首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang M  Nie X  Cao T  Wang J  Li T  Zhang X  Guo Y  Ma E  Zhong Y 《Molecular biology reports》2012,39(6):6529-6536
As an important pest in the Slender Leaved Willow (Salix alba), Apatura metis is called Freyer’s purple emperor, and its mitochondrial genome is 15,236 bp long. The encoded genes for 22 tRNA genes, two ribosomal RNA (rrnL and rrnS) genes, and 13 protein-coding genes (PCGs), and a control region in the A. metis mitochondria are highly homologous to other lepidopteran species. The mitochondrial genome of A. metis is biased toward a high A + T content (A + T = 80.5%). All protein-coding genes, except for COI begins with the CGA codon as observed in other lepidopterans, start with a typical ATN initiation codon. All tRNAs show the classic clover-leaf structure, except that the dihydrouridine (DHU) arm of tRNA Ser(AGN) forms a simple loop. The A. metis A + T-rich region contains some conserved structures including a structure combining the motif ‘ATAGA’ and 19 bp poly (T) stretch, which is similar to those found in other lepidopteran mitogenomes. The phylogenetic analyses of lepidopterans based on mitogenomes sequences demonstrate that each of the six superfamilies is monophyletic, and the relationship among them is (((Noctuoidea + (Geometroidea + Bombycoidea)) + Pyraloidea) + Papilionoidea) + Tortricoidea. In Papilionoidea group, our conclusion argues that ((Lycaenidae + Pieridae) + Nymphalidae) + Papilionidae.  相似文献   

2.
The complete mitochondrial genome (mtDNA) of snow leopard Panthera uncia was obtained by using the polymerase chain reaction (PCR) technique based on the PCR fragments of 30 primers we designed. The entire mtDNA sequence was 16 773 base pairs (bp) in length, and the base composition was: A—5,357 bp (31.9%); C—4,444 bp (26.5%); G—2,428 bp (14.5%); T—4,544 bp (27.1%). The structural characteristics [0] of the P. uncia mitochondrial genome were highly similar to these of Felis catus, Acinonyx jubatus, Neofelis nebulosa and other mammals. However, we found several distinctive features of the mitochondrial genome of Panthera unica. First, the termination codon of COIII was TAA, which differed from those of F. catus, A. jubatus and N. nebulosa. Second, tRNASer (AGY), which lacked the ‘‘DHU’’ arm, could not be folded into the typical cloverleaf-shaped structure. Third, in the control region, a long repetitive sequence in RS-2 (32 bp) region was found with 2 repeats while one short repetitive segment (9 bp) was found with 15 repeats in the RS-3 region. We performed phylogenetic analysis based on a 3 816 bp concatenated sequence of 12S rRNA, 16S rRNA, ND2, ND4, ND5, Cyt b and ATP8 for P. uncia and other related species, the result indicated that P. uncia and P. leo were the sister species, which was different from the previous findings.  相似文献   

3.
Phylogenetic relationships among raptors, especially various groups are rather complex and controversial. We determined the complete mtDNA of Japanese sparrowhawk, and estimated phylogenetic trees based on the complete mtDNA alignment of it and 36 other raptor species, to clarify raptor phylogenetics. Phylogenetic trees were also estimated using a multiple sequence alignment of 12S rRNA and 16S rRNA from 81 typical species in GenBank, to further clarify the phylogenetic relationships of several groups among the raptors. The new mtDNA is a circular molecule, 17 917 bp in length, containing the 37 typical genes, with a pseudo-control region. ATG is generally the start codon, TAA is the most frequent stop codon. All tRNAs can be folded into canonical cloverleaf secondary structures except for tRNASer (AGY) and tRNALeu (CUN), which are missing the “DHU” arm. Phylogenetic relationships demonstrate that raptors can be divided into four branches: Accipitriformes, Falconiformes, Strigiformes and Caprimulgiformes in this study. We suggest that Accipitriformes should to be an independent order, Accipitriformes. The results also indicate that Accipitriformes contains three clades: Accipitridae, Pandionidae and Sagittariidae. Strigiformes includes species from Tytonidae and Strigidae. Caprimulgiformes contains Aegothelidae and Caprimulgidae.  相似文献   

