首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
几年前美国一家国家实验室研究人员发明生物炼制石油技术,即用一种极端纤细细菌的催化作用炼制优质的石油产品,该菌能在高温(60℃)下分离重油(注:重油指非常规石油的统称。包括重质油、高粘油、油沙、天然沥青等)中的硫氢、重金属物,使这些杂质含量降低20%~50%左右。这种生物炼油技术不仅提高“生物石油”的质量,而且更有利于环保。在炼制生物石油方面除细菌外,有些微藻也值得注意,一种叫丛粒藻(Botryococcus braunii,又称葡萄藻)的单胞藻,它产生的碳氢化合物占其干物质重量的15%~75%,最高达到90%,其组成与原油极为类似,经过加工处理后达到真正石油的指标。除了该藻藻体有“储能库”之称以外,微藻中还有小球藻、盐藻(均系绿藻类)等均有“储能”的潜力,都可用透明玻璃管作为“生物反应器”,通入含1%CO2的空气,对数增殖期测定其产烃量,已达到占细胞干重的16%-44%,每天可从藻体生物量中索取大量油烃化合物,完全有可能利用“环型玻璃管生物反应器”按需求量扩大再生产,从其生物量炼制生物石油。在美国,哈佛大学和斯坦福大学有关专家组建了一家公司想从生物炼油开辟新径:  相似文献   

2.
石油是不可再生能源系统的化石燃料之一,由复杂的碳氢化合物组成,以各烷烃为主体成分的混合物,也含有小量非烃化学成分所构成的混合物即所谓原油,由生物生成的烃类化合物燃料可算是“生物石油”或“石油替代物”。利用某些光合微生物包括光合细菌和某些单胞藻类行光合作用将CO2  相似文献   

3.
石油基塑料种类繁多、数量巨大、应用广泛,常见的有聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚氯乙烯(PVC)、聚对苯二甲酸乙二醇酯(PET)、聚氨酯(PUR)等。这些合成塑料因其高分子量、高疏水性及高化学键能的特点难以被微生物降解,从而在环境中长期存在和累积,"白色污染"已经成为一个全球性问题。因此安全经济的微生物降解合成塑料是人类面临的一个选择和难题。文中从微生物资源及相关酶学研究方面综述了聚苯乙烯、聚乙烯、聚丙烯、聚氨酯、聚对苯二甲酸乙二醇酯和聚氯乙烯这6种石油基塑料的生物降解的研究现状。目前关于上述6种石油基塑料的微生物降解研究依然大多停留在微生物资源的寻找中,已发现的具备相关能力的菌株种类较少,并且微生物降解效率均非常缓慢;对于其降解机理及关键基因和酶的研究比较少。文中为进一步开展塑料生物降解研究,寻找高效的塑料降解菌株资源以及进一步在遗传、分子和生化水平研究塑料生物降解机理研究,从而最终实现合成塑料的彻底降解和高值化利用提供了借鉴。  相似文献   

4.
石油基塑料进入环境后会造成污染并影响人体健康。因此,寻找石油基塑料的替代品成为未来发展的趋势。生物塑料因其具有良好的生物降解性与安全性,近年来备受关注,尤其是作为生物塑料之一的聚-β-羟基丁酸酯(Poly-β-Hydroxybutyrate,PHB),已成为生产生物塑料制品的重要来源。光合细菌(Photosynthetic Bacteria,PSB)是生产PHB的重要原料。PSB可利用废水中廉价的碳源为底物累积PHB,能实现废水资源化,其应用前景广阔。本文系统地总结了目前可生产PHB的PSB菌种、PHB在菌体内的合成途径、影响PSB累积PHB的因素和目前利用废水培养紫色非硫菌(Purple Non-Sulfur Bacteria,PNSB)并累积PHB的研究现状,并对以废水生产PHB的PNSB污水资源化这一技术的工程化应用提出了展望,以期为解决石油基塑料污染与废水资源化提供新的思路与参考。  相似文献   

5.
德国蒂宾根大学的研究人员在最近的Microbial Cell Factories和PNAS上发表的几项研究中,介绍了他们成功地改变了蓝细菌的代谢通路,生产出了具有良好生物降解特性的有前途的生物塑料替代品——PHB。该方法有望在工业上大量使用,与对环境有害的石油基塑料竞争。蓝细菌,又称微藻或蓝藻,是地球上最不起眼但功能最强大的细菌之一。  相似文献   

