首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The tumor suppressor phosphatase PTEN is a key regulator of cell growth and apoptosis that interacts with PDZ domains from regulatory proteins, including MAGI-1/2/3, hDlg, and MAST205. Here we identified novel PTEN-binding PDZ domains within the MAST205-related proteins, syntrophin-associated serine/threonine kinase and MAST3, characterized the regions of PTEN involved in its interaction with distinctive PDZ domains, and analyzed the functional consequences on PTEN of PDZ domain binding. Using a panel of PTEN mutations, as well as PTEN chimeras containing distinct domains of the related protein TPTE, we found that the PTP and C2 domains of PTEN do not affect PDZ domain binding and that the C-terminal tail of PTEN (residues 350-403) provides selectivity to recognize specific PDZ domains from MAGI-2, hDlg, and MAST205. Binding of PTEN to the PDZ-2 domain from MAGI-2 increased PTEN protein stability. Furthermore, binding of PTEN to the PDZ domains from microtubule-associated serine/threonine kinases facilitated PTEN phosphorylation at its C terminus by these kinases. Our results suggest an important role for the C-terminal region of PTEN in the selective association with scaffolding and/or regulatory molecules and provide evidence that PDZ domain binding stabilizes PTEN and targets this tumor suppressor for phosphorylation by microtubule-associated serine/threonine kinases.  相似文献   

2.
3.
《The Journal of cell biology》1996,135(4):1125-1137
hDlg, a human homologue of the Drosophila Dig tumor suppressor, contains two binding sites for protein 4.1, one within a domain containing three PSD-95/Dlg/ZO-1 (PDZ) repeats and another within the alternatively spliced I3 domain. Here, we further define the PDZ- protein 4.1 interaction in vitro and show the functional role of both 4.1 binding sites in situ. A single protease-resistant structure formed by the entirety of both PDZ repeats 1 and 2 (PDZ1-2) contains the protein 4.1-binding site. Both this PDZ1-2 site and the I3 domain associate with a 30-kD NH2-terminal domain of protein 4.1 that is conserved in ezrin/radixin/moesin (ERM) proteins. We show that both protein 4.1 and the ezrin ERM protein interact with the murine form of hDlg in a coprecipitating immune complex. In permeabilized cells and tissues, either the PDZ1-2 domain or the I3 domain alone are sufficient for proper subcellular targeting of exogenous hDlg. In situ, PDZ1-2- mediated targeting involves interactions with both 4.1/ERM proteins and proteins containing the COOH-terminal T/SXV motif. I3-mediated targeting depends exclusively on interactions with 4.1/ERM proteins. Our data elucidates the multivalent nature of membrane-associated guanylate kinase homologue (MAGUK) targeting, thus beginning to define those protein interactions that are critical in MAGUK function.  相似文献   

4.
The human homologue of the Drosophila discs large tumor suppressor protein (hDlg), a member of the membrane-associated guanylate kinase (MAGUK) superfamily, interacts with K(+) channels, N-methyl-d-aspartate receptors, calcium ATPase, adenomatous polyposis coli, and PTEN tumor suppressor proteins, and several viral oncoproteins through its PDZ domains. MAGUKs play pivotal roles in the clustering and aggregation of receptors, ion channels, and cell adhesion molecules at the synapses. To investigate the physiological basis of hDlg interactions, we examined the self-association state of full-length hDlg as well as defined segments of hDlg expressed as recombinant proteins in bacteria and insect Sf9 cells. Gel permeation chromatography of full-length hDlg revealed that the purified protein migrates as a large particle of size >440 kDa. Similar measurements of defined domains of hDlg indicated that the anomalous mobility of hDlg originated from its amino-terminal domain. Ultrastructural analysis of hDlg by low angle rotary shadow electron microscopy revealed that the full-length hDlg protein as well as its amino-terminal domain exhibits a highly flexible irregular shape. Further evaluation of the self-association state of hDlg using sedimentation equilibrium centrifugation, matrix-assisted laser desorption/ionization mass spectrometry, and chemical cross-linking techniques confirmed that the oligomerization site of hDlg is contained within its amino-terminal domain. This unique amino-terminal domain mediates multimerization of hDlg into dimeric and tetrameric species in solution. Sedimentation velocity experiments demonstrated that the oligomerization domain exists as an elongated tetramer in solution. In vitro mutagenesis was used to demonstrate that a single cysteine residue present in the oligomerization domain of hDlg is not required for its self-association. Understanding the oligomerization status of hDlg may help to explicate the mechanism of hDlg association with multimeric K(+) channels and dimeric adenomatous polyposis coli tumor suppressor protein. Our findings, therefore, begin to rationalize the role of hDlg in the clustering of membrane channels and formation of multiprotein complexes necessary for signaling and cell proliferation pathways.  相似文献   

