首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
随着全球性“白色污染”的日趋严重和人类对改善自身生存环境意识的日益增强,人们在寻求可与环境同化的高分子材料——生物可降解塑料,取代不能生物降解的塑料,消除“白色污染”。聚(-羟基丁酸酯(PHB)是由生物发酵获得的一种可生物降解的脂肪族聚酯,它除了具有高聚物的基本性质外,其可生物降解性和生物相容性倍受人们关注。因此,PHB作为一种新型的可生物降解高分子材料具有广泛的应用前景。然而,PHB的生物降解特性有其自身的特殊性。首先,PHB作为胞内碳源和能源贮存物,在细胞内易于被本身产生的胞内酶降解。但将其从细胞内…  相似文献   

2.
一株可降解聚b-羟基丁酸酯的真菌   总被引:1,自引:0,他引:1  
随着全球性"白色污染"的日趋严重和人类对改善自身生存环境意识的日益增强,人们在寻求可与环境同化的高分子材料--生物可降解塑料,取代不能生物降解的塑料,消除"白色污染"。 聚b-羟基丁酸酯(PHB)是由生物发酵获得的一种可生物降解的脂肪族聚酯,它除了具有高聚物的基本性质外,其可生物降解性和生物相容性倍受人们关注。因此,PHB作为一种新型的可生物降解高分子材料具有广泛的应用前景。  相似文献   

3.
石油基塑料进入环境后会造成污染并影响人体健康。因此,寻找石油基塑料的替代品成为未来发展的趋势。生物塑料因其具有良好的生物降解性与安全性,近年来备受关注,尤其是作为生物塑料之一的聚-β-羟基丁酸酯(Poly-β-Hydroxybutyrate,PHB),已成为生产生物塑料制品的重要来源。光合细菌(Photosynthetic Bacteria,PSB)是生产PHB的重要原料。PSB可利用废水中廉价的碳源为底物累积PHB,能实现废水资源化,其应用前景广阔。本文系统地总结了目前可生产PHB的PSB菌种、PHB在菌体内的合成途径、影响PSB累积PHB的因素和目前利用废水培养紫色非硫菌(Purple Non-Sulfur Bacteria,PNSB)并累积PHB的研究现状,并对以废水生产PHB的PNSB污水资源化这一技术的工程化应用提出了展望,以期为解决石油基塑料污染与废水资源化提供新的思路与参考。  相似文献   

4.
能生产多聚羟丁酸(PHB)(一种可生物降解的塑料)的植物将成为今后开发的有力目标。加州斯坦福Carnegie Institution of Wasbington的Chris Somerville及其研究小组报道,在提高拟南芥属PHB生产水平上取得了显著进展,使PHB浓度提高了100倍以上。关键步骤是利用豌豆序列,将PHB的表达  相似文献   

5.
聚-β-羟丁酸(PHB)是一种热塑性聚酯,在Ralstonia eutropha和Bacillus megaterium等细菌中常有出现。虽然PHB是可被生物降解的,而且不需依赖化石资源,但这种生物塑料的生产成本在传统上远高于基于石油生产的塑料。发表在《Microbial Cell Factories》的最新研究描述了一种用微藻生产PHB的方法。  相似文献   

6.
Agrieell Reporter 2003年40卷3期19页报道:已知利用编码β-酮硫解酶(pha A)、乙酰乙酰辅酶A还原酶(phaB)和3-羟基丁酸聚酯(PHB)合酶(pha C)的三种基因细菌(Ralstonia eutropha)的顺序性作用,可使其合成理化特性类似于人工合成聚合物的PHB。由于这种PHB可以生物降解,故认为其可用作工业上生产塑料的原材料。  相似文献   