6.
随着全球塑料循环体系的变革升级,提高塑料的回收利用不仅可以减少塑料在生命周期中的碳排放,还可以解决废塑料潜在的生态环境危害。文中介绍了2019年国家自然科学基金组织间国际 (地区) 合作研究项目“废塑料资源高效生物降解转化的关键科学问题与技术 (MIXed plastics biodegradation and UPcycling using microbial communities,MIX-UP)”。该项目聚焦“塑料污染”这一全球化的问题,围绕中欧双方确定的“塑料生物降解菌群”研究领域,联合中欧双方14家优势科研单位,开展实质性的重大前沿合作研究。针对废塑料生物降解中存在的解聚与重塑两个难题,项目以难降解石油基塑料 (PP、PE、PUR、PET和PS) 以及生物可降解塑料 (PLA和PHA) 的混合废塑料作为研究对象,从塑料微生物降解途径解析及关键元件的挖掘与改造、塑料高效降解混菌/多酶体系的构建与功能调控、塑料降解物的高值化炼制途径设计与利用策略3个方面展开研究。本项目将突破废塑料生物降解转化中高效降解元件挖掘、塑料降解物高值化利用的关键科学问题与技术,探索一条废塑料资源化、高值化、循环化、低碳化的新塑料循环路线,建立以“降塑再造”为核心理念的废塑料生物炼制体系,丰富我国固废资源化生物技术利用平台。项目的实施不仅有助于提升我国塑料 (生物) 循环经济的理论基础和关键技术水平,还可以推动我国与国际科研院所的多边交流与合作,促进我国在生物技术领域的创新发展,助力我国碳中和目标的实现。  相似文献   

7.
研发动态     
《中国生物工程杂志》2007,27(12):119-122
生物分解塑料技术列入国家科技支撑计划全生物分解塑料的产业化关键技术目前列为“十一五”国家科技支撑计划重点项目,国家将拨款3000万元支持相关科研单位重点开发该技术。生物分解塑料是以生物质为原料,采用生物技术生产的树脂,是能完全降解成二氧化碳和水的一类量大面广的新型环保基础原材料,它可代替石油基塑料,从而减少对石油资源的依赖。此次国家重点支持的全生物分解塑料的产业化关键技术开发项目,将主要完成万吨级二氧化碳基塑料工业生产、万吨级聚乳酸工业生产、千吨级聚羟基烷酸酯的工业化、万吨级魔芋葡苷聚糖生产和应用、食品包…  相似文献   

8.
石油生物催化脱硫的研究进展   总被引:5,自引:0,他引:5  
石油生物催化脱硫技术是新兴的极具潜力的石油非加氢脱硫技术,在降低轻质油品生产成本、提高油品质量和环境保护等方面显示出潜在的优势,被誉为21世纪的石油脱硫技术。本文主要对石油生物催化脱硫技术特点、各种降解路线和研究现状进行了综述,指出了石油生物催化脱硫技术存在的问题,并提出了进一步研究发展的方向。  相似文献   

9.
生物塑料是在微生物作用下生成的塑料, 或者是以淀粉等天然物质为基础生成的塑料.生物塑料不依赖石油等化石资源,而是以生物质为原料,具有良好的生物相容性、生物可降解性、其降解产物无毒副作用以及能减少温室气体排放等优点,是具有重要意义的新材料.  相似文献   

10.
聚-β-羟丁酸(PHB)是一种热塑性聚酯,在Ralstonia eutropha和Bacillus megaterium等细菌中常有出现。虽然PHB是可被生物降解的,而且不需依赖化石资源,但这种生物塑料的生产成本在传统上远高于基于石油生产的塑料。发表在《Microbial Cell Factories》的最新研究描述了一种用微藻生产PHB的方法。  相似文献   

11.
随着国内外禁塑令和限塑令的升级,以聚乳酸(polylactic acid, PLA)为代表的生物基塑料成为传统石油基塑料市场的主要替代品,备受产业界的青睐。然而,公众对生物基塑料的认识仍存在诸多误解。事实上,生物基塑料的降解需要在特定条件下才能实现,泄入到自然环境中同样难以降解,会对人体、生物多样性和生态系统功能造成危害,这与传统石油基塑料相似。近年来,随着我国PLA产能和市场规模不断的提高,亟需进一步加强对PLA等生物基塑料降解性能的认识,挖掘PLA生物降解资源,关注和研究生物基塑料回收处理模式。基于上述背景,本文首先介绍了PLA塑料的性质及合成方式,以及PLA塑料的产业化与市场规模;其次,对目前聚乳酸塑料微生物与酶法降解的研究进展进行了综述,并对其生物降解机制进行了探讨;最后,提出了微生物原位处理和酶法闭环回收两种聚乳酸塑料废弃物生物处置方法,并对PLA生物基塑料的发展前景和趋势进行了展望。  相似文献   

12.
同源说与石油成因   总被引:4,自引:0,他引:4  
周俊 《化石》1997,(4):25-27
同源说与石油成因周俊关于石油(包括天然气)的成因曾在“石油,来自何方?”一文(见化石95-3期)中谈了一些看法,但这还远远不够,尤其是缺乏全面的分析。本文试就“有机说”与“无机说”的一些“事实证据”着手作些综合分析讨论,并将生命有机物起源与非生命有机...  相似文献   

