首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of morphology》2017,278(10):1354-1379
We analysed pretarsal characters of 87 species of Leiodidae (including 10 cholevines and representatives of all tribes and ca. 60% of the genera of non‐cholevines), five species of Agyrtidae, and nine representatives of outgroup taxa (Hydraenidae, Staphylinidae, Hydrophilidae, and Histeridae) using scanning electron microscopy. We focused our observations on the architecture of the empodium (including the sclerites and associated setae), the shape and composition of the medial projection of the distal margin of the terminal tarsomere, and the armature of the claws, which were considered a promising source of information for delimiting supraspecific taxa in our previous study. We identified several diagnostic features and recognize potential synapomorphies at the tribal, subtribal and generic levels. The internal systematic arrangement and/or even the monophyletic status of most of the subfamilies of Leiodidae (Camiarinae, Catopocerinae, Leiodinae, and Platypsyllinae) are challenged. We identified potential synapomorphies for Camiarinae (Camiarini and Agyrtodini) and Leiodinae. The non‐monophyly of Cholevinae is possible because part of the tribe (Anemadini, Eucatopini, and Oritocatopini) shares potentially apomorphic features with Leiodinae (e.g., a triangular medial projection with a diagonal row of conical spines), whereas another part (Leptodirini and Ptomaphagini) shares a potentially apomorphic feature with Coloninae and Platypsyllinae (a typical medial projection with two distinct triangular projections).  相似文献   

2.
3.
In their most recent classification of Apocynaceae in 2000, Endress and Bruyns recognized five subfamilies of Apocynaceae (Rauvolfioideae, Apocynoideae, Periplocoideae, Secamonoideae and Asclepiadoideae). Subsequently, through various studies using molecular data, it has been shown that most tribes and subtribes of Rauvolfioideae were not monophyletic, and new tribes and subtribes have been erected to reflect improved phylogenetic understanding of the family: Aspidospermeae in Rauvolfioideae; Nerieae, Odontadenieae and Baisseeae in Apocynoideae; Fockeeae in Asclepiadoideae; and Orthosiinae in Asclepiadeae. Several genera in Rauvolfioideae have been reassigned to different tribes in order to improve the monophyly of these tribes. The sister group of Asclepiadoideae plus Secamonoideae is not Periplocoideae, as formerly assumed, but tribe Baisseeae. Periplocoideae are nested in Apocynoideae. However, tribal composition remains unclear in some parts of the family. Clade structure in Apocynaceae is now generally well understood. The principal challenges now lie in identifying characters that can reflect and articulate these clades in a formal classification. Species‐rich, recent radiations such as core Asclepiadinae in Africa and the Metastematinae in Latin America present particular problems in this regard. © 2013 The Linnean Society of London  相似文献   

4.
As a step towards understanding the higher‐level phylogeny and evolutionary affinities of quadrifid noctuoid moths, we have undertaken the first large‐scale molecular phylogenetic analysis of the moth family Erebidae, including almost all subfamilies, as well as most tribes and subtribes. DNA sequence data for one mitochondrial gene (COI) and seven nuclear genes (EF‐1α, wingless, RpS5, IDH, MDH, GAPDH and CAD) were analysed for a total of 237 taxa, principally type genera of higher taxa. Data matrices (6407 bp in total) were analysed by parsimony with equal weighting and model‐based evolutionary methods (maximum likelihood), which revealed a well‐resolved skeleton phylogenetic hypothesis with 18 major lineages, which we treat here as subfamilies of Erebidae. We thus present a new phylogeny for Erebidae consisting of 18 moderate to strongly supported subfamilies: Scoliopteryginae, Rivulinae, Anobinae, Hypeninae, Lymantriinae, Pangraptinae, Herminiinae, Aganainae, Arctiinae, Calpinae, Hypocalinae, Eulepidotinae, Toxocampinae, Tinoliinae, Scolecocampinae, Hypenodinae, Boletobiinae and Erebinae. Where possible, each monophyletic lineage is diagnosed by autapomorphic morphological character states, and within each subfamily, monophyletic tribes and subtribes can be circumscribed, most of which can also be diagnosed by morphological apomorphies. All additional taxa sampled fell within one of the four previously recognized quadrifid families (mostly into Erebidae), which are now found to include two unusual monobasic taxa from New Guinea: Cocytiinae (now in Erebidae: Erebinae) and Eucocytiinae (now in Noctuidae: Pantheinae).  相似文献   

