首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
T cell upregulation of B7 molecules CD80 and CD86 limits T cell expansion in immunodeficient hosts; however, the relative roles of CD80 separate from CD86 on CD4 versus CD8 T cells in a normal immune system are not clear. To address this question, we used the parent-into-F1 (P→F1) murine model of graft-versus-host disease and transferred optimal and suboptimal doses of CD80 and/or CD86 knockout (KO) T cells into normal F1 hosts. Enhanced elimination of host B cells by KO T cells was observed only at suboptimal donor cell doses and was greatest for CD80 KO→F1 mice. Wild-type donor cells exhibited peak CD80 upregulation at day 10; CD80 KO donor cells exhibited greater peak (day 10) donor T cell proliferation and CD8 T cell effector CTL numbers versus wild-type→F1 mice. Fas or programmed cell death-1 upregulation was normal as was homeostatic contraction of CD80 KO donor cells from days 12-14. Mixing studies demonstrated that maximal host cell elimination was seen when both CD4 and CD8 T cells were CD80 deficient. These results indicate an important role for CD80 upregulation on Ag-activated CD4 and CD8 T cells in limiting expansion of CD8 CTL effectors as part of a normal immune response. Our results support further studies of therapeutic targeting of CD80 in conditions characterized by suboptimal CD8 effector responses.  相似文献   

2.
Blockade with B7 antagonists interferes with CD28:B7 and CTLA-4:B7 interactions, which may have opposing effects. We have examined the roles of CD28:B7 and CTLA-4:B7 on in vivo alloresponses. A critical role of B7:CD28 was demonstrated by markedly compromised expansion of CD28-deficient T cells and diminished graft-versus-host disease lethality of limited numbers of purified CD4+ or CD8+ T cells. When high numbers of T cells were infused, the requirement for CD28:B7 interaction was lessened. In lethally irradiated recipients, anti-CTLA-4 mAb enhanced in vivo donor T cell expansion, but did not affect, on a per cell basis, anti-host proliferative or CTL responses of donor T cells. Graft-versus-host lethality was accelerated by anti-CTLA-4 mAb infusion given early post-bone marrow transplantation (BMT), mostly in a CD28-dependent fashion. Donor T cells obtained from anti-CTLA-4 mAb-treated recipients were skewed toward a Th2 phenotype. Enhanced T cell expansion in mAb-treated recipients was strikingly advantageous in the graft-versus-leukemia effects of delayed donor lymphocyte infusion. In two different systems, anti-CTLA-4 mAb enhanced the rejection of allogeneic T cell-depleted marrow infused into sublethally irradiated recipients. We conclude that blockade of the selective CD28-B7 interactions early post-BMT, which preserve CTLA-4:B7 interactions, would be preferable to blocking both pathways. For later post-BMT, the selective blockade of CTLA-4:B7 interactions provides a potent and previously unidentified means for augmenting the GVL effect of delayed donor lymphocyte infusion.  相似文献   

3.
IL-2-deficient mice develop a lymphoproliferative and autoimmune disease characterized by autoimmune hemolytic anemia (AHA) and inflammatory bowel disease. We have previously reported that IL-2 is necessary for optimal up-regulation of CTLA-4, an inducible negative regulator of T cell activation. In this study, we have tested the hypothesis that reduced expression of CTLA-4 in IL-2-deficient T cells contributes to the pathogenesis of disease in IL-2-deficient mice. Expression of CTLA-4 as a transgene completely prevented lymphoaccumulation and AHA in IL-2-deficient mice. The normalization of T cell numbers was due to inhibition of expansion of conventional CD4+CD25- T cells rather than to rescue of the numbers or function of CD4+CD25+ regulatory T cells, suggesting that CTLA-4 expression on conventional T cells plays a role in maintaining normal T cell homeostasis. In addition, the inhibitory effect of the CTLA-4 transgene on T cell expansion was at least in part independent of CD28 expression. Our results suggest that deficient CTLA-4 expression on conventional T cells contributes to the pathophysiology of the lymphoproliferative disease and AHA in IL-2-deficient mice. Thus, restoring CTLA-4 expression in T cells may be an attractive strategy to control clinical autoimmune diseases in which CTLA-4 expression is reduced.  相似文献   

