivo. Matrilin-1 displays a multiphasic expression during zebrafish development. In an early phase, with peak expression at about 15 h post-fertilization, matrilin-1 is present throughout the zebrafish embryo with exception of the notochord. Later, when the skeleton develops, matrilin-1 is expressed mainly in cartilage. Morpholino knockdown of matrilin-1 results both in overall growth defects and in disturbances in the formation of the craniofacial cartilage, most prominently loss of collagen II deposition. In fish with mild phenotypes, certain cartilage extracellular matrix components were present, but the tissue did not show features characteristic for cartilage. The cells showed endoplasmic reticulum aberrations but no activation of XBP-1, a marker for endoplasmic reticulum stress. In severe phenotypes nearly all chondrocytes died. During the early expression phase the matrilin-1 knockdown had no effects on cell morphology, but increased cell death was observed. In addition, the broad deposition of collagen II was largely abolished. Interestingly, the early phenotype could be rescued by the co-injection of mRNA coding for the von Willebrand factor C domain of collagen IIα1a, indicating that the functional loss of this domain occurs as a consequence of matrilin-1 deficiency. The results show that matrilin-1 is indispensible for zebrafish cartilage formation and plays a role in the early collagen II-dependent developmental events.  相似文献   

2.
Increased chondrocyte hypertrophy is often associated with cartilage joint degeneration in human osteoarthritis patients. Matrilin-3 knock-out (Matn3 KO) mice exhibit these features. However, the underlying mechanism is unknown. In this study, we sought a molecular explanation for increased chondrocyte hypertrophy in the mice prone to cartilage degeneration. We analyzed the effects of Matn3 on chondrocyte hypertrophy and bone morphogenetic protein (Bmp) signaling by quantifying the hypertrophic marker collagen type X (Col X) gene expression and Smad1 activity in Matn3 KO mice in vivo and in Matn3-overexpressing chondrocytes in vitro. The effect of Matn3 and its specific domains on BMP activity were quantified by Col X promoter activity containing the Bmp-responsive element. Binding of MATN3 with BMP-2 was determined by immunoprecipitation, solid phase binding, and surface plasmon resonance assays. In Matn3 KO mice, Smad1 activity was increased more in growth plate chondrocytes than in wild-type mice. Conversely, Matn3 overexpression in hypertrophic chondrocytes led to inhibition of Bmp-2-stimulated, BMP-responsive element-dependent Col X expression and Smad1 activity. MATN3 bound BMP-2 in a dose-dependent manner. Multiple epidermal growth factor (EGF)-like domains clustered together by the coiled coil of Matn3 is required for Smad1 inhibition. Hence, as a novel BMP-2-binding protein and antagonist in the cartilage extracellular matrix, MATN3 may have the inherent ability to inhibit premature chondrocyte hypertrophy by suppressing BMP-2/Smad1 activity.  相似文献   

3.
Type X collagen is a short chain, non-fibrilforming collagen synthesized primarily by hypertrophic chondrocytes in the growth plate of fetal cartilage. Previously, we have also identified type X collagen in the extracellular matrix of fibrillated, osteoarthritic but not in normal articular cartilage using biochemical and immunohistochemical techniques (von der Mark et al. 1992 a). Here we compare the expression of type X with types I and II collagen in normal and degenerate human articular cartilage by in situ hybridization. Signals for cytoplasmic α1(X) collagen mRNA were not detectable in sections of healthy adult articular cartilage, but few specimens of osteoarthritic articular cartilage showed moderate expression of type X collagen in deep zones, but not in the upper fibrillated zone where type X collagen was detected by immunofluorescence. This apparent discrepancy may be explained by the relatively short phases of type X collagen gene activity in osteoarthritis and the short mRNA half-life compared with the longer half-life of the type X collagen protein. At sites of newly formed osteophytic and repair cartilage, α1(X) mRNA was strongly expressed in hypertrophic cells, marking the areas of endochondral bone formation. As in hypertrophic chondrocytes in the proliferative zone of fetal cartilage, type X collagen expression was also associated with strong type II collagen expression.  相似文献   

