首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  国内免费   19篇
  2024年   1篇
  2021年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2007年   3篇
  2006年   4篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
【目的】研究环酰亚胺水解酶(Imidase,CIH)中的两个半胱氨酸残基的反应性及功能。【方法】设计了3个半胱氨酸突变酶:CIH7,108、CIH7、CIH108。将天然酶以及突变酶基因分别与麦芽糖结合蛋白(MBP)基因在大肠杆菌(Escherichia coli)中进行融合表达,融合蛋白经纯化后得到了电泳纯的样品。使用5,5’-二硫代双(2-硝基苯甲酸)(DTNB)对天然酶CIH的巯基基团进行修饰,并分析了DTT对分子状态的影响。进一步研究了经H2O2处理后CIH及其突变酶的锌离子结合能力及分子状态。【结果】酶活测定表明CIH7,108和CIH7的活力基本丧失,而CIH108仍保持了72%的酶活性。CIH中的两个半胱氨酸残基以游离形式存在,不形成链内或链间二硫键。CIH与CIH108为四聚体结构且具有一定的锌离子结合能力,CIH7,108为多聚体,CIH7为单体及多体的混合物且都不具备锌离子结合能力,随着H2O2浓度的增加,CIH中的链内二硫键及CIH108中的链间二硫键逐渐增加。【结论】说明Cys7是结合锌离子和稳定CIH分子结构的必要残基。  相似文献   
2.
叶绿醌是由1个萘醌环和1个半不饱和植基侧链组成的一类光系统Ⅰ(photosystem Ⅰ,PSⅠ)特有的辅因子。目前,在蓝藻中对其生物合成途径的研究主要集中在萘醌环的形成方面,而对其植基侧链的合成尚缺乏相关报道。本研究通过与近期在拟南芥中发现的1种催化植基单磷酸形成植基二磷酸的激酶(VTE6)进行同源序列比对,在集胞藻 PCC 6803中发现1个与之高度同源的蛋白质Sll0875。研究发现,在Sll0875缺失突变体中,叶绿醌和生育酚的含量缺失,叶绿素的含量降低(P<0.05),且该突变体在无葡萄糖培养基中生长迟缓。进一步利用叶绿素荧光、P700氧化还原动力学、77K低温荧光光谱和免疫印迹分析等方法分析了该蛋白质的缺失对PSⅠ功能的影响。研究表明,在突变体Δsll0875中, PSⅠ活性下降,PSⅠ亚基含量与野生型相比显著降低(P<0.01)。这一结果表明,叶绿醌的缺失影响了PSⅠ复合物的累积,导致PSⅠ功能受损,从而影响了蓝藻正常的生长和发育。本研究在蓝藻中证实植醇磷酸化途径对叶绿醌合成的重要性,为进一步研究蓝藻中叶绿醌在PSⅠ复合物的合成、组装和稳定等过程中的作用奠定基础。  相似文献   
3.
Eglin C是来自水蛭中的一种小型热稳定蛋白质,属于马铃薯胰凝乳蛋白酶抑制剂家族,可以抑制弹性蛋白酶、枯草杆菌蛋白酶、组织蛋白酶、α-lytic蛋白酶以及胰凝乳蛋白酶等。然而,利用eglin C纯化蛋白酶,尚未见研究报道。本文将化学合成的编码 eglin C及其突变体的基因序列,克隆到原核表达载体pQE30,在大肠杆菌BL21获得His6-Tag-eglin C及其突变体的重组蛋白质。SDS-PAGE显示,eglin C蛋白的分子量大约8 kD。His6-Tag-eglin C对胰凝乳蛋白酶、地衣芽孢杆菌2709碱性蛋白酶、枯草芽孢杆菌PB92碱性蛋白酶、枯草杆菌中性蛋白酶的半抑制剂浓度(IC50)分别为0.20±0.15、0.24±0.19、3.33±0.47和52.46±0.38 μmol/L。利用分子对接、基因突变以及荧光光谱等,分析eglin C及其突变体与2709蛋白酶的相互作用。结果显示,2709碱性蛋白酶对eglin C荧光淬灭属于静态淬灭,解离常数为2.60×10-7 mol/L,eglin C中的Asn50 残基对eglin C和2709碱性蛋白酶的结合发挥重要作用。利用eglin C与蛋白酶的特异结合的特性,构建亲和纯化载体,用于纯化来源于地衣芽孢杆菌的2709碱性蛋白酶,相比常规的蛋白酶纯化,显著简化了操作步骤。  相似文献   
4.
蛋白质与脂质的相互作用是细胞内多种生命现象的基础之一,两者相互作用的研究方法以及相互作用的机制都是当前生物化学研究的热点之一。该文介绍两者相互作用的不同研究方法,并比较了各种方法的优缺点和适用范围。  相似文献   
5.
蛋白激酶Ca相互作用蛋白的结构与功能   总被引:1,自引:0,他引:1  
蛋白激酶Cα相互作用蛋白(proteininteractingwithCαkinase,PICK1)是蛋白激酶Cα(proteinkinaseCα,PKCα)的靶蛋白之一,也是在PKCα和突触后膜受体蛋白间起重要作用的衔接蛋白。PICK1分别由PDZ结构域、BAR结构域以及卷曲螺旋区和酸性氨基酸区组成。PICK1中的PDZ结构域和受体蛋白、转运蛋白、衔接蛋白的相互作用报道较多,BAR结构域则与支架蛋白、质膜等相互作用。PICK1在突触可塑性、神经递质传递、外周神经感觉、细胞生长和黏连等方面发挥重要作用。本文对PICK1的结构和功能进行综述。  相似文献   
6.