4.
The role of Th2/CD4 T cells, which secrete IL-4, IL-5, and IL-13, in allergic disease is well established; however, the role of CD8(+) T cells (allergen-induced airway hyperresponsiveness (AHR) and inflammation) is less clear. This study was conducted to define the role of Ag-primed CD8(+) T cells in the development of these allergen-induced responses. CD8-deficient (CD8(-/-)) mice and wild-type mice were sensitized to OVA by i.p. injection and then challenged with OVA via the airways. Compared with wild-type mice, CD8(-/-) mice developed significantly lower airway responsiveness to inhaled methacholine and lung eosinophilia, and exhibited decreased IL-13 production both in vivo, in the bronchoalveolar lavage (BAL) fluid, and in vitro, following Ag stimulation of peribronchial lymph node (PBLN) cells in culture. Reconstitution of sensitized and challenged CD8(-/-) mice with allergen-sensitized CD8(+) T cells fully restored the development of AHR, BAL eosinophilia, and IL-13 levels in BAL and in culture supernatants from PBLN cells. In contrast, transfer of naive CD8(+) T cells or allergen-sensitized CD8(+) T cells from IL-13-deficient donor mice failed to do so. Intracellular cytokine staining of lung as well as PBLN T cells revealed that CD8(+) T cells were a source of IL-13. These data suggest that Ag-primed CD8(+) T cells are required for the full development of AHR and airway inflammation, which appears to be associated with IL-13 production from these primed T cells.  相似文献   

5.
YD Joo  WS Lee  HJ Won  SM Lee  HR Kim  JK Park  SG Park  IW Choi  I Choi  SK Seo 《Cytokine》2012,60(1):277-283
The immunoregulatory effects of granulocyte colony-stimulating factor (G-CSF) on allogeneic peripheral blood cell transplantation (PBCT) have been demonstrated to reduce acute graft-versus-host disease (GVHD). However, the underlying mechanism is still not clear. In this study, we focused on the direct effects of G-CSF on donor CD4(+) T cell responses after transplantation. We observed that lethally irradiated B6D2F1 recipient mice that are transplanted with CD4(+) T cells from G-CSF-treated B6 donors showed mild attenuations in severity and mortality compared with recipients transplanted with PBS-treated CD4(+) T cells. Notably, skin GVHD was significantly reduced, but no such reduction was observed in other organs. Although there was no difference with respect to alloreactive expansion or Foxp3(+) Treg induction, the use of G-CSF-treated CD4(+) T cells significantly reduced the numbers of IL-17-producing and RORγt-expressing cells in the secondary lymphoid organs of allogeneic recipients after transplantation compared with the use of the control cells. Finally, we found that the suppressor of cytokine signaling-3 (SOCS3) expression in G-CSF-treated donor CD4(+) T cells was much higher than that in control CD4(+) T cells. Our results demonstrate that the inhibition of Th17 cell differentiation by SOCS3 induction is associated with the immunoregulatory role of G-CSF in CD4(+) T cell-mediated acute GVHD.  相似文献   

6.
Allogeneic bone marrow transplantation is a curative treatment for leukemia and lymphoma, but graft-vs-host disease (GVHD) remains a major complication. Using a GVHD protective nonmyeloablative conditioning regimen of total lymphoid irradiation and antithymocyte serum (TLI/ATS) in mice that has been recently adapted to clinical studies, we show that regulatory host NKT cells prevent the expansion and tissue inflammation induced by donor T cells, but allow retention of the killing activity of donor T cells against the BCL1 B cell lymphoma. Whereas wild-type hosts given transplants from wild-type donors were protected against progressive tumor growth and lethal GVHD, NKT cell-deficient CD1d-/- and Jalpha-18-/- host mice given wild-type transplants cleared the tumor cells but died of GVHD. In contrast, wild-type hosts given transplants from CD8-/- or perforin-/- donors had progressive tumor growth without GVHD. Injection of host-type NKT cells into Jalpha-18-/- host mice conditioned with TLI/ATS markedly reduced the early expansion and colon injury induced by donor T cells. In conclusion, after TLI/ATS host conditioning and allogeneic bone marrow transplantation, host NKT cells can separate the proinflammatory and tumor cytolytic functions of donor T cells.  相似文献   