4.
5.
This study employed a targeted high-throughput proteomic approach to identify the major proteins present in the secretome of articular cartilage. Explants from equine metacarpophalangeal joints were incubated alone or with interleukin-1beta (IL-1β, 10ng/ml), with or without carprofen, a non-steroidal anti-inflammatory drug, for six days. After tryptic digestion of culture medium supernatants, resulting peptides were separated by HPLC and detected in a Bruker amaZon ion trap instrument. The five most abundant peptides in each MS scan were fragmented and the fragmentation patterns compared to mammalian entries in the Swiss-Prot database, using the Mascot search engine. Tryptic peptides originating from aggrecan core protein, cartilage oligomeric matrix protein (COMP), fibronectin, fibromodulin, thrombospondin-1 (TSP-1), clusterin (CLU), cartilage intermediate layer protein-1 (CILP-1), chondroadherin (CHAD) and matrix metalloproteinases MMP-1 and MMP-3 were detected. Quantitative western blotting confirmed the presence of CILP-1, CLU, MMP-1, MMP-3 and TSP-1. Treatment with IL-1β increased MMP-1, MMP-3 and TSP-1 and decreased the CLU precursor but did not affect CILP-1 and CLU levels. Many of the proteins identified have well-established extracellular matrix functions and are involved in early repair/stress responses in cartilage. This high throughput approach may be used to study the changes that occur in the early stages of osteoarthritis.  相似文献   

6.
Carbonic anhydrases (CAs), which catalyze the reversible reaction of carbonate hydration, are important for cartilage homeostasis. The full spectrum of CA activity of all 13 isoenzymes in articular cartilage is unknown. This study quantified the mRNA profile of CAs in rat articular cartilage, using quantitative polymerase chain reactions. Among the 13 functional CAs, CAs II, III, Vb, IX, XII and XIII were significantly expressed at mRNA level by the chondrocytes in articular cartilage. To verify these significantly expressed CAs in articular cartilage at protein level, immunohistochemistry was performed. While CAs III, Vb and XII distributed in the full-thickness of cartilage, including the calcified zone of cartilage, CA II was mainly localized in the proliferative zone of cartilage. CA IX was limited in the superficial zone of cartilage and CA XIII expressed in the superficial and partially mid zone. These results provide a framework for understanding individual CAs as well as the integrated CA family in cartilage biology, including matrix mineralization.  相似文献   

7.
Skeletal growth by endochondral ossification involves tightly coordinated chondrocyte differentiation that creates reserve, proliferating, prehypertrophic, and hypertrophic cartilage zones in the growth plate. Many human skeletal disorders result from mutations in cartilage extracellular matrix (ECM) components that compromise both ECM architecture and chondrocyte function. Understanding normal cartilage development, composition, and structure is therefore vital to unravel these disease mechanisms. To study this intricate process in vivo by proteomics, we analyzed mouse femoral head cartilage at developmental stages enriched in either immature chondrocytes or maturing/hypertrophic chondrocytes (post-natal days 3 and 21, respectively). Using LTQ-Orbitrap tandem mass spectrometry, we identified 703 cartilage proteins. Differentially abundant proteins (q < 0.01) included prototypic markers for both early and late chondrocyte differentiation (epiphycan and collagen X, respectively) and novel ECM and cell adhesion proteins with no previously described roles in cartilage development (tenascin X, vitrin, Urb, emilin-1, and the sushi repeat-containing proteins SRPX and SRPX2). Meta-analysis of cartilage development in vivo and an in vitro chondrocyte culture model (Wilson, R., Diseberg, A. F., Gordon, L., Zivkovic, S., Tatarczuch, L., Mackie, E. J., Gorman, J. J., and Bateman, J. F. (2010) Comprehensive profiling of cartilage extracellular matrix formation and maturation using sequential extraction and label-free quantitative proteomics. Mol. Cell. Proteomics 9, 1296-1313) identified components involved in both systems, such as Urb, and components with specific roles in vivo, including vitrin and CILP-2 (cartilage intermediate layer protein-2). Immunolocalization of Urb, vitrin, and CILP-2 indicated specific roles at different maturation stages. In addition to ECM-related changes, we provide the first biochemical evidence of changing endoplasmic reticulum function during cartilage development. Although the multifunctional chaperone BiP was not differentially expressed, enzymes and chaperones required specifically for collagen biosynthesis, such as the prolyl 3-hydroxylase 1, cartilage-associated protein, and peptidyl prolyl cis-trans isomerase B complex, were down-regulated during maturation. Conversely, the lumenal proteins calumenin, reticulocalbin-1, and reticulocalbin-2 were significantly increased, signifying a shift toward calcium binding functions. This first proteomic analysis of cartilage development in vivo reveals the breadth of protein expression changes during chondrocyte maturation and ECM remodeling in the mouse femoral head.  相似文献   