4.
The complete mitochondrial DNA sequence contains useful information for phylogenetic analyses of metazoa. In this study, the complete mitochondrial DNA sequence of sea cucumber Stichopus horrens (Holothuroidea: Stichopodidae: Stichopus) is presented. The complete sequence was determined using normal and long PCRs. The mitochondrial genome of Stichopus horrens is a circular molecule 16257 bps long, composed of 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes. Most of these genes are coded on the heavy strand except for one protein-coding gene (nad6) and five tRNA genes (tRNA Ser(UCN) , tRNA Gln , tRNA Ala , tRNA Val , tRNA Asp ) which are coded on the light strand. The composition of the heavy strand is 30.8% A, 23.7% C, 16.2% G, and 29.3% T bases (AT skew=0.025; GC skew=−0.188). A non-coding region of 675 bp was identified as a putative control region because of its location and AT richness. The intergenic spacers range from 1 to 50 bp in size, totaling 227 bp. A total of 25 overlapping nucleotides, ranging from 1 to 10 bp in size, exist among 11 genes. All 13 protein-coding genes are initiated with an ATG. The TAA codon is used as the stop codon in all the protein coding genes except nad3 and nad4 that use TAG as their termination codon. The most frequently used amino acids are Leu (16.29%), Ser (10.34%) and Phe (8.37%). All of the tRNA genes have the potential to fold into typical cloverleaf secondary structures. We also compared the order of the genes in the mitochondrial DNA from the five holothurians that are now available and found a novel gene arrangement in the mitochondrial DNA of Stichopus horrens.  相似文献   

5.
Zhang W  Zhang Z  Shen F  Hou R  Lv X  Yue B 《Journal of genetics》2006,85(2):107-116
Using oligonucleotide primers designed to match hypervariable segments I (HVS-1) ofPanthera tigris mitochondrial DNA (mtDNA), we amplified two different PCR products (500 bp and 287 bp) in the tiger (Panthera tigris), but got only one PCR product (287 bp) in the leopard (Panthera pardus). Sequence analyses indicated that the sequence of 287 bp was a D-loop-like nuclear mitochondrial sequence (Numts), indicating a nuclear transfer that occurred approximately 4.8–17 million years ago in the tiger and 4.6–16 million years ago in the leopard. Although the mtDNA D-loop sequence has a rapid rate of evolution, the 287-bp Numts are highly conserved; they are nearly identical in tiger subspecies and only 1.742% different between tiger and leopard. Thus, such sequences represent molecular ‘fossils’ that can shed light on evolution of the mitochondrial genome and may be the most appropriate outgroup for phylogenetic analysis. This is also proved by comparing the phylogenetic trees reconstructed using the D-loop sequence of snow leopard and the 287-bp Numts as outgroup.  相似文献   

6.
We determined the nucleotide sequence of the mitochondrial genome (mtgenome) of Spilonota lechriaspis Meyrick (Lepidoptera: Tortricidae). The entire closed circular molecule is 15,368 bp and contains 37 genes with the typical gene complement and order for lepidopteran mtgenomes. All tRNAs except tRNASer(AGN) can be folded into the typical cloverleaf secondary structures. The protein-coding genes (PCGs) have typical mitochondrial start codons, with the exception of COI, which uses the unusual CGA one as is found in all other Lepidoptera sequenced to date. In addition, six of 13 PCGs harbor the incomplete termination codons, a single T. The A + T-rich region contains some conserved structures that are similar to those found in other lepidopteran mtgenomes, including a structure combining the motif ‘ATAGA’, a 19-bp poly(T) stretch and three microsatellite (AT)n elements which are part of larger 122+ bp macrorepeats. This is the first report of macrorepeats in a lepidopteran mtgenome.  相似文献   