5.
hDlg is the human homolog of the Drosophila Discs-large tumor suppressor. As a member of the MAGUK (membrane-associated guanylate kinase) family of scaffolding proteins, hDlg is composed of three PDZ (PSD-95, Dlg, and ZO-1) repeats, an SH3 (Src homology 3) motif, and a GUK (guanylate kinase-like) domain. Additionally, hDlg contains two regions of alternative splicing. Here we identify a novel insertion, I1B, located N-terminal to the PDZ repeats. We further analyze the tissue-specific combinations of insertions and correlate those results with the distribution of protein isoforms. We also identify the functions of the two alternatively spliced regions. The N-terminal alternatively spliced region is capable of binding several SH3 domains and also moderates the level of protein oligomerization. Insertions in the second region are responsible for determining the localization of hDlg, with insertion I3 targeting the protein to the membrane regions of cell-cell contact and insertion I2 targeting the protein to the nucleus.  相似文献   

6.
The human homologue (hDIg) of the Drosophila discs-large tumor suppressor (DIg) is a multidomain protein consisting of a carboxyl- terminal guanylate kinase-like domain, an SH3 domain, and three slightly divergent copies of the PDZ (DHR/GLGF) domain. Here have examined the structural organization of the three PDZ domains of hDIg using a combination of protease digestion and in vitro binding measurements. Our results show that the PDZ domains are organized into two conformationally stable modules one (PDZ, consisting of PDZ domains 1 and 2, and the other (PDZ) corresponding to the third PDZ domain. Using amino acid sequencing and mass spectrometry, we determined the boundaries of the PDZ domains after digestion with endoproteinase Asp- N, trypsin, and alpha-chymotrypsin. The purified PDZ1+2, but not the PDZ3 domain, contains a high affinity binding site for the cytoplasmic domain of Shaker-type K+ channels. Similarly, we demonstrate that the PDZ1+2 domain can also specifically bind to ATP. Furthermore, we provide evidence for an in vivo interaction between hDIg and protein 4.1 and show that the hDIg protein contains a single high affinity protein 4.1-binding site that is not located within the PDZ domains. The results suggest a mechanism by which PDZ domain-binding proteins may be coupled to ATP and the membrane cytoskeleton via hDlg.  相似文献   

7.
The synaptic scaffolding molecule (S-SCAM) has been identified as a protein interacting with SAP90/PSD-95-associated protein (SAPAP) (also called guanylate kinase-associated protein/hDLG-associated protein). S-SCAM has six PDZ (we have numbered them PDZ-0 to -5), two WW, and one guanylate kinase (GK) domains and interacts with N-methyl-D-aspartate (NMDA) receptor via PDZ-5 and SAPAP via the GK domain. We have identified here shorter isoforms of S-SCAM that start at the 164th or 224th methionine, and we renamed the original one, S-SCAMalpha, the middle one, S-SCAMbeta, and the shortest one, S-SCAM-gamma. S-SCAMbeta and -gamma have five PDZ (PDZ-1 to -5), two WW, and one GK domains. S-SCAMalpha interacted with S-SCAMbeta and -gamma through the region containing PDZ-4 and -5. The region containing both of PDZ-4 and -5 is sufficient for the clustering of NMDA receptors and forms a dimer in gel filtration, suggesting that S-SCAM forms multimers via the interaction between the C-terminal PDZ domains and assembles NMDA receptors into clusters. S-SCAMbeta and -gamma also interacted with SAPAP, suggesting that the N-terminal region of the GK domain is not necessary for the interaction. Finally, we have identified the interaction of the PDZ domains of S-SCAM with the GK domain of PSD-95/SAP90. S-SCAM, PSD-95/SAP90, and SAPAP are colocalized at least in some part in brain. Therefore, S-SCAM, PSD-95/SAP90, and SAPAP may form a complex in vivo.  相似文献   