8.
Summary Mandibular condylar cartilage acts as both articular and growth plate cartilage during growth, and then becomes articular cartilage after growth is complete. Cartilaginous extracellular matrix is remodeled continuously via a combination of production, degradation by matrix metalloproteinases (MMPs), and inhibition of MMP activity by tissue inhibitors of metalloproteinases (TIMPs). This study attempted to clarify the age-related changes in the mRNA expression patterns of MMP-2, MMP-9, TIMP-1, TIMP-2, and TIMP-3 in mandibular condylar cartilage in comparison to tibial growth plate and articular cartilage using an in situ hybridization method in growing and adult rats. MMP-2 and MMP-9 were expressed in a wide range of condylar cartilage cells during growth, and their expression domains became limited to mature chondrocytes in adults. The patterns of TIMP-1 and TIMP-2 expression were similar to those of MMP-2 and MMP-9 during growth, and were maintained until adulthood. TIMP-3 was localized to hypertrophic chondrocytes throughout the growth stage. Therefore, we concluded that TIMP-1 and TIMP-2 were general inhibitors of MMP-2 and MMP-9 in condylar cartilage, while TIMP-3 regulates the collagenolytic degradation of the hypertrophic cartilage matrix.  相似文献   

9.
Epiphyses of the proximal tibiae of 7-week-old normal and homozygous recessive brachymorphic mice (bm/bm) were immunostained using a monoclonal antibody to basic fibroblast growth factor to determine its expression in growth plate cartilage, osteoblasts on the surfaces of the primary spongiosa and articular cartilage. In the normal growth plate, the immunoreactive factor was present in chondrocytes of the proliferating and upper hypertrophic zones but absent from lower hypertrophic chondrocytes. Immunostaining was present only in the territorial extracellular matrix immediately adjacent to the chondrocytes of the proliferating and upper hypertrophic zones. Osteoblasts of the primary spongiosa stained heavily in normal mice. Strong staining was observed in intermediate zone articular chondrocytes. Cells in the superficial layer of articular cartilage were unstained. The extracellular matrix of the articular cartilage was completely free of immunostaining. In contrast, the reduced size of bm/bm growth plates was accompanied by significantly reduced staining intensity in proliferating and upper hypertrophic chondrocytes, and staining was absent from the territorial extracellular matrix of all zones of the bm/bm growth plate. Osteoblasts of the primary spongiosa of bm/bm mice stained less than those of normal mice. Articular cartilage chondrocytes in the intermediate zone stained with less intensity in bm/bm mice, and the cells of the superficial layer were unstained. The extracellular matrix of bm/bm articular cartilage was completely free of staining. Brachymorphic epiphyseal growth plate and articular chondrocytes, and osteoblasts in the primary spongiosa, express reduced amounts of immunoreactive fibroblast growth factor-2. This phenotypical characteristic may be associated with abnormal endochondral ossification and development of bone in brachymorphic mice  相似文献   