7.
<正>传统聚烯烃塑料在自然界中很难降解,塑料垃圾(也称"白色污染")遍布全球,给自然界的污染问题带来巨大困扰。生物降解塑料是指一类由自然界存在的微生物如细菌、霉菌(真菌)和藻类的作用而引起降解的塑料。理想的生物降解塑料是一种具有优良的使用性能、废弃后可被环境微生物完全分解、最终被无机化而成为自然界中碳素循环的一个组成部分的高分子材料。  相似文献   

8.
热塑性塑料多羟基丁酸酯(PHB)是一种可被生物降解、对辐射有抗性并具有压电特性(piezoelec-tric property)的材料,广泛用于医学外科、医药、农业、食品工业和环境保护各领域。用微生物发酵法可以生产这种塑料。但是,由于生产工艺中的提  相似文献   

9.
聚-β-羟基丁酸酯(polyhydroxybutyrate,PHB)是一种可完全生物降解和具有良好生物相容性的高分子材料,可作为传统塑料的替代品,在塑料、化学药品和饲料市场上具有巨大的商业应用价值。近年来,用植物生产新型生物聚合物PHB的技术取得一定进展,可望通过农业生产提供可再生的工业原料,这使得它具有广泛的发展前景。采用转基因方法可以大幅度提高用植物生产PHB的产量,包括控制启动子来驱使转基因表达,减少内源性酶在竞争性代谢途径中的活性,通过插入的基因来增加聚合物的碳含量。这些研究成果增加了我们对碳的可获取性的了解和区分不同的植物细胞器、细胞和器官类型的能力,推动了用植物生产PHB及其他产物的进展。  相似文献   

10.
利用作物生产生物可降解塑料 多羟基链烷酸酯(PHA)是一类可制造部分或整体可生物降解的塑料制品的化合物,存在于各种细菌中。曾通过细菌发酵进行过商品化生产。通过改变发酵过程中所用的碳源和细菌菌株可生产具有各种特性的PHA聚合物。但人们认为,细菌PHA的生产成本比合成塑料高,由此限制了它在消费产品中的应用程度。如果编码PHA生产的基因能够转移并在作物中表达,则可以百万吨的规模低价合成,与之相比,细菌发酵才以千吨规模生产PHA。 为了探讨在植物中合成PHA的可行性,华盛顿Carnegie研究院的研究人员将两个细菌基因(编码合成100%可降解PHA多羟基丁酸(PHB)的酶)转移到拟南芥中。结果发现,转基因植株液泡、核和胞质中含有少量的PHB,但质体或线粒体中却不含PHB。同时,转基因植株生长缓慢、产籽量降低。但若  相似文献   

11.
德国蒂宾根大学的研究人员在最近的Microbial Cell Factories和PNAS上发表的几项研究中,介绍了他们成功地改变了蓝细菌的代谢通路,生产出了具有良好生物降解特性的有前途的生物塑料替代品——PHB。该方法有望在工业上大量使用,与对环境有害的石油基塑料竞争。蓝细菌,又称微藻或蓝藻,是地球上最不起眼但功能最强大的细菌之一。  相似文献   

12.
柯为 《生物工程学报》2006,22(3):464-464
随着石油能源供需矛盾日趋紧张、油价上涨,以及源于石油生产的各类塑料制品废弃后难以降解,严重污染了环境(有“白色污染”之称),发展可生物降解的“生物塑料”(即生态友好塑料)以取而代之,是大势所趋,是塑料产业今后的发展方向。生物技术应用于生物塑料的发展有广阔的前景。日  相似文献   

13.
应用转基因植物生产生物降解塑料   总被引:6,自引:0,他引:6  
张莉  李润植 《生物技术》2002,12(1):37-39
随着石油化学工业塑料工业的发展 ,塑料用途的不断扩大 ,消费量日益增长 ,塑料废弃物所造成的“白色污染”已成为全球性公害。要从根本上解决这个问题 ,就必须针对塑料不能在环境中自然分解这一本质 ,研制和应用可降解塑料 ,特别是生物降解塑料。利用微生物发酵生产生物降解塑料已有成功的实践[1] 。但这种塑料的价格远高于现使用的不可降解塑料 ,实际应用受到限制。近年来 ,随着重组DNA技术的迅猛发展 ,研究开发转基因植物生产生物降解塑料勃然兴起 ,并已取得了可喜的进展[2 ,3 ] 。本文就生物降解塑料种类及细菌合成途径和转基因培育生…  相似文献   