5.
Three traditional tribes of Fordini, Pemphigini and Eriosomatini comprise Pemphiginae, and there are two subtribes in Fordini and Pemphigini, respectively. Most of the species in this subfamily live heteroecious holocyclic lives with distinct primary host specificity. The three tribes of Pemphigini (except Prociphilina), Eriosomatini and Fordini use three families of plants, Salicaceae (Populus), Ulmaceae (Ulums) and Anacardiaceae (Pistacia and Rhus), as primary hosts, respectively, and form galls on them. Therefore, the Pemphigids are well known as gall makers, and their galls can be divided into true galls and pseudo-galls in type. We performed the first molecular phylogenetic study of Pemphiginae based on molecular data (EF-1alpha sequences). Results show that Pemphiginae is probably not a monophylum, but the monophyly of Fordini is supported robustly. The monophyly of Pemphigini is not supported, and two subtribes in it, Pemphigina and Prociphilina, are suggested to be raised to tribal level, equal with Fordini and Eriosomatini. The molecular phylogenetic analysis does not show definite relationships among the four tribes of Pemphiginae, as in the previous phylogenetic study based on morphology. It seems that the four tribes radiated at nearly the same time and then evolved independently. Based on this, we can speculate that galls originated independently four times in the four tribes, and there is no evidence to support that true galls are preceded by pseudo-galls, as in the case of thrips and willow sawflies.  相似文献   

6.
The tribes and subtribes of Aurantioideae, an economically important subfamily of the Rutaceae, have a controversial taxonomic history because of the lack of a phylogenetic framework. The rps16 and trnL-trnF sequences of the chloroplast were analyzed phylogenetically to construct an evolutionary history and evaluate the most recent classification system of Swingle and Reece (The Citrus Industry, volume 1 [1967]). Taxa representing tribes Citreae and Clauseneae and five of the six subtribes were sampled. Conflicts in the positions of some taxa between the rps16 and trnL-trnF trees are poorly supported. In all analyses, the Aurantioideae are monophyletic. The strict consensus tree of the combined analysis indicates that the two tribes along with the subtribes sampled are not monophyletic. The combined topology is not congruent with the widely used classification of Aurantioideae by Swingle and Reece. The tribes and subtribes are in need of revision.  相似文献   

7.
The morphology of the plantulae (= tarsal pulvilli = plantar lobes), structures attached to the underside of the tarsus in Hymenoptera, was examined in 55 genera from all 14 families of the basal lineages of Hymenoptera ('Symphyta') and a few species of Apocrita, using scanning electron microscopy. Two distinct types of plantula were found: (1) integrated , an unsclerotized patch positioned ventro-distally on each tarsomere, and (2) distal , a membranous vesicle attached to the apical end of each tarsomere. The evolution of these two types is discussed in the light of current phylogenetic hypotheses. The plantulae exhibit an astonishing variety of form and structural details; their potential phylogenetic and taxonomic value is discussed.  相似文献   

8.
9.
After a brief synopsis of the history of mantodean classification, a re-organized systematic arrangement of extant praying mantids is provided. To overcome past homoplasy problems, a phylogenetic framework based on male genital structure was used, supplemented by published morphological, chromosomal and molecular data. As already noticed by previous authors, external morphology is highly homoplastic and does not provide useful systematic tools above subfamily level. In contrast, the morphology of male external genitalia is largely congruent with the results of recent molecular phylogenies, but contradicts the most widely used past systems. Additionally, some genital structures widely used for taxonomic purposes could be shown to be not homologous, most notably the distal process. Evolutionary transitions of the distal process and the phalloid apophysis across the mantodean phylogenetic tree are identified and named. The phalloid apophysis of many derived mantodeans shows a tendency towards bifurcation into an anterior and a posterior lobe. This and other observed genital traits are hypothesized to be an adaptation of males towards a stable copulatory grasp in groups exhibiting increased sexual dimorphism, associated with an increased risk for the male to be cannibalized during copulation. Genital characters allowed most genera to be unambiguously assigned to the major clades (superfamilies) recovered by our genital and previous molecular data. The few exceptions concern genera with secondarily simplified genitalia lacking diagnostic structures. Taxonomic literature is very heterogeneous, and several subfamilies yet lacking any modern revisionary treatment will need further refinement. To account for phylogenetic constraints, i.e. correct for past polyphyletic groupings, the number of families was elevated to 29, and the number of subfamilies to 60. We establish the new family Leptomantellidae, the new subfamilies Brancsikiinae and Deiphobinae, the new tribes Leptomiopterygini, Hagiomantini, Gonypetellini, Bolbellini, Epsomantini, Neomantini, Amantini, Armenini, Danuriellini, Deiphobini, Cotigaonopsini, Didymocoryphini, Oxyelaeini, Heterochaetulini, Rhodomantini and Pseudoxyopsidini, and the new subtribes Amphecostephanina, Bolbina, Tricondylomimina, Gonypetyllina, Antistiina, Toxomantina and Tarachomantina. New morphological diagnoses are provided for the currently recognized families. Despite a few yet to be solved problems, this work offers the urgently needed working base for future studies in Mantodean systematics, life history and ecology.  相似文献   

