首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
筛选到一株具海因水解活力的微生物,经鉴定后命名为真养产碱杆菌112R4。该菌能水解海因、二氢尿嘧啶和琥珀酰亚胺,且对琥珀酰亚胺活力最高,但不水解5单取代海因和5,5’双取代海因,因而被确定为含有酰亚胺酶。真养产碱杆菌112R4能在以琥珀酰亚胺为唯一碳、氮源的培养基上生长,表明该菌中存在琥珀酰亚胺完整的转化途径。从112R4基因组DNA出发,用鸟枪法克隆了一个6kb的与环酰亚胺水解相关的DNA片段;进一步亚克隆得到了带酰亚胺酶基因的2kb的DNA片段,并进行了序列测定。缺失分析确定了一个876bp的ORF为真养产碱杆菌112R4的酰亚胺酶基因,推测编码一个291个氨基酸的多肽,这是第一次报道微生物酰亚胺酶的核酸和蛋白序列。推测的氨基酸序列在蛋白数据库中进行了比较,结果表明,酰亚胺酶与已知的环酰胺酶没有明显的同源性,也不属于氨酰水解酶蛋白超家族,因而被分类为一种新的环酰胺酶。真养产碱杆菌112R4的酰亚胺酶与芽生杆菌A17p4的酰亚胺酶N端的20个氨基酸有较高的同源性,一致性为60%,与多糖脱乙酰酶保守序列也部分同源,一致性为14%。带有酰亚胺酶基因的重组质粒在大肠杆菌中得到表达,在lac启动子控制下,使用1mmol/L IPTG诱导5h,酰亚胺酶活力达到3200U/L,为供体菌真养产碱杆菌112R4的7倍。  相似文献   

2.
摘要 目的:研究环酰亚胺水解酶(CIH293)C-末端区残基对其底物专一性的影响。方法:通过缺失或替代获得了环酰亚胺水解酶C-末端剔除2个或3个氨基酸残基及C-末端两个Lys替代为两个Glu的突变型酶CIH291、CIH290以及KK292,293EE,用比色法与高效液相色谱法分析了重组野生型酶与突变型酶的底物专一性和动力学参数。结果:突变型酶与野生型酶相比,底物专一性未发生显著改变,最适底物仍为琥珀酰亚胺,然突变型酶对最适底物的亲和力略有降低,导致反应速度减小。结论:环酰亚胺水解酶(CIH293)C-末端区残基的改变对其底物专一性的影响不大,但影响了酶对底物的亲和力。  相似文献   

3.
E·ColiA·S1.588生产L-天门冬酰胺酶发酵工艺的研究陈丽媛,金守满,刘薇,陆春左,元福实(辽宁省微生物研究所,朝阳122000)L一天门冬酰胺酶(EC3.5.1.1)即L一天门冬酰胺酰胺基水解酶,专一催化L一天门冬酰胺水解形成L一天门冬氨酸...  相似文献   

4.
为探索酰胺生物降解酶的微观降解机制,用分子对接的方法模拟了酰胺与酰胺酶的相互作用,得到其复合物结构的理论模型,根据打分函数最低原则筛选出的RhAmidase与L-Methioninamide之间最佳构象打分函数为-86.741 9,二次打分函数为-76.022 4。同时,应用LPC/CSU Server研究了最佳构象的相互作用情况,结果表明,酰胺与酰胺酶之间以疏水作用数量最多,酰胺酶的ARG256 A、LEU353 A、TYR346 A、ARG225 A、THR218 A和PRO222 A在催化过程中起到了重要作用。  相似文献   