7.
8.
Lysosomal acid lipase (LAL) cleaves cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in lysosomes. LAL deficiency causes expansion of CD11b(+)Gr-1(+) immature myeloid cells, loss of T cells, and impairment of T cell function. To test how myeloid cell LAL controls myelopoiesis and lymphopoiesis, a myeloid-specific doxycycline-inducible transgenic system was used to reintroduce human lysosomal acid lipase (hLAL) expression into LAL gene knockout (lal(-/-)) mice. Expression of hLAL in myeloid cells of lal(-/-) mice reversed abnormal myelopoiesis in the bone marrow starting at the granulocyte-monocyte progenitor stage and reduced systemic expansion of myeloid-derived suppressor cells (MDSCs). Myeloid hLAL expression inhibited reactive oxygen species production and arginase expression in CD11b(+)Gr-1(+) cells of lal(-/-) mice. Structural organization of the thymus and spleen was partially restored in association with reduced infiltration of CD11b(+)Gr-1(+) cells in these mice. In the thymus, reconstitution of myeloid cell LAL restored development of thymocytes at the double-negative DN3 stage. Myeloid cell LAL expression improved the proliferation and function of peripheral T cells. In vitro coculture experiments showed that myeloid hLAL expression in lal(-/-) mice reversed CD11b(+)Gr-1(+) myeloid cell suppression of CD4(+) T cell proliferation, T cell signaling activation, and lymphokine secretion. Blocking stat3 and NF-κB p65 signaling by small-molecule inhibitors in MDSCs achieved a similar effect. Injection of anti-Gr-1 Ab into lal(-/-) mice to deplete MDSCs restored T cell proliferation. These studies demonstrate that LAL in myeloid cells plays a critical role in maintaining normal hematopoietic cell development and balancing immunosuppression and inflammation.  相似文献   

9.
Mice immunized with IgE/Ag complexes produce significantly more Ag-specific Abs than mice immunized with Ag alone. The enhancement is mediated via the low-affinity receptor for IgE (FcepsilonRII or CD23), as shown by its complete absence in mice pretreated with mAbs specific for CD23 and in CD23-deficient mice. Because the constitutive expression of murine CD23 is limited to B cells and follicular dendritic cells (FDCs), one of these cell types is likely to be involved. One of the suggested modes of action of IgE/CD23 is to increase the ability of B cells to present Ag to T cells, as demonstrated to take place in vitro. Another possibility is that FDCs capture the IgE/Ag complexes and present these directly to B cells. The purpose of the present study was to determine whether CD23+ B cells or FDCs are responsible for the IgE/CD23-mediated enhancement of specific Ab responses in vivo. We show that the enhancement is completely restored in irradiated CD23-deficient mice reconstituted with CD23+ spleen or bone marrow cells. In these mice, the B cells are CD23+ and the FDCs are presumably CD23- because the FDCs are radiation resistant and are reported not to be replaced by donor cells after this type of cell transfer. In contrast, enhancement was not restored in irradiated wild-type mice reconstituted with CD23- cells. These results indicate that CD23+ B cells, and not FDCs, are the cells that capture IgE/Ag complexes and induce enhancement of Ab responses in vivo.  相似文献   