7.
Complete nucleotide sequences of mitochondrial genome (mitogenome) of Thrinchus schrenkii (Orthoptera: Acridoidea: Pamphagidae) were determined. It is 15672 bp in length and contains 71.2% A + T. All T. schrenkii protein-coding sequences except for the cytochrome oxidase subunit I (COI) start with a typical ATN codon. Instead, CCG, which is a rare but possible initiation codon, is located at the initiation context of COI. The usual termination codons (TAA and TAG) were found from 12 PCGs. However, the ND5 had incomplete termination codon (T). All tRNA genes could be folded into the typical cloverleaf secondary structure, excluding tRNA Ser(AGN) which forms another structure according to the Steinberg–Cedergren tertiary structure. The sizes of the large and small ribosomal RNA genes are 1319 and 848 bp, respectively. The A + T content of the A + T-rich region is 78.7%, which is the lowest among the known mitogenome of Acridoidea.  相似文献   

8.
Vanessa indica is a small butterfly lacking historical molecular and biological research. Vanessa indica belongs to the family Nymphalidae (Lepidoptera: Papilionoidea), which is the largest group of butterflies and are nearly ubiquitous. However, after more than a century of taxonomic and molecular studies, there is no consensus for family classification, and the phylogenetic relationships within Nymphalidae are controversial. The first objective was to sequence and characterize the complete mitochondrial genome of V. indica. The most important objective was to completely reconstruct the phylogenetic relationships for family members within Nymphalidae. The mitochondrial genomic DNA (mtDNA) of V. indica was extracted and amplified by polymerase chain reaction. The complete mitochondrial sequence was annotated and characterized by analyzing sequences with SeqMan program. The phylogenetic analyses were conducted on thirteen protein coding genes (PCGs) in 95 mtDNA of Nymphalidae downloaded from GenBank for reference using the maximum likelihood method and Bayesian inference to ensure the validity of the results. The complete mitogenome was a circular molecule with 15,191 bp consisting of 13 protein coding genes, two ribosomal RNA genes (16S rRNA and 12S rRNA), 22 transfer RNA (tRNA) genes, and an A?+?T-rich region (D-loop). The nucleotide composition of the genome was highly biased for A?+?T content, which accounts for 80.0% of the nucleotides. All the tRNAs have putative secondary structures that are characteristic of mitochondrial tRNAs, except tRNASer(AGN). All the PCGs started with ATN codons, except cytochrome c oxidase subunit 1 (COX1), which was found to start with an unusual CGA codon. Four genes were observed to have unusual codons: COX1 terminated with atypical TT and the other three genes terminated with a single T. The A?+?T rich region of 327 bp consisted of repetitive sequences, including a ATAGA motif, a 19-bp poly-T stretch, and two microsatellite-like regions (TA)8. The phylogenetic analyses consistently placed Biblidinae as a sister cluster to Heliconiinae and Calinaginae as a sister clade to Satyrinae. Moreover, the phylogenetic tree identified Libytheinae as a monophyletic group within Nymphalidae. The complete mitogenome of V. indica was 15,191 bp with mitochondrial characterizations common for lepidopteran species, which enriched the mitochondria data of Nymphalid species. And the phylogenetic analysis revealed different classifications and relationships than those previously described. Our results are significant because they would be useful in further understanding of the evolutionary biology of Nymphalidae.  相似文献   