D 海因酶是工业上生产D 型氨基酸的关键酶 ,用热变性 ,硫酸铵沉淀及SepharoseQfastflow ,Phenyl Sepharosefastflow ,Superose 1 2等柱层析步骤从Pseudomonas 2 2 62菌体中分离纯化了该酶 ,纯化倍数约为 60 ,活力回收约为 1 6%。该酶为同源二聚体 ,分子量约为 1 0 9kD ,亚基分子量约为 53 7kD ,反应最适pH为 8 0 ,最适温度为 70℃ ,在pH6.0~ 1 0 0和温度 60℃以下稳定 ,该酶对巯基试剂敏感 ,大多数二价金属离子如镁、锰离子等能促使酶活提高 ,但高浓度锌离子能抑制酶活 ,以二氢尿嘧啶为底物的米氏常数Km =2 .5× 1 0 - 2 mol L。该酶的N末端1 0个氨基酸残基依次为MDKLIKNGTI  相似文献   
7.
L-periaxin是外周神经系统特异表达的骨架蛋白之一,占外周神经系统髓鞘总蛋白质的16%,参与髓鞘形成和维护。埃兹蛋白(Ezrin)属于Ezrin-Radxin-Moesin(ERM)蛋白质家族,与细胞黏附、迁移、生存以及肿瘤的发生、发展相关。作者前期研究证实,L-periaxin与Ezrin通过"头对头,尾对尾"的模式相互结合。本文通过双分子荧光互补、免疫共沉淀、GST pull down、荧光共定位、海肾荧光素酶互补、荧光光谱以及分子对接等方法,揭示L-periaxin的核定位信号区(nuclear location signal,NLS)与蛋白质Ezrin的FERM(Ezrin Radixin Moesin)结构域的"头对头"相互结合,依赖Lperiaxin第3段核定位信号序列NLS3与Ezrin的FERM结构域的F3亚结构域。本结果为进一步理解Ezrin在髓鞘化过程中的作用,以及阐明调节L-periaxin蛋白功能的信号通路奠定基础。  相似文献   
8.
对一菌两酶工程菌HC01转化底物DL-对羟基苯海因(DL-HPH)的最适条件及其细胞固定化进行了研究,HC01游离细胞转化DL-HPH的最适条件为40°C、pH7.5。通过对固定化细胞酶活力测定,确定细胞固定化的最优条件为海藻酸钠浓度2.5%、细胞浓度0.029g/mL、钙离子浓度3%。固定化HC01的热稳定性比游离细胞高5°C,二价金属离子Mn2+、Mg2+、Cu2+、Co2+和Ni2+在浓度为0.1mmol/L时对固定化细胞中D-海因酶(HYD)和N-氨甲酰-D-氨基酸酰胺水解酶(CAB)两酶的活力无显著影响,Mn2+和Mg2+可分别使游离细胞中CAB活力提高至原来的2.1和2.7倍。在氮气保护下,当初始pH为9.0、转化温度为40°C、转速为80r/min,利用固定化HC01转化30g/L的DL-HPH时,36h后转化率可达97%左右,产物D-HPG经纯化后光学纯度达到99.7%,得率可达85%。  相似文献   
9.
腓骨肌萎缩症4F亚型是Periaxin基因的突变所导致一种脱髓鞘型遗传病. Periaxin蛋白是外周神经系统中特异且大量表达的蛋白,在髓鞘成熟与维护中发挥重要作用.而Ezrin是一种膜骨架连接蛋白,在细胞形态的维持、运动、黏附等方面发挥重要作用.在前期已证实L-periaxin与Ezrin间存在蛋白互作的基础上,本文通过分子荧光互补实验,结合免疫荧光定位实验、免疫共沉淀等技术,进一步分析并揭示了L-periaxin蛋白与Ezrin蛋白之间的互作方式,具体为L-periaxin(1 200 aa)与Ezrin(1 296 aa)以及L-periaxin (1 060~1 461 aa)与Ezrin(475~585 aa)以“头对头”与“尾对尾”的方式发生相互作用.Ezrin可能是一种引导L-periaxin在施万细胞膜上堆积的新的分子配体,二者可能通过蛋白分子间更加紧密的方式完成在细胞膜处的堆积,参与到髓鞘的维护中.  相似文献   
10.
Periaxin是施旺氏细胞(Schwann cells)与晶状体纤维细胞中特异表达的支架蛋白之一.在施旺氏细胞包裹轴突形成髓鞘过程中,periaxin蛋白参与髓鞘的延展、修复及再生等.PRX基因的缺失或突变将引起脱髓鞘型腓骨肌萎缩症(CMT)4F亚型的发生.本文就periaxin蛋白分子结构特点、生理学功能、以及其基因突变与脱髓鞘型腓骨肌萎缩症CMT4F亚型的发生等进行综述.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号