13.
柯为 《生物工程学报》2006,22(3):498-498
生物柴油实际上就是生物油脂与甲醇或乙醇在酸、碱催化剂的作用下进行脂交换反应而制造的脂肪酸甲酯或乙酯;也可以在常温下由微生物脂酶催化进行酯化反应,其产品是一种可再生燃料,能替代石油柴油。这些生物柴油主要来自植物油或其它生物油脂,也有用废弃食用油为原料通过甲醇的酯交换反应来制造生物柴油的。研发这些生物柴油也可以说是节能的一项重要措施。在我国,对石油的需求量越来越大,石油进口量也随之猛增,显示出我国的能源形势日益严峻。面对这种情况,发展可再生能源或替代能源是个必然趋势,生物柴油便是其中之一。目前我国生物柴油的…  相似文献   

14.
《生物产业技术》2013,(2):20-24
生产原料部分或全部是生物质的塑料叫生物塑料。此前使用的生物塑料主要是在石油基塑料产品中混入淀粉、木质素的混合塑料和糖质发酵所得乳酸经聚合的聚乳酸(PLA)。在利用这种生物塑料加工的商品中,被业界有关人士称为迄今最成功的产品是日本可口可乐公司的PET(聚对苯二甲酸乙二醇酯,polyethylene terephthalate)瓶装饮用水伊洛哈斯(IL0HAS)。  相似文献   

15.
张彤  刘盼  王倩  梁泉峰  祁庆生 《生物工程学报》2021,37(10):3520-3534
伴随着环境污染的日益严重,处理"白色污染"成为人们面临的一个棘手难题,而各种合成塑料因为应用广泛且很难降解成为其"主要元凶"。利用自然界存在的或者是进化产生的微生物可降解合成塑料是一种环境友好型的策略。以国家自然科学基金国际(地区)合作和交流(中欧组织间合作研究NSFC-EU)项目"合成塑料降解转化微生物菌群"为基础,总结近年来筛选到的能够降解合成塑料,如聚乙烯(Polyethylene,PE)、聚丙烯(Polypropylene,PP)、聚苯乙烯(Polystyrene,PS)、聚氯乙烯(Polyvinyl chloride,PVC)、聚氨酯(Polyurethane,PUR)、聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)的纯细菌、纯真菌及微生物菌群的研究状况,分析了各种微生物在石油基塑料降解中的作用,讨论了微生物及其降解酶对合成塑料降解研究的优缺点。  相似文献   

16.
乙烯是重要的化工原料,目前基本来源于石油炼制。我国乙烯年消费量已超过2000万t,其中50%以上依赖进口。伴随着石油资源的枯竭和油价的高涨,以生物可再生资源替代石油资源开发基于生物制造的化学产品成为当今世界的研究热点。国家“十一五”863计划在生物和医药领域将“生物乙烯的生物炼制技术”作为重点项目,由南京工业大学牵头,联合中国石化、安徽丰原集团等国内优势企业和科研单位进行联合攻关,目前取得了可喜的进展,展示广阔的应用前景。  相似文献   

17.
分析了化石经济时代走入末路而将被生物炼制产业经济取代的必然性,生物炼制在原料来源和产品上显示了比石油炼制工艺的优越性,介绍了世界各国生物炼制产业发展状况及我国的现状,总结了生物炼制的基本过程,指出了我国生物炼制产业发展中存在的问题和对策,对全球生物炼制产业做了展望,阐述了生物炼制利用可再生资源是走可持续性经济发展道路的唯一实现途径,它必将引发全球性的技术变革。  相似文献   

18.
加强技术创新,走中国特色生物能源发展之路   总被引:1,自引:1,他引:0  
能源是人类社会生存和发展的必需品。化石资源的过度消耗引发石油短缺和气候变暖,已成为影响人类社会持续发展的重大问题,寻找石油替代产品成为全球共识。来源于生物质的能源具有环境友好和可再生性,在满足未来社会能源需求,特别是交通燃料需求中扮演重要角色,同时在推动化学工业可持续发展中将发挥重要作用,必将引领世界跨入强劲增长的生物经济时代。1国际发展的现状和趋势1.1生物能源开发成为国家发展战略,得到政府的大力支持2000年,美国通过了《生物质研究开发法案》,启动了生物质能源研究计划,并在2007年的“国情咨文”中提出了10年减20…  相似文献   

19.
我国是当前世界第二大石油消耗和进口国,对石油的需求正以惊人的速度增长。由于石油储量有限,可再生能源,如燃料乙醇和生物柴油等生物能源的应用,有望减少能源需求对石油的依赖程度。  相似文献   

20.
随着石油资源的日益枯竭,化石经济面临严峻的挑战,而以町再生生物质资源为基础的生物炼制正展现出其广阔的前景。通过石油炼制与生物炼制的对比,分析了生物炼制任各个方面所具有的优势。并以生物乙烯为例,阐述了其发展现状、存在问题及解决途径、未来发展趋势等。[编者按]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号