8.
Patients with renal and colon cancer frequently develop IgG autoantibodies toward the NY-CO-38/PDZ-73 antigen, a protein of 652 amino acids (73 kDa) which contains three copies of the PDZ protein-protein interaction domain. The gene encoding PDZ-73 mapped to chromosome 11p15.4-p15.1. Additional tissue-specific isoforms were identified: PDZ-45, which lacks the third PDZ domain and the putative PEST protein degradation motif, is expressed in kidney, colon, small intestine, brain and testis; PDZ-54 and PDZ-59, which also lack the third PDZ domains, have unique carboxyl terminal amino acids and are expressed in brain, kidney, bladder, colon cancer and renal cancer; and a putative PDZ-37 isoform, containing only the third PDZ domain, that is expressed in the central nervous system. Immunohistochemical staining with anti-PDZ 73 monoclonal antibodies showed strong cytoplasmic reactivity in epithelial cells of the small intestine, colon and kidney tubules, with a prominent apical staining pattern in cells of the small intestine. The reactivity pattern of the antibodies with various tissues correlated with the mRNA expression pattern of the PDZ-45 isoform. The existence of multiple PDZ-73 isoforms with variations in tissue distribution, PDZ domains, protein degradation sequences and carboxyl terminal structure indicate that these isoforms have distinct tissue-specific functions.  相似文献   

9.
The membrane associated guanylate kinase (MAGUK) family member, human Discs Large 1 (hDlg1) uses a PDZ domain array to interact with the polarity determinant, the Adenomatous Polyposis Coli (APC) microtubule plus end binding protein. The hDLG1-APC complex mediates a dynamic attachment between microtubule plus ends and polarized cortical determinants in epithelial cells, stem cells, and neuronal synapses. Using its multi-domain architecture, hDlg1 both scaffolds and regulates the polarity factors it engages. Molecular details underlying the hDlg1-APC interaction and insight into how the hDlg1 PDZ array may cluster and regulate its binding factors remain to be determined. Here, I present the crystal structure of the hDlg1 PDZ2-APC complex and the molecular determinants that mediate APC binding. The hDlg1 PDZ2-APC complex also provides insight into potential modes of ligand-dependent PDZ domain clustering that may parallel Dlg scaffold regulatory mechanisms. The hDlg1 PDZ2-APC complex presented here represents a core biological complex that bridges polarized cortical determinants with the dynamic microtubule cytoskeleton.  相似文献   

10.
The high-risk human papilloma virus (HPV) oncoproteins E6 and E7 interact with key cellular regulators and are etiological agents for tumorigenesis and tumor maintenance in cervical cancer and other malignant conditions. E6 induces degradation of the tumor suppressor p53, activates telomerase and deregulates cell polarity. Analysis of E6 derived from a number of high risk HPV finally yielded the first structure of a wild-type HPV E6 domain (PDB 2M3L) representing the second zinc-binding domain of HPV 51 E6 (termed 51Z2) determined by NMR spectroscopy. The 51Z2 structure provides clues about HPV-type specific structural differences between E6 proteins. The observed temperature sensitivity of the well-folded wild-type E6 domain implies a significant malleability of the oncoprotein in vivo. Hence, the structural differences between individual E6 and their malleability appear, together with HPV type-specific surface exposed side-chains, to provide the structural basis for the different interaction networks reported for individual E6 proteins. Furthermore, the interaction of 51Z2 with a PDZ domain of hDlg was analyzed. Human Dlg constitutes a prototypic representative of the large family of PDZ proteins regulating cell polarity, which are common targets of high-risk HPV E6. Nine C-terminal residues of 51Z2 interact with the second PDZ domain of hDlg2. Surface plasmon resonance in conjunction with the NMR spectroscopy derived complex structure (PDB 2M3M) indicate that E6 residues N-terminal to the canonical PDZ-BM of E6 significantly contribute to this interaction and increase affinity. The structure of the complex reveals how residues outside of the classical PDZ-BM enhance the affinity of E6 towards PDZ domains. Such mechanism facilitates successful competition of E6 with cellular PDZ-binding proteins and may apply to PDZ-binding proteins of other viruses as well.  相似文献   