5.
采用响应面分析方法,对阿萨希丝孢酵母(Trichosporon asahii)ZZB-1产酰胺酶的发酵培养基进行了优化。运用单N子试验筛选出麦芽糖和酵母浸膏为最适碳源、氮源,金属离子Ca^2+、Mn^2+可提高发酵酰胺酶产量;通过最陡爬坡实验逼近以上4个因子的最大响应区域后,采用Box—Behnken响应面分析法,确定产酰胺酶最佳发酵培养基为麦芽糖18.84g/L、酵母浸膏9.55g/L、NaC15g/L、KH2PO41g/L、MgSO4·7H2O0.2g/L、FeS040.001g/L、CaC0370.84μmol/L、MnS0465.39肚mo[/L(1%丙烯酸诱导),NH4·H2O调节pH至7.0。培养基优化后酰胺酶产量由初始2554U/L提高到4156U/L,为原始发酵培养基配方酶活产量的1.63倍。  相似文献   

6.
从脑膜炎脓杆菌(Flavobacterium meningosepticum)基因组中通过PCR扩增了N-糖酰胺酶F(PNGase F)基因,经酶切后与表达载体pET28a连接,获得的重组质粒转入大肠杆菌BL21(DE3)。重组大肠杆菌经诱导表达和纯化提取后,获取大量高纯度N-糖酰胺酶F,其纯度达90%以上。试验证明,经纯化的重组N-糖酰胺酶F可以切除核糖核酸酶B、转铁蛋白和人IgG等糖蛋白上的N-糖链,具有脱糖基化作用。  相似文献   

7.
大鼠α-酰胺酶在变铅青链霉菌中的克隆及表达研究   总被引:1,自引:0,他引:1  
α-酰胺酶(α-amidase,α-AE)催化神经和内分泌系统中活性多肽的C-端酰胺化,多多肽的生物活性至关重要。以大鼠心房组织的总RNA为模板,采用RT-PCR技术扩增获得编码α-酰胺酶的cDNA,并进行了克隆和测序。为了使α-酰胺酶能在链霉菌中分泌表达,将其cDNA与链霉菌酷氮酶酶(melC1)信号的编码序列融合得到融合mel/AE,将mel/AE插入链霉菌质粒pIJ680,获得重组质粒pIJ  相似文献   

8.
立体选择性酰胺酶是一种重要的手性合成工具酶,在制备手性羧酸及其衍生物方面具有广阔的应用前景,日益受到重视。在酰胺酶的应用中,其立体选择性影响巨大。从底物、反应温度、pH、添加共溶剂和微生物来源5个方面综述了其对酰胺酶立体选择性的影响,对提高酰胺酶的立体选择性,扩大其在制备光学活性化合物领域的应用具有重要的意义。  相似文献   

9.
对含有不同R质粒的6株大肠杆菌J53和不含质粒的大肠杆菌J53所产生的L-天门冬酰教酶的活力进行了比较,前者的L-天门冬酰胺酶活力比后者的降低了约1/2—3/4。消除大肠杆菌J53细胞中的R质粒后,L-天门冬酰胺酶活力明显增加并与不含质粒的大肠杆菌J53的相近。结果表明,在大肠杆菌内存在的R质粒对寄主的L-天门冬酰胺酶活力具有明显的抑制作用。  相似文献   

10.
芳基酰酰胺酶(E.C.3,5,1,13)为水解N-酰基芳香胺的酶,本工作对该酶在蓖麻蚕个体发育中的活力变化及其性质进行了观察和研究,结果如下:ⅰ)该酶存在于蚕个体发育中的各个阶段,广泛分布在蚕体内各组织。在中肠、马氏管组织的活力在熟蚕时最大,结茧后明显下降。在五龄中前期,蛹中后期,脂肪体和真皮的酶活力均出现高峰,以蛹中后期活力最高。该酶在中枢神经系统中有相当高的活力,在后部丝腺、蚕卵都显示活力,但血淋巴中没有可检出的活力。ⅱ)蓖麻蚕各组织的芳基酰酰胺酶,绝大部分活力存在于细胞浆。对N-乙酰对硝基苯胺容易水解,但对γ-谷氨酰对硝基苯胺和γ-谷氨酰α-萘胺均不能水解。钙、钴阳离子能促进酶活力;瞟呤霉素有明显抑制酶活力的作用,但L-γ-谷氨酸(0-羧基)苯肼无抑制作用。从该酶在蚕体广泛分布,并随变态而活力有明显变化以及对底物芳香胺N-乙酰基团显示特异性等特点来看,它可能具有多种功能,并与芳香胺的代谢有关。  相似文献   