10.
The tribes and subtribes of Aurantioideae, an economically important subfamily of the Rutaceae, have a controversial taxonomic history because a phylogenetic framework has been lacking. In order to construct an evolutionary history and evaluate the most recent classification system [Swingle and Reece 1967. The botany of Citrus and its wild relatives, in: The Citrus Industry, vol. 1, History, World Distribution, Botany, and Varieties. University of California, Berkeley, pp. 190-430], one nuclear and three noncoding chloroplast genes were sequenced and analyzed phylogenetically along with selected non-molecular characters. Taxa representing tribes Citreae and Clauseneae and their six subtribes were sampled. In all analyses Aurantioideae is monophyletic. The majority-rule consensus tree from the combined analysis indicates that the two tribes are not monophyletic. The combined topology is not congruent with the widely used classification of Aurantioideae by Swingle and Reece (1967). The tribes and subtribes are in need of revision.  相似文献   

11.
Tiger beetles are a remarkable group that captivates amateur entomologists, taxonomists and evolutionary biologists alike. This diverse clade of beetles comprises about 2300 currently described species found across the globe. Despite the charisma and scientific interest of this lineage, remarkably few studies have examined its phylogenetic relationships with large taxon sampling. Prior phylogenetic studies have focused on relationships within cicindeline tribes or genera, and none of the studies have included sufficient taxon sampling to conclusively examine broad species patterns across the entire subfamily. Studies that have attempted to reconstruct higher‐level relationships of Cicindelinae have yielded conflicting results. Here, we present the first taxonomically comprehensive molecular phylogeny of Cicindelinae to date, with the goal of creating a framework for future studies focusing on this important insect lineage. We utilized all available published molecular data, generating a final concatenated dataset including 328 cicindeline species, with molecular data sampled from six protein‐coding gene fragments and three ribosomal gene fragments. Our maximum‐likelihood phylogenetic inferences recover Cicindelinae as sister to the wrinkled bark beetles of the subfamily Rhysodinae. This new phylogenetic hypothesis for Cicindelinae contradicts our current understanding of tiger beetle phylogenetic relationships, with several tribes, subtribes and genera being inferred as paraphyletic. Most notably, the tribe Manticorini is recovered nested within Platychilini including the genera Amblycheila Say, Omus Eschscholtz, Picnochile Motschulsky and Platychile Macleay. The tribe Megacephalini is recovered as paraphyletic due to the placement of the monophyletic subtribe Oxycheilina as sister to Cicindelini, whereas the monophyletic Megacephalina is inferred as sister to Oxycheilina, Cicindelini and Collyridini. The tribe Collyridini is paraphyletic with the subtribes Collyridina and Tricondylina in one clade, and Ctenostomina in a second one. The tribe Cicindelini is recovered as monophyletic although several genera are inferred as para‐ or polyphyletic. Our results provide a novel phylogenetic framework to revise the classification of tiger beetles and to encourage the generation of focused molecular datasets that will permit investigation of the evolutionary history of this lineage through space and time.  相似文献   

12.
We present an updated worldwide phylogenetic classification of Poaceae with 11 783 species in 12 subfamilies, 7 supertribes, 54 tribes, 5 super subtribes, 109 subtribes, and 789 accepted genera. The subfamilies (in descending order based on the number of species) are Pooideae with 4126 species in 219 genera, 15 tribes, and 34 subtribes; Panicoideae with 3325 species in 242 genera, 14 tribes, and 24 subtribes; Bambusoideae with 1698 species in 136 genera, 3 tribes, and 19 subtribes; Chloridoideae with 1603 species in 121 genera, 5 tribes, and 30 subtribes; Aristidoideae with 367 species in three generaand one tribe; Danthonioideae with 292 species in 19 generaand 1 tribe; Micrairoideae with 192 species in nine generaand three tribes; Oryzoideae with 117 species in 19 genera, 4 tribes, and 2 subtribes; Arundinoideae with 36 species in 14 genera and 3 tribes; Pharoideae with 12 species in three generaand one tribe; Puelioideae with 11 species in two generaand two tribes; and the Anomochlooideae with four species in two generaand two tribes. Two new tribes and 22 new or resurrected subtribes are recognized. Forty-five new (28) and resurrected (17) genera are accepted, and 24 previously accepted genera are placed in synonymy. We also provide an updated list of all accepted genera including common synonyms, genus authors, number of species in each accepted genus, and subfamily affiliation. We propose Locajonoa, a new name and rank with a new combination, L. coerulescens. The following seven new combinations are made in Lorenzochloa: L. bomanii, L. henrardiana, L. mucronata, L. obtusa, L. orurensis, L. rigidiseta, and L. venusta.  相似文献   