9.
Liriomyza trifolii (Diptera: Agromyzidae) is one of the most economically significant pests in the world. In this paper we present sequence data for the complete mitochondrial genome of L. trifolii. The circular genome is 16,141 bp long and contains one encoding region including 37 genes and one non-coding A+T-rich region. Gene numbers and organization is similar to that of the typical insect mitochondrial genomes except that two additional tRNA genes are found in the A+T-rich region (tRNAThr and tRNALeu(UUR)). All of the protein initiation codons are ATN, except ND1 which begins with GTG and COI which is initiated by the quadruplet ATCA. The 22 tRNA anticodons of L. trifolii match those observed in Drosophila yakuba, and all of tRNAs form the typical cloverleaf structure except for tRNASer(AGN), which has lost the DHU-arm. The A+T-rich region of L. trifolii also contains two previously noted Diperan features—a highly conserved polyT stretch and a (TA)n stretch.  相似文献   

10.
Cytoplasmic male sterility (CMS) is known to be controlled by mitochondrial genome in higher plants including Satsuma mandarin (Citrus unshiu Marc.). Citrus symmetric fusion experiments often produce diploid cybrids possessing nuclear DNA from the mesophyll parent and mitochondrial DNA (mtDNA) from the embryogenic callus parent. Therefore, it is possible to transfer CMS from Satsuma mandarin as callus parent to seedy citrus cultivars as leaf one by somatic cybridization. Herein, symmetric fusion technique was adopted to create cybrids for potential seedlessness by transferring CMS from Citrus unshiu Marc. cv. Guoqing No. 1 (G1) to two traditional Chinese seedy citrus cultivars, ‘Shatian’ pummelo (C. grandis (L) Osbeck) and ‘Bingtang’ orange (C. sinensis (L) Osbeck). Flow cytometry analysis showed that 19 plants recovered from G1 + ‘Bingtang’ orange and 17 of 35 plants regenerated from G1 + ‘Shatian’ pummelo were diploid. The remaining plants from G1 + ‘Shatian’ pummelo were tetraploid. The diploid plants from the two combinations were confirmed as true cybrids by simple sequence repeat (SSR) and cleaved amplified polymorphic sequence (CAPS) analysis, with nuclear DNA from their corresponding leaf parent and mtDNA from their common suspension parent, G1 Satsuma mandarin. The remaining plants from G1 + ‘Shatian’ pummelo were identified as somatic hybrids with mtDNA from G1. The chloroplast simple sequence repeat (cp-SSR) analysis revealed somatic hybrid/cybrid plants from the two combinations in most cases possessed either of their parental chloroplast type, and two plants from G1 +‘Shatian’ pummelo and all embryoids analyzed from G1 + ‘Bingtang’ orange possessed chloroplast DNA (cpDNA) from both parents. These results demonstrated that we succeeded in introducing mtDNA from G1 Satsuma mandarin into the two target seedy citrus cultivars for potential seedlessness through symmetric fusion.  相似文献   

11.
In this paper, the complete mitochondrial genome of Acraea issoria (Lepidoptera: Nymphalidae: Heliconiinae: Acraeini) is reported; a circular molecule of 15,245 bp in size. For A. issoria, genes are arranged in the same order and orientation as the complete sequenced mitochondrial genomes of the other lepidopteran species, except for the presence of an extra copy of tRNAIle(AUR)b in the control region. All protein-coding genes of A. issoria mitogenome start with a typical ATN codon and terminate in the common stop codon TAA, except that COI gene uses TTG as its initial codon and terminates in a single T residue. All tRNA genes possess the typical clover leaf secondary structure except for tRNASer(AGN), which has a simple loop with the absence of the DHU stem. The sequence, organization and other features including nucleotide composition and codon usage of this mitochondrial genome were also reported and compared with those of other sequenced lepidopterans mitochondrial genomes. There are some short microsatellite-like repeat regions (e.g., (TA)9, polyA and polyT) scattered in the control region, however, the conspicuous macro-repeats units commonly found in other insect species are absent.  相似文献   