11.
A novel amidase involved in bacterial cyclic imide metabolism was purified from Blastobacter sp. strain A17p-4. The enzyme physiologically functions in the second step of cyclic imide degradation, i.e., the hydrolysis of monoamidated dicarboxylates (half-amides) to dicarboxylates and ammonia. Enzyme production was enhanced by cyclic imides such as succinimide and glutarimide but not by amide compounds which are conventional substrates and inducers of known amidases. The purified amidase showed high catalytic efficiency toward half-amides such as succinamic acid (K(m) = 6.2 mM; k(cat) = 5.76 s(-1)) and glutaramic acid (K(m) = 2.8 mM; k(cat) = 2.23 s(-1)). However, the substrates of known amidases such as short-chain (C(2) to C(4)) aliphatic amides, long-chain (above C(16)) aliphatic amides, amino acid amides, aliphatic diamides, alpha-keto acid amides, N-carbamoyl amino acids, and aliphatic ureides were not substrates for the enzyme. Based on its high specificity toward half-amides, the enzyme was named half-amidase. This half-amidase exists as a monomer with an M(r) of 48,000 and was strongly inhibited by heavy metal ions and sulfhydryl reagents.  相似文献   

12.
A novel amidase involved in bacterial cyclic imide metabolism was purified from Blastobacter sp. strain A17p-4. The enzyme physiologically functions in the second step of cyclic imide degradation, i.e., the hydrolysis of monoamidated dicarboxylates (half-amides) to dicarboxylates and ammonia. Enzyme production was enhanced by cyclic imides such as succinimide and glutarimide but not by amide compounds which are conventional substrates and inducers of known amidases. The purified amidase showed high catalytic efficiency toward half-amides such as succinamic acid (Km = 6.2 mM; kcat = 5.76 s−1) and glutaramic acid (Km = 2.8 mM; kcat = 2.23 s−1). However, the substrates of known amidases such as short-chain (C2 to C4) aliphatic amides, long-chain (above C16) aliphatic amides, amino acid amides, aliphatic diamides, α-keto acid amides, N-carbamoyl amino acids, and aliphatic ureides were not substrates for the enzyme. Based on its high specificity toward half-amides, the enzyme was named half-amidase. This half-amidase exists as a monomer with an Mr of 48,000 and was strongly inhibited by heavy metal ions and sulfhydryl reagents.  相似文献   

13.
A gene-encoding imidase was isolated from Pseudomonas putdia YZ-26 genomic DNA using a combination of polymerase chain reaction and activity screening the recombinant. Analysis of the nucleotide sequence revealed that an open reading frame (ORF) of 879 bp encoded a protein of 293 amino acids with a calculated molecular weight of 33712.6 kDa. The deduced amino-acid sequence showed 78% identity with the imidase from Alcaligenes eutrophus 112R4 and 80% identity with N-terminal 20 amino-acid imidase from Blastobacter sp. A17p-4. Next, the ORF was subcloned into vector pET32a to form recombinant plasmid pEI. The enzyme was overexpressed in Escherichia coli and purified to homogeneity by Ni2+–NTA column, with 75% activity recovery. The subunit molecular mass of the recombinant imidase as estimated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis was approximately 36 kDa, whereas its functional unit was approximately 141 kDa with four identical subunits determined by size-exclusion chromatography. The purified enzyme showed the highest activity and affinity toward succinimide, and some other substrates, such as dihydrouracil, hydantoin, succinimide, and maleimde, were investigated.  相似文献   