14.
陈佳妮 《生物工程学报》2017,33(12):1934-1944
活性污泥(简称污泥)是废水处理产生的副产物,量大而且难以处理。本研究通过对污泥的高温热裂解处理,获得可用于培养微生物的营养物质。实验发现污泥热裂解液可以取代培养嗜盐单胞菌Halomonas CJN的氮磷源、酵母膏和微量元素,来生产生物可降解塑料聚-3-羟基丁酸酯(PHB)。进一步发现厌氧发酵污泥热裂解液产生的乙酸可以取代葡萄糖来作为碳源支持微生物的生长。这样,可以实现利用污泥热裂解液来生产生物塑料PHB。通过进一步在Halomonas CJN中构建附加PHB合成路径,可以实现完全用污泥热裂解液来高效生产PHB,粗略估计使PHB的制造成本从30 000元/t下降到20 000元/t,实现污泥变废为宝的目标。  相似文献   

15.
生物合成材料聚β-羟基丁酸(PHB)的研究进展   总被引:11,自引:0,他引:11  
聚β-羟基丁酸(PHB)是原核微生物在碳、氮营养失衡的情况下,作为碳源和能源贮存在生物体内的一类热塑性聚酯.它作为微生物合成的可降解材料,除了具有与化学合成高分子相似的性质外,还具有一般化学合成高分子没有的性质,如光学活性好、透氧性低、抗紫外线辐射、生物可降解性、生物组织相容性、压电性和抗凝血性等,具有广阔的应用前景,越来越受到人们的关注.国内外的许多公司和科研机构纷纷开展可降解塑料的研发工作.着重介绍了PHB的理化性质、检测方法、生物合成、降解以及基因改良菌种方面的研究进展,同时对其应用、目前存在的问题以及可能的解决方案进行了讨论.  相似文献   

16.
国外动态     
胡晓丽 《生物加工过程》2012,(4):6+53+69+76
新型纳米复合纸"多才多艺":记忆形状、测量酶活性瑞士联邦理工学院食品和软质材料科学教授拉斐尔的研究小组将蛋白纤维和石墨烯混合,由此制成的新型纳米复合纸"多才多艺",既可记忆形状、测量酶的活性,又可完全生物降解。该研究成果刊登在《Na-ture-Nano》上。  相似文献   

17.
合成塑料已广泛应用于国民经济各领域,是国民经济的支柱产业。然而,不规范生产、使用塑料制品以及处置塑料废弃物等问题,造成塑料在环境中长期累积,导致了严重的环境污染和碳资源浪费。生物降解是实现废塑料污染治理与资源化的新途径,已成为国内外废弃塑料处置研究的热点。近年来,在塑料降解微生物/酶资源的分离、筛选、鉴定以及对其进行工程化改造等方面取得了重要突破,为环境中微塑料的治理、废塑料的闭环循环再生提供了新的思路和方案。另一方面,利用微生物(纯菌或菌群)将塑料降解产生的单体进一步转化为生物可降解塑料及其他具有高附加值的化合物,对于解决废塑料的生态环境污染、推动塑料循环经济发展以及减少塑料在生命周期中的碳排放等方面具有重要意义。《生物工程学报》特组织出版“塑料的生物降解与转化”专刊,邀请了国内外塑料生物降解与转化领域的相关专家学者介绍了塑料生物降解资源的发掘、塑料解聚酶的设计与改造、塑料降解物的生物高值转化等领域最新进展和研究成果,收录了包括评论、综述、研究论文等类型的相关文章16篇,为塑料生物降解与转化的进一步研究提供借鉴和指导。  相似文献   