13.
This work describes an application of artificial neural networks on a small data set of sesquiterpene lactones (STLs) of three tribes of the family Asteraceae. Structurally different types of representative STLs from seven subtribes of the tribes Eupatorieae, Heliantheae and Vernonieae were selected as input data for self-organizing neural networks. Encoding the 3D molecular structures of STLs and their projection onto Kohonen maps allowed the classification of Asteraceae into tribes and subtribes. This approach allowed the evaluation of structural similarities among different sets of 3D structures of sesquiterpene lactones and their correlation with the current taxonomic classification of the family. Predictions of the occurrence of STLs from a plant species according to the taxa they belong to were also performed by the networks. The methodology used in this work can be applied to chemosystematic or chemotaxonomic studies of Asteraceae.  相似文献   

14.
We have inferred the first empirically supported hypothesis of relationships for the cosmopolitan butterfly subfamily Satyrinae. We used 3090 base pairs of DNA from the mitochondrial gene COI and the nuclear genes EF-1alpha and wingless for 165 Satyrinae taxa representing 4 tribes and 15 subtribes, and 26 outgroups, in order to test the monophyly of the subfamily and elucidate phylogenetic relationships of its major lineages. In a combined analysis, the three gene regions supported an almost fully resolved topology, which recovered Satyrinae as polyphyletic, and revealed that the current classification of suprageneric taxa within the subfamily is comprised almost completely of unnatural assemblages. The most noteworthy findings are that Manataria is closely related to Melanitini; Palaeonympha belongs to Euptychiina; Oressinoma, Orsotriaena and Coenonympha group with the Hypocystina; Miller's (1968). Parargina is polyphyletic and its components group with multiple distantly related lineages; and the subtribes Elymniina and Zetherina fall outside the Satyrinae. The three gene regions used in a combined analysis prove to be very effective in resolving relationships of Satyrinae at the subtribal and tribal levels. Further sampling of the taxa closely related to Satyrinae, as well as more extensive sampling of genera within the tribes and subtribes for this group will be critical to test the monophyly of the subfamily and establish a stronger basis for future biogeographical and evolutionary studies.  相似文献   

15.
Chatzimanolis, S., Cohen, I. M., Schomann, A. & Solodovnikov, A. (2010). Molecular phylogeny of the mega‐diverse rove beetle tribe Staphylinini (Insecta, Coleoptera, Staphylinidae). —Zoologica Scripta, 39, 436–449. Phylogeny of the rove beetle tribe Staphylinini is explored by parsimony and Bayesian analyses of sequences of four genes (COI, wingless, Topoisomerase I, and 28S) for 43 ingroup (various genera of Staphylinini) and eight outgroup (two genera of Paederinae, six genera of other tribes of Staphylininae) taxa. Analyses were conducted for each gene independently and for the concatenated data set. Results of the most robust combined analyses were compared with the morphology‐based phylogenies of Staphylinini (‘test phylogeny’), and with the conventional classification of this tribe. Molecular results were congruent with the ‘test phylogeny’ in the following: ancestors of Staphylinini were ‘Quediina‐like’ lineages; formal subtribe Quediina mixes at least two relatively basal groups, ‘Quediina propria’ and ‘southern Quediina’; specialized subtribe Amblyopinina is an internal clade within ‘southern Quediina’; a relatively deeply nested ‘Staphylinini propria’ that unites current subtribes Staphylinina, Eucibdelina, Anisolinina, Xanthopygina and Philonthina is well supported as a monophyletic group. In strong contrast with morphology, molecular data place the tribes Othiini and Xantholinini nested within Staphylinini. Molecular results strongly conflict with morphology by uniting morphologically very different genera Holisus and Atanygnathus in one clade that has uncertain position within Staphylinini. Consistently with the most congruent areas of the morphology‐ and molecular‐based phylogenies, taxonomic changes are implemented for the formal subtribes Quediina and Amblyopinina.  相似文献   