11.
Papillomaviruses are small DNA viruses that infect epithelial tissues and cause warts. Human papillomavirus (HPV) infection is the primary risk factor for the development of cervical cancer. The E6 and E7 oncogenes are the only genes consistently expressed in HPV-positive cervical cancer cells. Cottontail rabbit papillomavirus (CRPV) induces papillomas and carcinomas on cottontail and domestic rabbits and provides an excellent animal model of HPV infection and vaccine development. CRPV encodes three transforming proteins; LE6, SE6, and E7. Each of these proteins is required for papilloma formation. Like HPV E7, the CRPV E7 protein binds to the tumor suppressor pRB. In contrast, unlike HPV E6, the CRPV E6 proteins do not bind the tumor suppressor p53. Although more than a dozen cellular proteins have been identified as HPV E6 interacting proteins, nothing is known about the cellular interacting proteins of CRPV E6s. Here we describe the association of CRPV E6s with hDlg/SAP97, the mammalian homolog of the Drosophila discs large tumor suppressor protein. HPV E6 has previously shown to bind and target hDlg/SAP97 for degradation. Our results demonstrate that both LE6 and SE6 interact with hDlg/SAP97, although their association does not lead to the degradation of hDlg/SAP97. The PDZ domains of hDlg were shown to be sufficient for interaction with CRPV E6 proteins while the C-terminus of CRPV E6 is essential for the interaction with hDlg. The association of hDlg with SE6 may be important but not sufficient for the transformation of NIH 3T3 cells by SE6. Importantly, a CRPV SE6 mutant defective for papilloma formation did not interact with hDlg. These results suggest that interaction with hDlg/SAP97 plays a role in the biological function of CRPV E6s.  相似文献   

12.
A major target of the HPV E6 oncoprotein is the human Discs Large (hDlg) tumour suppressor, although how this interaction contributes to HPV-induced malignancy is still unclear. Using a proteomic approach we show that a strong interacting partner of hDlg is the RhoG-specific guanine nucleotide exchange factor SGEF. The interaction between hDlg1 and SGEF involves both PDZ and SH3 domain recognition, and directly contributes to the regulation of SGEF''s cellular localization and activity. Consistent with this, hDlg is a strong enhancer of RhoG activity, which occurs in an SGEF-dependent manner. We also show that HPV-18 E6 can interact indirectly with SGEF in a manner that is dependent upon the presence of hDlg and PDZ binding capacity. In HPV transformed cells, E6 maintains a high level of RhoG activity, and this is dependent upon the presence of hDlg and SGEF, which are found in complex with E6. Furthermore, we show that E6, hDlg and SGEF each directly contributes to the invasive capacity of HPV-16 and HPV-18 transformed tumour cells. These studies demonstrate that hDlg has a distinct oncogenic function in the context of HPV induced malignancy, one of the outcomes of which is increased RhoG activity and increased invasive capacity.  相似文献   

13.
Human papillomavirus (HPV) E6 oncoprotein targets certain tumor suppressors such as MAGI-1 and SAP97/hDlg for degradation. A short peptide at the C terminus of E6 interacts specifically with the PDZ domains of these tumor suppressors, which is a property unique to high-risk HPVs that are associated with cervical cancer. The detailed recognition mechanisms between HPV E6 and PDZ proteins are unclear. To understand the specific binding of cellular PDZ substrates by HPV E6, we have solved the crystal structures of the complexes containing a peptide from HPV18 E6 bound to three PDZ domains from MAGI-1 and SAP97/Dlg. The complex crystal structures reveal novel features of PDZ peptide recognition that explain why high-risk HPV E6 can specifically target these cellular tumor suppressors for destruction. Moreover, a new peptide-binding loop on these PDZs is identified as interacting with the E6 peptide. Furthermore, we have identified an arginine residue, unique to high-risk HPV E6 but outside the canonical core PDZ recognition motif, that plays an important role in the binding of the PDZs of both MAGI-I and SAP97/Dlg, the mutation of which abolishes E6's ability to degrade the two proteins. Finally, we have identified a dimer form of MAGI-1 PDZ domain 1 in the cocrystal structure with E6 peptide, which may have functional relevance for MAGI-1 activity. In addition to its novel insights into the biochemistry of PDZ interactions, this study is important for understanding HPV-induced oncogenesis; this could provide a basis for developing antiviral and anticancer compounds.  相似文献   