18.
随着全球塑料循环体系的变革升级,提高塑料的回收利用不仅可以减少塑料在生命周期中的碳排放,还可以解决废塑料潜在的生态环境危害。文中介绍了2019年国家自然科学基金组织间国际 (地区) 合作研究项目“废塑料资源高效生物降解转化的关键科学问题与技术 (MIXed plastics biodegradation and UPcycling using microbial communities,MIX-UP)”。该项目聚焦“塑料污染”这一全球化的问题,围绕中欧双方确定的“塑料生物降解菌群”研究领域,联合中欧双方14家优势科研单位,开展实质性的重大前沿合作研究。针对废塑料生物降解中存在的解聚与重塑两个难题,项目以难降解石油基塑料 (PP、PE、PUR、PET和PS) 以及生物可降解塑料 (PLA和PHA) 的混合废塑料作为研究对象,从塑料微生物降解途径解析及关键元件的挖掘与改造、塑料高效降解混菌/多酶体系的构建与功能调控、塑料降解物的高值化炼制途径设计与利用策略3个方面展开研究。本项目将突破废塑料生物降解转化中高效降解元件挖掘、塑料降解物高值化利用的关键科学问题与技术,探索一条废塑料资源化、高值化、循环化、低碳化的新塑料循环路线,建立以“降塑再造”为核心理念的废塑料生物炼制体系,丰富我国固废资源化生物技术利用平台。项目的实施不仅有助于提升我国塑料 (生物) 循环经济的理论基础和关键技术水平,还可以推动我国与国际科研院所的多边交流与合作,促进我国在生物技术领域的创新发展,助力我国碳中和目标的实现。  相似文献   

19.
由于复杂的遗传背景、较低的可育性和缺乏优异种质资源等因素给甘蔗品种改良带来了很大的困难,而通过转基因技术为甘蔗品种改良提供了有效的途径。甘蔗通过转基因,不仅在其抗虫性(螟虫和蚜虫)、抗病性(白条病、花叶病和黑穗病)、蔗糖改良(蔗糖产量、蔗糖纯度和色泽)、抗除草剂、抗旱性等方面已经取得了很大的进展,而且转基因甘蔗作为生物反应器生产重组蛋白(GM-CSF等)和生物塑料聚羟基丁酸酯(PHB)也取得了很好的成果。综述甘蔗主要性状遗传改良研究进展、转基因存在的问题以及转基因安全性研究状况,并对今后的甘蔗转基因育种前景和研究方向进行分析。  相似文献   

20.
李寿建  董彩虹 《菌物学报》2022,41(8):1279-1292
茯苓Wolfiporia hoelen是我国传统中药材之一,也是一种食药兼用的大型真菌,目前已规模化栽培,但由于其交配系统一直不明确,影响了种质改良。前期我们发现了茯苓的同核体,明确了茯苓的交配系统和生活史,并建立了以培养特性和分子标记区分同核体的方法,但未明确是否适用于茯苓种群的不同个体。在对多个菌株的研究中,发现了同核体表型与亲本不易区分的茯苓菌株。本研究主要以来自日本的菌株775 (NBRC 30628)为亲本,对其同核体菌株进行收集鉴定,并对同核体菌株的培养特性、交配现象和杂交等进行了研究。此类菌株的同核体菌株可通过与亲本对峙培养进行鉴定,但菌丝生长、菌落形态和吃料速度等与亲本没有显著差异,不同交配型的同核体之间交配时没有明显的交配现象。rpb2杂合位点标记可以用于鉴定该类型同核体菌株,且能验证是否交配。该类型同核体与之前发现的同核体类型之间可以进行杂交,杂交菌株可与两亲本都产生拮抗现象。该发现补充了之前建立的茯苓同核体鉴定方法,加深了对茯苓物种群体的了解,同时丰富了茯苓的育种资源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号