14.
The microbial transformation of -5-monosubstituted hydantoins has been applied to industrial scale production of optically active amino acids. Hydantoinase and N-carbamoyl amino acid amidohydrolase, which are the key enzymes in this transformation, from various microorganisms have been studied extensively. Blastobacter sp. A17p-4, which was isolated for -amino acid production through hydantoin transformation, shows not only diverse cyclic ureide-metabolizing activities including those of -hydantoinase and N-carbamoyl- -amino acid amidohydrolase, but also cyclic imide-metabolizing activities. A recent study revealed the participation of -hydantoinase in the metabolism of cyclic imides and the existence of novel enzymes, imidase and half-amidase, in this bacterium. -hydantoinase functions in the metabolism of bulky cyclic imides, while imidase functions in that of simple cyclic imides in combination with half-amidase, which functions in the hydrolysis of the imidase reaction products, half-amides. Imidase and half-amidase are different from reported cyclic-amide-metabolizing enzymes, and are widely found in bacteria, yeasts and molds.  相似文献   

15.
Two cyclic ureide compound-hydrolyzing enzymes were found in Blastohacter sp. A17p-4, and partially purified. One hydrolyzed 5-substituted hydantoins D-stereospecifically and had dihydropyrimidinase activity. The other was a novel enzyme which should be called an imidase. The imidase preferably hydrolyzed cyclic imide compounds such as glutarimide and succinimide more than cyclic ureide compounds, and produced monoamidated dicarboxylates.  相似文献   

16.
The first polyhydroxyalkanoic acid (PHA) synthase gene (phbCRr) of a Gram-positive bacterium was cloned from a genomic library of Rhodococcus ruber in the broad-host-range plasmid vector pRK404. The hybrid plasmid harboring phbCRr allowed the expression of polyhydroxybutyric acid (PHB) synthase activity and restored the ability of PHB synthesis in a PHB-negative mutant of Alcaligenes eutrophus. Nucleotide sequence analysis of phbCRr revealed an open reading frame of 1686 bp starting with the rare codon TTG and encoding a protein of relative molecular mass 61,371. The deduced amino acid sequence of phbCRr exhibited homologies to the primary structures of the PHA synthases of A. eutrophus and Pseudomonas oleovorans. Preparation of PHA granules by discontinuous density gradient centrifugation of crude cellular extracts revealed four major bands in an SDS polyacrylamide gel. A Mr 61,000 protein was identified as the PHA synthase of R. ruber by N-terminal amino acid sequence determination.  相似文献   

17.
The membrane-bound hydrogenases of Bradyrhizobium japonicum, Alcaligenes eutrophus, Alcaligenes latus, and Azotobacter vinelandii were purified extensively and compared. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of each hydrogenase revealed two prominent protein bands, one near 60 kilodaltons and the other near 30 kilodaltons. The migration distances during nondenaturing polyacrylamide gel electrophoresis were similar for all except A. vinelandii hydrogenase, which migrated further than the other three. The amino acid composition of each hydrogenase was determined, revealing substantial similarity among these enzymes. This was confirmed by calculation of S delta Q values, which ranged from 8.0 to 26.7 S delta Q units. S delta Q is defined as sigma j(Xi,j-Xk,j)2, where i and k identify the proteins compared and Xj is the content (residues per 100) of a given amino acid of type j. The hydrogenases of this study were also compared with an enzyme-linked immunosorbent assay. Antibody raised against B. japonicum hydrogenase cross-reacted with all four hydrogenases, but to various degrees and in the order B. japonicum greater than A. latus greater than A. eutrophus greater than A. vinelandii. Antibody raised against A. eutrophus hydrogenase also cross-reacted with all four hydrogenases, following the pattern of cross-reaction A. eutrophus greater than A. latus = B. japonicum greater than A. vinelandii. Antibody raised against B. japonicum hydrogenase inhibited B. japonicum hydrogenase activity to a greater extent than the A. eutrophus and A. latus activities; no inhibition of A. vinelandii hydrogenase activity was detected. The results of these experiments indicated remarkable homology of the hydrogenases from these four microorganisms.  相似文献   