14.
PTEN is a tumor suppressor protein that functions, in large part, by dephosphorylating the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate and by doing so antagonizing the action of phosphoinositide 3-kinase. PTEN structural domains include an N-terminal phosphatase domain, a lipid-binding C2 domain, and a 50-amino acid C-terminal tail that contains a PDZ binding sequence. We showed previously that phosphorylation of the PTEN tail negatively regulates PTEN activity. We now show that phosphorylated PTEN exists in a monomeric "closed" conformation and has low affinity for PDZ domain-containing proteins. Conversely, when unphosphorylated, PTEN is in an "open" conformation, is recruited into a high molecular weight complex (PTEN-associated complex), and strongly interacts with PDZ-containing proteins such as MAGI-2. As a consequence, when compared with wild-type PTEN, the phosphorylation-deficient mutant form of PTEN strongly cooperates with MAGI-2 to block Akt activation. These results indicate that phosphorylation of the PTEN tail causes a conformational change that results in the masking of the PDZ binding domain. Consequently, the ability of PTEN to bind to PDZ domain-containing proteins is reduced dramatically. These data suggest that phosphorylation of the PTEN tail suppresses the activity of PTEN by controlling the recruitment of PTEN into the PTEN-associated complex.  相似文献   

15.
The high-risk human papillomavirus (HPV) E6 proteins stimulate the ubiquitination and degradation of p53, dependent on the E6AP ubiquitin-protein ligase. Other proteins have also been shown to be targeted for degradation by E6, including hDlg, the human homolog of the Drosophila melanogaster Discs large (Dlg) tumor suppressor. We show here that the human homolog of the Drosophila Scribble (Vartul) (hScrib) tumor suppressor protein is also targeted for ubiquitination by the E6-E6AP complex in vitro and that expression of E6 induces degradation of hScrib in vivo. Characterization of the E6AP-E6-hScrib complex indicated that hScrib binds directly to E6 and that the binding is mediated by the PDZ domains of hScrib and a carboxyl-terminal epitope conserved among the high-risk HPV E6 proteins. Green fluorescent protein-hScrib was localized to the periphery of MDCK cells, where it colocalized with ZO-1, a component of tight junctions. E6 expression resulted in loss of integrity of tight junctions, as measured by ZO-1 localization, and this effect was dependent on the PDZ binding epitope of E6. Thus, the high-risk HPV E6 proteins induce the degradation of the human homologs of two Drosophila PDZ domain-containing tumor suppressor proteins, hDlg and hScrib, both of which are associated with cell junction complexes. The fact that Scrib/Vart and Dlg appear to cooperate in a pathway that controls Drosophila epithelial cell growth suggests that the combined targeting of hScrib and hDlg is an important component of the biologic activity of high-risk HPV E6 proteins.  相似文献   

16.
The mammalian Na+/H+ exchange regulatory factor 1 (NHERF1) is a multidomain scaffolding protein essential for regulating the intracellular trafficking and macromolecular assembly of transmembrane ion channels and receptors. NHERF1 consists of tandem PDZ-1, PDZ-2 domains that interact with the cytoplasmic domains of membrane proteins and a C-terminal (CT) domain that binds the membrane-cytoskeleton linker protein ezrin. NHERF1 is held in an autoinhibited state through intramolecular interactions between PDZ2 and the CT domain that also includes a C-terminal PDZ-binding motif (-SNL). We have determined the structures of the isolated and tandem PDZ2CT domains by high resolution NMR using small angle x-ray scattering as constraints. The PDZ2CT structure shows weak intramolecular interactions between the largely disordered CT domain and the PDZ ligand binding site. The structure reveals a novel helix-turn-helix subdomain that is allosterically coupled to the putative PDZ2 domain by a network of hydrophobic interactions. This helical subdomain increases both the stability and the binding affinity of the extended PDZ structure. Using NMR and small angle neutron scattering for joint structure refinement, we demonstrate the release of intramolecular domain-domain interactions in PDZ2CT upon binding to ezrin. Based on the structural information, we show that human disease-causing mutations in PDZ2, R153Q and E225K, have significantly reduced protein stability. Loss of NHERF1 expressed in cells could result in failure to assemble membrane complexes that are important for normal physiological functions.  相似文献   