16.
17.
18.
We report the phylogenetic utility of the nuclear gene encoding the long-wavelength opsin (LW Rh) for tribes of bees. Aligned nucleotide sequences were examined in multiple taxa from the four tribes comprising the corbiculate bees within the subfamily Apinae. Phylogenetic analyses of sequence variation in a 502-bp fragment (approx 40% of the coding region) strongly supported the monophyly of each of the four tribes, which are well established from previous studies of morphology and DNA. Trees estimated from parsimony and maximum likelihood analyses of LW Rh sequences show a strongly supported relationship between the tribes Meliponini and Bombini, a relationship that has been found uniformly in studies of other genes (28S, 16S, and cytochrome b). All of the tribal clades as well as relationships among the tribes are supported by high bootstrap values, suggesting the utility of LW Rh in estimating tribal and subfamily rank for these bees. The sequences exhibit minimal base composition bias. Both 1st + 2nd and 3rd position sites provide information for estimating a reliable tree topology. These results suggest that LW Rh, which has not been reported previously in studies of organismal phylogenetics, could provide important new data from the nuclear genome for phylogeny reconstruction.  相似文献   

19.
The availability of standard protocols to obtain DNA sequences has allowed the inference of phylogenetic Hypotheses for many taxa, including moths. We here have inferred a phylogeny using maximum‐Likelihood and Bayesian approaches for a species‐rich group of moths (Erebidae, Arctiinae), with strong emphasis on Neotropical genera collected in different field campaigns in the Atlantic Forest of Brazil, eastern Amazon and southern Ecuador. A total of 277 species belonging to 246 genera were included in the analysis. Our main objectives were to shed light on the relationships between suprageneric groups, especially subtribes, and hypothesize colonization events in and out of the Neotropics. The monophyly of Arctiinae and its four tribes (Lithosiini, Amerilini, Syntomini and Arctiini) was recovered in the ML and Bayesian trees. Three Lithosiini subtribes previously found and two additional species groups were recovered monophyletic in both phylogenetic estimation methods. In Arctiini, the monophyly of Spilosomina and Arctiina was highly supported in the ML and Bayesian trees, but the monophyly of Ctenuchina and Echromiina was weakly supported in the ML tree and absent in the Bayesian tree; the remaining subtribes were paraphyletic and, in the case of Phageopterina, formed several species groups. The mapping of species occurrence in our ML tree suggests that Arctiinae have an Old World origin and that the Neotropical region was colonized at least six times independently. Our analysis also suggests that a number of species that occur in Neotropical and other zoogeographic regions may have originated in the Neotropics, although further taxon sampling is required to support this hypothesis. To our knowledge, this is the first time that a highly speciose group of tropical moths is well covered in a phylogeny, and it seems plausible that the results reported here may be extendable to other species‐rich tropical undersampled moth taxa.  相似文献   

20.
Evolution of sexual dimorphism in animals has long been of interest to scientists, but relatively few studies have reconstructed evolutionary patterns of extreme sexual dimorphism at a phylogenetic scale, especially in insects. Millipede assassin bugs (Heteroptera: Reduviidae: Ectrichodiinae; 736 spp.) and their sister taxon, Tribelocephalinae (150 spp.), exhibit sexual dimorphism that ranges from limited to extreme, a phenomenon apparently modulated by female morphology. Here, we reconstruct the first phylogeny for the subfamilies Ectrichodiinae and Tribelocephalinae with comprehensive generic representation (152 taxa in 72 genera) using morphological and molecular data (six gene regions). The combined phylogenetic results indicate that Tribelocephalinae are paraphyletic with respect to Ectrichodiinae, and that Ectrichodiinae themselves are polyphyletic. Based on these results, we synonymize Tribelocephalinae with Ectrichodiinae syn.n. , describe three new tribes (Ectrichodiini trib.n. , Tribelocodiini trib.n. , and Abelocephalini trib.n. ) and two new subtribes (Opistoplatyina subtrib.n. and Tribelocephalina subtrib.n. ), and revise Tribelocephalini sensu n. Ancestral state reconstruction of sexual dimorphism reconstructed limited sexual dimorphism in the ancestor of Ectrichodiinae sensu n. with at least seven evolutionary transitions to extreme sexual dimorphism within the clade. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:C810E20F‐D66A‐461F‐A0E6‐AB1073EA3E3C .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号