10.
Lymphocyte homeostasis is a central biological process that is tightly regulated. However, its molecular and cellular control is poorly understood. We show that aged mice deficient in lymphocyte activation gene 3 (LAG-3), an MHC class II binding CD4 homologue, have twice as many T cells as wild-type controls. CD4(+) and CD8(+) LAG-3-deficient T cells showed enhanced homeostatic expansion in lymphopenic hosts, which was abrogated by ectopic expression of wild-type LAG-3, but not by a signaling-defective mutant. In addition, in vivo treatment with anti-LAG-3 mAb resulted in enhanced T cell expansion to a level comparable to that in LAG-3-deficient cells. This deregulation of T cell homeostasis also resulted in the expansion of multiple cell types, including B cells, macrophages, granulocytes, and dendritic cells. Lastly, regulatory T cells were dependent on LAG-3 for their optimal control of T cell homeostasis. Our data suggest that LAG-3 negatively regulates T cell homeostasis by regulatory T cell-dependent and independent mechanisms.  相似文献   

11.
12.
Autoimmune encephalomyelitis is a disease of the CNS that can develop when an initial peripheral inflammatory stimulus is followed by infiltration and reactivation of T lymphocytes in the CNS. We report a crucial role for coronin 1, which is essential for maintenance of the naive T cell pool, for the development of murine experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. In the absence of coronin 1, immunization with myelin oligoglycoprotein (MOG(35-55)) peptide largely failed to induce EAE symptoms, despite normal mobilization of leukocyte subsets in the blood, as well as effector cytokine expression comparable with wild-type T cells on polyclonal stimulation. Susceptibility of coronin 1-deficient mice to EAE induction was restored by transfer of wild-type CD4(+) T cells, suggesting that the observed resistance of coronin 1-deficient mice to EAE development is T cell intrinsic. Importantly, although coronin 1-deficient regulatory T cells (Tregs) showed a suppressor activity comparable with wild-type Tregs, Treg depletion failed to restore EAE development in coronin 1-deficient animals. These results suggest a hitherto unrecognized role of naive T cells in the development of autoimmune encephalomyelitis and reveal coronin 1 as a crucial modulator of EAE induction.  相似文献   

13.
The transfer of unfractionated DBA/2J (DBA) splenocytes into B6D2F(1) (DBA → F(1)) mice results in greater donor CD4 T cell engraftment in females at day 14 that persists long-term and mediates greater female lupus-like renal disease. Although donor CD8 T cells have no demonstrated role in lupus pathogenesis in this model, we recently observed that depletion of donor CD8 T cells prior to transfer eliminates sex-based differences in renal disease long-term. In this study, we demonstrate that greater day 14 female donor CD4 engraftment is also critically dependent on donor CD8 T cells. Male DBA → F(1) mice exhibit stronger CD8-dependent day 8-10 graft-versus-host (GVH) and counter-regulatory host-versus-graft (HVG) responses, followed by stronger homeostatic contraction (days 10-12). The weaker day 10-12 GVH and HVG in females are followed by persistent donor T cell activation and increasing proliferation, expansion, and cytokine production from days 12 to 14. Lastly, greater female day 14 donor T cell engraftment, activation, and cytokine production were lost with in vivo IFN-γ neutralization from days 6 to 14. We conclude the following: 1) donor CD8 T cells enhance day 10 proliferation of donor CD4 T cells in both sexes; and 2) a weaker GVH/HVG in females allows prolonged survival of donor CD4 and CD8 T cells, allowing persistent activation. These results support the novel conclusion that sex-based differences in suboptimal donor CD8 CTL activation are critical for shaping sex-based differences in donor CD4 T cell engraftment at 2 wk and lupus-like disease long-term.  相似文献   