17.
pten基因是迄今为止发现的第1个具有双特异性磷酸酶活性的抑癌基因,该基因的编码产物PTEN蛋白,是具有蛋白与脂质磷酸酯酶活性的双特异性磷酸酯酶,作为1种重要的信号分子参与细胞增殖、分化、黏附、迁移、凋亡以及基因转录的调控. 最近,关于PTEN在信号转导中的作用以及细胞内PTEN的调节机制研究较多,尤其是PDZ蛋白对PTEN的调节作用. PTEN蛋白包括1个氨基端(N端)磷酸酯酶区域,1个与脂质结合的C2区域和1个含有PDZ结合序列的羧基端(C端)区域. PDZ结构域通过识别目标蛋白羧基端PDZ结合序列与目标蛋白相互作用,调控多种重要的细胞生理过程和信号传导途径.本文就抑癌基因pten编码产物PTEN蛋白的结构、PTEN的生物学功能和PDZ蛋白对PTEN调节的研究进展进行综述.  相似文献   

18.
PDZ domain-containing scaffold protein Par-3 is the central organizer of the evolutionarily conserved cell polarity-regulatory Par-3.Par-6.atypical protein kinase C complex. The PDZ domains of Par-3 have also been implicated as potential phosphoinositide signaling integrators, since its second PDZ domain binds to phosphoinositides, and the third PDZ interacts with phosphoinositide phosphatase PTEN. However, the molecular basis of Par-3/PTEN interaction is still poorly understood. Additionally, it is not known whether the regulatory function of PTEN in cell polarity is specifically mediated by its interaction with Par-3. The structures of Par-3 PDZ3 in both its free and PTEN tail peptide-bound forms determined in this work reveal that Par-3 PDZ3 binds to PTEN with two discrete binding sites: a canonical PDZ-ligand interaction site and a distal, opposite charge-charge interaction site. This distinct target recognition mechanism confers the interaction specificity of the Par-3.PTEN complex. We show that the Par-3 PDZ3-PTEN binding is required for the enrichment of PTEN at the junctional membranes of Madin-Darby canine kidney cells. Finally, we demonstrate that the junctional membrane-localized PTEN is specifically required for the polarization of Madin-Darby canine kidney cells. These results, together with earlier data, firmly establish that Par-3 functions as a scaffold in integrating phosphoinositide signaling events during cellular polarization.  相似文献   

19.
PTP-BL is a large phosphatase that is implicated in cellular processes as diverse as cytokinesis, actin-cytoskeletal rearrangement, and apoptosis. Five PDZ domains mediate its cellular role by binding to the C termini of target proteins, forming multiprotein complexes. The second PDZ domain (PDZ2) binds to the C termini of the tumor suppressor protein APC and the LIM domain-containing protein RIL; however, in one splice variant, PDZ2as, a 5 residue insertion abrogates this binding. The insert causes distinct structural and dynamical changes in the alternatively spliced PDZ2: enlarging the L1 loop between beta2 and beta3, both lengthening and changing the orientation of the alpha2 helix, giving the base of the binding pocket less flexibility to accommodate ligands, and destabilizing the entire domain. These changes render the binding pocket incapable of binding C termini, possibly having implications in the functional role of PTP-BL.  相似文献   

20.
Interactions with cellular PDZ domain-containing proteins obviously contribute to the tumorigenic potential of several viral oncoproteins. In this regard, the oncogenic potential of the human T cell leukemia virus type 1 Tax protein correlates with its binding capacity to the tumor suppressor hDlg. Recent results show that hDlg in T cells is associated to a network of scaffolding proteins including another PDZ domain-containing protein termed hScrib. Interestingly, previous studies have revealed complementary activities of both proteins in the control of epithelial cell polarity. Here, we demonstrate that Tax can bind to hScrib and that the resulting Tax/hScrib complex is present in human T cell leukemia virus type 1-infected T cells. By confocal microscopy, we show that Tax modifies the localization of hScrib in transfected COS cells as well as in infected T cell lines and targets hScrib to particular spots exhibiting a granular distribution, mainly distributed in the cytoplasm. Given that Tax sequesters hScrib to these particular structures, we postulate that Tax might inhibit hScrib activity. Providing further support to this idea, we find that transient overexpression of hScrib attenuates T cell receptor-induced NFAT activity but that the presence of Tax counteracts this negative effect on the NFAT pathway. The fact that hDlg and hScrib are both targeted by Tax underlies their importance in T cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号