12.
The complete mitochondrial genome of the spinyhead croaker Collichthys lucidus was determined using long-PCR and primer walking methods. It is a circular molecule of 16,451 bp in length with a standard set of 22 tRNAs, 2 rRNAs, 13 protein-coding genes as well as a non-coding control region in the same order as those of the other bony fishes. C. lucidus mitogenome exhibited a clear strand-specific bias in nucleotide composition, as evidence by a GC- skew of the H-strand of −0.319. The strand-specific bias was also reflected in the codon usage of genes oriented in opposite directions. All tRNA genes except for tRNA Ser(AGY) harbored the typical cloverleaf secondary structures and possessed anticodons that matched the vertebrate mitochondrial genetic code. Contrary to the typical structure of control region consistig of TAS, central, and CSB domains, there were no central conserved blocks available in C. lucidus mitogenome. Despite extensive studies based on both morphology and molecules, phylogenetic position of C. lucidus with Sciaenidae is still controversial. Our phylogenetic results provided more evidence to support previous morphological studies and consistently placed C. lucidus as a sister taxon to Collichthys niveatus, with both of these taxa forming the monophyletic Collichthys.  相似文献   

13.
The complete mitochondrial genome of Chinese Bombyx mandarina (ChBm) was determined. The circular genome is 15682 bp long, and contains a typical gene complement, order, and arrangement identical to that of Bombyx mori (B. mori) and Japanese Bombyx mandarina (JaBm) except for two additional tRNA-like structures: tRNA Ser(TGA)-like and tRN AIle(TAT)-like. All protein-coding sequences are initiated with a typical ATN codon except for the COI gene, which has a 4-bp TTAG putative initiator codon. Eleven of 13 protein-coding genes (PCGs) have a complete termination codon (all TAA), but the remaining two genes terminate with incomplete codons. All tRNAs have the typical clover-leaf structures of mitochondrial tRNAs, with the exception of tRNA Ser(TGA)-like, with a four stem-and-loop structure. The length of the A+T-rich region of ChBm is 484 bp, shorter than those of JaBm (747 bp) and B. mori (494–499 bp). Phylogenetic analysis among B. mori, ChBm, JaBm, and Antheraea pernyi (Anpe) showed that B. mori is more closely related to ChBm than JaBm. The earliest divergence time estimate for B. mori-ChBm and B. mori-JaBm is about 1.08±0.18–1.41±0.24 and 1.53±0.20–2.01±0.26 Mya, respectively. ChBm and JaBm diverged around 1.11±0.16–1.45±0.21 Mya.  相似文献   

14.
The 15,338-bp long complete mitochondrial genome (mitogenome) of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae) was determined. This genome has a gene arrangement identical to those of all other sequenced lepidopteran insects, but differs from the most common type, as the result of the movement of tRNAMet to a position 5′-upstream of tRNAIle. No typical start codon of the A. yamamai COI gene is available. Instead, a tetranucleotide, TTAG, which is found at the beginning context of all sequenced lepidopteran insects was tentatively designated as the start codon for A. yamamai COI gene. Three of the 13 protein-coding genes (PCGs) harbor the incomplete termination codon, T or TA. All tRNAs formed stable stem-and-loop structures, with the exception of tRNASer(AGN), the DHU arm of which formed a simple loop as has been observed in many other metazoan mt tRNASer(AGN). The 334-bp long A + T-rich region is noteworthy in that it harbors tRNA-like structures, as has also been seen in the A + T-rich regions of other insect mitogenomes. Phylogenetic analyses of the available species of Bombycoidea, Pyraloidea, and Tortricidea bolstered the current morphology-based hypothesis that Bombycoidea and Pyraloidea are monophyletic (Obtectomera). As has been previously suggested, Bombycidae (Bombyx mori and B. mandarina) and Saturniidae (A. yamamai and Caligula boisduvalii) formed a reciprocal monophyletic group.  相似文献   