10.
Epiphyses of the proximal tibiae of 7-week-old normal and homozygous recessive brachymorphic mice (bm/bm) were immunostained using a monoclonal antibody to basic fibroblast growth factor to determine its expression in growth plate cartilage, osteoblasts on the surfaces of the primary spongiosa and articular cartilage. In the normal growth plate, the immunoreactive factor was present in chondrocytes of the proliferating and upper hypertrophic zones but absent from lower hypertrophic chondrocytes. Immunostaining was present only in the territorial extracellular matrix immediately adjacent to the chondrocytes of the proliferating and upper hypertrophic zones. Osteoblasts of the primary spongiosa stained heavily in normal mice. Strong staining was observed in intermediate zone articular chondrocytes. Cells in the superficial layer of articular cartilage were unstained. The extracellular matrix of the articular cartilage was completely free of immunostaining. In contrast, the reduced size of bm/bm growth plates was accompanied by significantly reduced staining intensity in proliferating and upper hypertrophic chondrocytes, and staining was absent from the territorial extracellular matrix of all zones of the bm/bm growth plate. Osteoblasts of the primary spongiosa of bm/bm mice stained less than those of normal mice. Articular cartilage chondrocytes in the intermediate zone stained with less intensity in bm/bm mice, and the cells of the superficial layer were unstained. The extracellular matrix of bm/bm articular cartilage was completely free of staining. Brachymorphic epiphyseal growth plate and articular chondrocytes, and osteoblasts in the primary spongiosa, express reduced amounts of immunoreactive fibroblast growth factor-2. This phenotypical characteristic may be associated with abnormal endochondral ossification and development of bone in brachymorphic mice  相似文献   

11.
Galectin-1 is a 14 kDa beta-galactoside binding protein, capable of forming lattice-like structures with glycans of cellular glycoconjugates and inducing intracellular signaling. The expression of Galectin-1 in porcine cartilage is described in this work for the first time. Immunocytochemical methods revealed distinct distribution patterns for both articular and growth plate cartilage. In articular cartilage, the highest reactivity for Galectin-1 was found in all chondrocytes at the superficial zone and in most of those at the lower layer of the middle zone. In the growth plate, marked reactivity was seen in chondrocytes at the proliferative zone and reached a maximum level for the column-forming cells at the hypertrophic zone. In addition, different Galectin-1 distribution patterns were observed at the subcellular level. With regards to the metabolic effects of Galectin-1, the results in vitro seem to indicate an inhibitory effect of Galectin-1 on articular chondrocyte anabolism (i.e. inhibition of cell proliferation and anabolic gene expression) and a stimulation of catabolic processes (i.e. induction of matrix degradation and hypertrophy marker expression). These data represent a starting point for the understanding the molecular mechanisms underlining ECM-Galectin-1 interaction and the subsequent signaling-cell transduction processes involving cartilage formation and maturation.  相似文献   