14.
Mutations in the CD40 ligand (CD40L) gene lead to X-linked immunodeficiency with hyper-IgM, which is often associated with autoimmune diseases. To determine the contribution of defective CD40-CD40L interactions to T cell autoreactivity, we reconstituted CD40-CD40L interactions by transferring T cells from CD40-deficient mice to syngenic athymic nude mice and assessed autoimmunity. T cells from CD40-deficient mice triggered autoimmune diseases accompanied with elevations of various autoantibodies, while those from wild-type mice did not. In CD40-deficient mice, the CD25(+) CD45RB(low) CD4(+) subpopulation which regulates T cell autoreactivity was markedly reduced. CD40-deficient APCs failed to induce T regulatory cells 1 producing high levels of an inhibitory cytokine, IL-10 in vitro. Furthermore, autoimmune development was inhibited when T cells from CD40-deficient mice were cotransferred with CD45RB(low) CD4(+) T cells from wild-type mice or with T regulatory cells 1 induced on CD40-expressing APCs. Collectively, our results indicate that CD40-CD40L interactions contribute to negative regulation of T cell autoreactivity and that defective interactions can lead to autoimmunity.  相似文献   

15.
CD28-specific antibody prevents graft-versus-host disease in mice   总被引:16,自引:0,他引:16  
The costimulatory molecules B7-1 and B7-2 regulate T cell activation by delivering activation signals through CD28 and inhibitory signals through CTLA4. Graft-vs-host disease (GVHD) is caused by activated donor T cells. Previously, we showed that CD28-deficient donor T cells induced less-severe GVHD than wild-type donor T cells, suggesting that CD28 signals exacerbate GVHD. In this paper we demonstrate that CTLA4 signals attenuate the severity of GVHD. Targeting the CD28 receptor with a specific mAb modulates the receptor in vivo, inhibits donor T cell expansion, and prevents GVHD. CTLA4 signaling was necessary for this effect because treatment with a soluble ligand that blocks binding of B7 to both CD28 and CTLA4 did not prevent GVHD as effectively as anti-CD28 mAb. These results support the current model of T cell costimulation in which CD28 signals amplify GVHD while CTLA4 signals inhibit GVHD, providing evidence that selective targeting of CD28 might be a better therapeutic strategy for inducing immunological tolerance than blocking the ligands for both CD28 and CTLA4.  相似文献   

16.
Previous experimental studies have shown that acute graft-versus-host disease (GVHD) is associated with two waves of donor CD8(+) T cell expansion. In the current studies, we used in vivo bioluminescent imaging, in vivo BrdU labeling, and three different experimental GVHD systems to show that B7-H1 expression by recipient parenchymal cells controls the second wave of alloreactive donor CD8(+) T cell expansion and the associated second phase of GVHD. Loss of B7-H1 expression by parenchymal cells during the course of GVHD was associated with persistent proliferation of donor CD8(+) T cells in GVHD target tissues and continued tissue injury, whereas persistent expression of B7-H1 expression by parenchymal cells led to reduced proliferation of donor CD8(+) T cells in GVHD target tissues and resolution of GVHD. These studies demonstrate that parenchymal cell expression of B7-H1 is required for tolerizing infiltrating T cells and preventing the persistence of GVHD. Our results suggest that therapies designed to preserve or restore expression of B7-H1 expression by parenchymal tissues in the recipient could prevent or ameliorate GVHD in humans.  相似文献   

17.
T cell-driven B cell hyperactivity plays an essential role in driving autoimmune disease development in systemic lupus erythematosus. IL-21 is a member of the type I cytokine family with pleiotropic activities. It regulates B cell differentiation and function, promotes T follicular helper (T(FH)) cell and Th17 cell differentiation, and downregulates the induction of T regulatory cells. Although IL-21 has been implicated in systemic lupus erythematosus, the relative importance of IL-21R signaling in CD4(+) T cells versus B cells is not clear. To address this question, we took advantage of two induced models of lupus-like chronic graft-versus-host disease by using wild-type or IL-21R(-/-) mice as donors in the parent-into-F1 model and as hosts in the Bm12→B6 model. We show that IL-21R expression on donor CD4(+) T cells is essential for sustaining T(FH) cell number and subsequent help for B cells, resulting in autoantibody production and more severe lupus-like renal disease, but it does not alter the balance of Th17 cells and regulatory T cells. In contrast, IL-21R signaling on B cells is critical for the induction and maintenance of germinal centers, plasma cell differentiation, autoantibody production, and the development of renal disease. These results demonstrate that IL-21 promotes autoimmunity in chronic graft-versus-host disease through both CD4(+) T cell- and B cell-intrinsic mechanisms and suggest that IL-21 blockade may attenuate B cell hyperactivity, as well as the aberrant T(FH) cell pathway that contributes to lupus pathogenesis.  相似文献   