18.
Of various benzoate-utilizing bacteria tested, Alcaligenes eutrophus 335, A. eutrophus H16, A. eutrophus JMP222, A. eutrophus JMP134, Alcaligenes strain A7, and Pseudomonas cepacia were able to grow with 4-fluorobenzoate as the sole source of carbon and energy. P. cepacia also utilizes 3-fluorobenzoate. Except for A. eutrophus JMP134, which is known to grow with 2,4-dichlorophenoxyacetate and 3-chlorobenzoate (R. H. Don and J. M. Pemberton, J. Bacteriol. 145:681-686, 1981), the strains were unable to grow at the expense of these compounds or 4-chlorobenzoate. Assays of cell extracts revealed that all strains express dienelactone hydrolase and maleylacetate reductase activities in addition to enzymes of the catechol branch of the 3-oxoadipate pathway when growing with 4-fluorobenzoate. Induction of dienelactone hydrolase and maleylacetate reductase apparently is not necessarily connected to synthesis of catechol 1,2-dioxygenase type II and chloromuconate cycloisomerase activities, which are indispensable for the degradation of chlorocatechols. Substrate specificities of the dienelactone hydrolases provisionally differentiate among three types of this activity. (i) Extracts of A. eutrophus 335, A. eutrophus H16, A. eutrophus JMP222, and Alcaligenes strain A7 convert trans-4-carboxymethylenebut-2-en-4-olide (trans-dienelactone) much faster than the cis-isomer (type I). (ii) The enzyme present in P. cepacia shows the opposite preference for the isomeric substrates (type II). (iii) Cell extracts of A. eutrophus JMP134, as well as purified dienelactone hydrolase from Pseudomonas strain B13 (E. Schmidt and H.-J. Knackmuss, Biochem. J. 192:339-347, 1980), hydrolyze both dienelactones at rates that are of the same order of magnitude (type III). This classification implies that A. eutrophus JMP134 possesses at least two different dienelactone hydrolases, one of type III encoded by the plasmid pJP4 and one of type I, which is also present in the cured strain JMP222.  相似文献   

19.
The cytoplasmic, NAD-linked hydrogenase of the Gram-positive hydrogen-oxidizing bacterium Nocardia opaca 1b was compared with the analogous enzyme isolated from the Gram-negative bacterium Alcaligenes eutrophus H16. The hydrogenase of N. opaca 1b was purified by a new procedure applying chromatography on phenyl-Sepharose and DEAE-Sephacel with two columns in series. A homogeneous enzyme preparation with a specific activity of 74 mumol H2 oxidized.min-1.mg protein-1 and a yield of 32% was isolated. The A. eutrophus enzyme was purified as previously published. Both enzymes are tetrameric proteins composed of four non-identical subunits (alpha, beta, gamma, delta). The four subunits of both of these enzymes were separated and isolated as single polypeptides by preparative polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Immunological comparison of the four subunits of the Nocardia hydrogenase with those of the Alcaligenes enzyme showed that the alpha, beta, gamma, and delta subunits of one organism were serologically related to the analogous subunits of the other organism. Among themselves, the four subunits do not have any serological relationship. The eight individual polypeptides were also compared with respect to the NH2-terminal amino acid sequences determined by automated Edman degradation and to the amino acid compositions. Strong sequence similarities exist between the analogous subunits isolated from the two bacteria. Within the established N-terminal sequences the similarities between both alpha, beta, gamma and delta subunits amount to 63%, 79%, 80% and 65%, respectively. No similarities exist between the different, non-analogous subunits alpha, beta, gamma and delta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号