12.
13.
As extracellular proteins age, they undergo and accumulate nonenzymatic post-translational modifications that cannot be repaired. We hypothesized that these could be used to systemically monitor loss of extracellular matrix due to chronic arthritic diseases such as osteoarthritis (OA). To test this, we predicted sites of deamidation in cartilage oligomeric matrix protein (COMP) and confirmed, by mass spectroscopy, the presence of deamidated (Asp(64)) and native (Asn(64)) COMP epitopes (mean 0.95% deamidated COMP (D-COMP) relative to native COMP) in cartilage. An Asp(64), D-COMP-specific ELISA was developed using a newly created monoclonal antibody 6-1A12. In a joint replacement study, serum D-COMP (p = 0.017), but not total COMP (p = 0.5), declined significantly after replacement demonstrating a joint tissue source for D-COMP. In analyses of 450 participants from the Johnston County Osteoarthritis Project controlled for age, gender, and race, D-COMP was associated with radiographic hip (p < 0.0001) but not knee (p = 0.95) OA severity. In contrast, total COMP was associated with radiographic knee (p < 0.0001) but not hip (p = 0.47) OA severity. D-COMP was higher in soluble proteins extracted from hip cartilage proximal to OA lesions compared with remote from lesions (p = 0.007) or lesional and remote OA knee (p < 0.01) cartilage. Total COMP in cartilage did not vary by joint site or proximity to the lesion. This study demonstrates the presence of D-COMP in articular cartilage and the systemic circulation, and to our knowledge, it is the first biomarker to show specificity for a particular joint site. We believe that enrichment of deamidated epitope in hip OA cartilage indicates a lesser repair response of hip OA compared with knee OA cartilage.  相似文献   

14.
We recently identified collagen triple helix repeat containing-1 (Cthrc1) as a novel gene induced in adventitial fibroblasts after arterial injury. Cthrc1 is a 30 kDa secreted protein that has the ability to inhibit collagen matrix synthesis. Cthrc1 is also glycosylated and retains a signal sequence consistent with the presence of Cthrc1 in the extracellular space. In injured arteries and skin wounds, we have found Cthrc1 expression to be associated with myofibroblasts and sites of collagen matrix deposition. Furthermore, we demonstrated that Cthrc1 inhibits collagen matrix deposition in vitro. Using in situ hybridization and immunohistochemistry, we characterized the expression domains of Cthrc1 during murine embryonic development and in postnatal tissues. In mouse embryos, Cthrc1 was expressed in the visceral endoderm, notochord, neural tube, developing kidney, and heart. Abundant expression of Cthrc1 was observed in the developing skeleton, i.e., in cartilage primordia, in growth plate cartilage with exclusion of the hypertrophic zone, in the bone matrix and periostium. Bones from adults showed expression of Cthrc1 only in the bone matrix and periostium while the articular cartilage lacked expression. Cthrc1 is typically expressed at epithelial-mesenchymal interfaces that include the epidermis and dermis, basal corneal epithelium, airway epithelium, esophagus epithelium, choroid plexus epithelium, and meninges. In the adult kidney, collecting ducts and distal tubuli expressed Cthrc1. Collectively, the sites of Cthrc1 expression overlap considerably with those reported for TGF-beta family members and interstitial collagens. The present study provides useful information towards the understanding of potential Cthrc1 functions.  相似文献   

15.
The development of the synovial joint cavity between the cartilage anlagen of the long bones is thought to be mediated by differential matrix synthesis at the developing articular surfaces. In addition, many studies have shown that removal of movement-induced mechanical stimuli from developing diarthrodial joints prevents cavity formation or produces a secondary fusion of previously cavitated joints. Herein, we describe an inductive influence of mechanical strain on hyaluronan metabolism and the expression of hyaluronan-binding proteins in cultured cells isolated from the articular surface of the distal tibial condyles of 18-day chick embryos. The effect of 10 min of mechanical strain on hyaluronan release into culture media, intracellular uridine diphospho-glucose dehydrogenase activity (an enzyme required for hyaluronan saccharide precursor production), cell surface hyaluronan-binding protein expression and HA synthase mRNA expression were analysed up to 24 h later. Six hours after the application of strain, there was a significant increase in the accumulation of hyaluronan released into tissue culture media by strained fibrocartilage cells compared with controls, an effect still detectable after 24 h. Strained cells also showed increased activity for uridine diphospho-glucose dehydrogenase and expressed higher levels of the hyaluronan-binding protein CD44 at 24 h. In addition, at 24 h mRNA for HA synthase 2 was expressed in all samples whereas mRNA for HA synthase 3 was only expressed in strained cells. These results further highlight the role for movement-induced stimuli in differential extracellular matrix metabolism during joint development and also show that strain may facilitate differential HA synthase gene expression.  相似文献   