18.
Previous studies have found that deficiency of complement component C3 is associated with reduced T cell responses in several disease models including viral infection, autoimmune disease, and transplantation. However, the underlying mechanism is unclear. In this study, we demonstrate that dendritic cells (DCs) are able to synthesize C3 and this synthesis is required for the capacity of DCs to stimulate alloreactive T cell responses in vitro and in vivo. Compared with C3-producing DCs, C3-nonproducing DCs exhibit reduced potency to stimulate an alloreactive T cell response, favor the polarization of CD4(+) T cells toward Th2 phenotype, and have regulatory T cell-driving capacity. In addition, priming mice with C3-deficient DCs compared with wild-type DCs led to delayed skin allograft rejection. Our findings that nonproduction of C3 by DCs significantly reduced T cell stimulation and impaired allograft rejection provide a potentially important explanation of how C3-deficient mice develop reduced T cell responses and of how C3-deficient donor kidney is protected from T cell-mediated graft rejection.  相似文献   

19.
The mechanisms by which the immune system achieves constant T cell numbers throughout life, thereby controlling autoaggressive cell expansions, are to date not completely understood. Here, we show that the CD25(+) subpopulation of naturally activated (CD45RB(low)) CD4 T cells, but not CD25(-) CD45RB(low) CD4 T cells, inhibits the accumulation of cotransferred CD45RB(high) CD4 T cells in lymphocyte-deficient mice. However, both CD25(+) and CD25(-) CD45RB(low) CD4 T cell subpopulations contain regulatory cells, since they can prevent naive CD4 T cell-induced wasting disease. In the absence of a correlation between disease and the number of recovered CD4(+) cells, we conclude that expansion control and disease prevention are largely independent processes. CD25(+) CD45RB(low) CD4 T cells from IL-10-deficient mice do not protect from disease. They accumulate to a higher cell number and cannot prevent the expansion of CD45RB(high) CD4 T cells upon transfer compared with their wild-type counterparts. Although CD25(+) CD45RB(low) CD4 T cells are capable of expanding when transferred in vivo, they reach a homeostatic equilibrium at lower cell numbers than CD25(-) CD45RB(low) or CD45RB(high) CD4 T cells. We conclude that CD25(+) CD45RB(low) CD4 T cells from nonmanipulated mice control the number of peripheral CD4 T cells through a mechanism involving the production of IL-10 by regulatory T cells.  相似文献   

20.
We previously found that chronic alcohol consumption decreases the survival of mice bearing subcutaneous B16BL6 melanoma. The underlying mechanism is still not completely understood. Antitumor T cell immune responses are important to inhibiting tumor progression and extending survival. Therefore, we examined the effects of chronic alcohol consumption on the functionality and regulation of these cells in C57BL/6 mice that chronically consumed 20% (w/v) alcohol and subsequently were inoculated subcutaneously with B16BL6 melanoma cells. Chronic alcohol consumption inhibited melanoma-induced memory T cell expansion and accelerated the decay of interferon (IFN)-γ producing T cells in the tumor-bearing mice. Foxp3+CD4+CD25+ regulatory T cells were not affected; however, the percentage of myeloid-derived suppressor cells (MDSC) was significantly increased in the peripheral blood and spleen. T cell proliferation as determined by carboxyfluorescein succinimidyl ester labeling experiments in vitro was inhibited by alcohol consumption relative to control water-drinking melanoma-bearing mice. Collectively, these data show that chronic alcohol consumption inhibits proliferation of memory T cells, accelerates the decay of IFN-γ producing CD8+ T cells, and increases MDSC, all of which could be associated with melanoma progression and reduced survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号