16.
17.
18.
Response of zonal chondrocytes to extracellular matrix-hydrogels   总被引:1,自引:0,他引:1  
We investigated the biological response of chondrocytes isolated from different zones of articular cartilage and their cellular behaviors in poly (ethylene glycol)-based (PEG) hydrogels containing exogenous type I collagen, hyaluronic acid (HA), or chondroitin sulfate (CS). The cellular morphology was strongly dependent on the extracellular matrix component of hydrogels. Additionally, the exogenous extracellular microenvironment affected matrix production and cartilage specific gene expression of chondrocytes from different zones. CS-based hydrogels showed the strongest response in terms of gene expression and matrix accumulation for both superficial and deep zone chondrocytes, but HA and type I collagen-based hydrogels demonstrated zonal-dependent cellular responses.  相似文献   

19.
目的:观察羌活地黄汤对大鼠佐剂性关节炎软骨中基质金属蛋白酶-1(marxmetalloproteinase-1,MMP-1)、基质金属蛋白酶-13(matrixmetalloproteinase.13,MMP-13)及基质金属蛋白酶抑制剂-1(tissueinhibitorofmetalloprotease-1,TIMP-1)表达的影响。方法:Wistar大鼠32只,随机分为正常对照组、模型组、雷公藤对照组、羌活地黄汤组。制作大鼠佐剂性关节炎模型,造模第14天开始给药。羌活地黄汤组予混有羌活地黄汤的颗粒饲料,雷公藤组给予混有雷公藤多甙的饲料,正常组及模型组均给予普通饲料。第28天分别取各组胫骨平台关节软骨,采用免疫组织化学染色测定软骨中MMP-1、13及T1MP—1表达的阳性指数。结果:模型组MMP-1、MMP-13及TIMP—1表达的阳性指数水平明显高于正常组,差异有统计学意义(P〈0.01),羌活地黄汤组MMP-1、13及TIMP-1表达阳性指数低于模型组,差异有统计学意义(P〈0.05)。结论:羌活地黄汤可能是通过调控软骨细胞外基质中MMP.1、MMP—13及TIMP-1表达变化而维持软骨的动态平衡,从而延缓RA骨骼破坏。  相似文献   

20.
Tissue inhibitors of metalloproteinases (TIMPs) possess multiple functions, in addition to their matrix metalloproteinase (MMP) inhibitory activity. The continuously growing incisor of mouse possesses a stem cell compartment at the apical end of the epithelium (the apical loop) and thus provides an excellent tool to analyze the mechanisms of organogenesis and cytodifferentiation. To understand the functions of TIMPs in tooth development, we have analyzed the gene expression and protein localization of TIMP-1, -2, and -3 during mouse incisor development, from embryonic day 13 (E13) to postnatal day 3 (P3). TIMP-1 was present on the basement membrane during early developmental stages. At P2, TIMP-1 was strongly detected along the apical loop, transiently disappeared from the basement membrane in the cytodifferentiation zone, and later reappeared at the distal end of functional ameloblasts. Expression of TIMP-2 protein was restricted to the outer part of the apical loop throughout the examined stages. At P2, TIMP-2 was present on the basement membrane at the outer part of the apical loop. The dental follicle also expressed Timp-2, and the corresponding protein was abundant within the extracellular matrix. Timp-3 mRNA was highly expressed in the mesenchyme surrounding the apical loop. During matrix formation, Timp-3 was expressed by subodontoblasts, and the protein was detected in this layer and between odontoblasts. Distinct temporal and spatial expression patterns of TIMPs suggest divergent functions of these factors in incisor organogenesis. This work was supported by INSERM, CNRS, ARC, French Ministry of Research (ACI), Japanese Ministry of Education, Culture, Sports, Science, and Technology, and Niigata University Research Projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号