15.
The complete mitochondrial genome sequence of the marbled rockfish Sebastiscus marmoratus (Scorpaeniformes, Scorpaenidae) was determined and phylogenetic analysis was conducted to elucidate the evolutionary relationship of the marbled rockfish with other Sebastinae species. This mitochondrial genome, consisting of 17301 bp, is highly similar to that of most other vertebrates, containing the same gene order and an identical number of genes or regions, including 13 protein-coding genes, two ribosomal RNAs, 22 transfer RNAs, and one putative control region. Most of the genes are encoded on the H-strand, while the ND6 and seven tRNA genes (for Gln, Ala, Asn, Tyr, Ser (UCA), Glu, and Pro) are encoded on the L-strand. The reading frame of two pairs of genes overlapped on the same strand (the ATPase 8 and 6 genes overlapped by ten nucleotides; ND4L and ND4 genes overlapped by seven nucleotides). The possibly nonfunctional light-strand replication origin folded into a typical stem-loop secondary structure and a conserved motif (5′-GCCGG-3′) was found at the base of the stem within the tRNACys gene. An extent termination-associated sequence (ETAS) and conserved sequence blocks (CSB) were identified in the control region, except for CSB-1; unusual long tandem repeats were found at the 3′ end of the control region. Phylogenetic analyses supported the view that Sebastinae comprises four genera (Sebastes, Hozukius, Helicolenus, and Sebastiscus).  相似文献   

16.
The complete nucleotide sequence of the mitochondrial genome was determined for a conger eel, Conger myriaster (Elopomorpha: Anguilliformes), using a PCR-based approach that employs a long PCR technique and many fish-versatile primers. Although the genome [18,705 base pairs (bp)] contained the same set of 37 mitochondrial genes [two ribosomal RNA (rRNA), 22 transfer RNA (tRNA), and 13 protein-coding genes] as found in other vertebrates, the gene order differed from that recorded for any other vertebrates. In typical vertebrates, the ND6, tRNAGlu, and tRNAPro genes are located between the ND5 gene and the control region, whereas the former three genes, in C. myriaster, have been translocated to a position between the control region and the tRNAPhe gene that are contiguously located at the 5′ end of the 12S rRNA gene in typical vertebrates. This gene order is similar to the recently reported gene order in four lineages of birds in that the latter lack the ND6, tRNAGlu, and tRNAPro genes between the ND5 gene and the control region; however, the relative position of the tRNAPro to the ND6–tRNAGlu genes in C. myriaster was different from that in the four birds, which presumably resulted from different patterns of tandem duplication of gene regions followed by gene deletions in two distantly related groups of organisms. Sequencing of the ND5–cyt b region in 11 other anguilliform species, representing 11 families, plus one outgroup species, revealed that the same gene order as C. myriaster was shared by another 4 families, belonging to the suborder Congroidei. Although the novel gene orders of four lineages of birds were indicated to have multiple independent origins, phylogenetic analyses using nucleotide sequences from the mitochondrial 12S rRNA and cyt b genes suggested that the novel gene orders of the five anguilliform families had originated in a single ancestral species. Received: 13 July 2000 / Accepted: 30 November 2000  相似文献   

17.
The complete nucleotide sequence of the urochordate Ciona savignyi (Ascidiacea, Enterogona) mitochondrial (mt) genome (14,737 bp) was determined. The Ciona mt genome does not encode a gene for ATP synthetase subunit 8 but encodes an additional tRNAGly gene (anticodon UCU), as is the case in another urochordate, Halocynthia roretzi (Ascidiacea, Pleurogona), mt genome. In addition, the Ciona mt genome encodes two tRNAMet genes; anticodon CAT and anticodon TAT. The tRNACys gene is thought to lack base pairs at the D-stem. Thus, the Ciona mt genome encodes 12 protein, 2 rRNA, and 24 tRNA genes. The gene arrangement of the Ciona mt genome differs greatly from those of any other metazoan mt genomes reported to date. Only three gene boundaries are shared between the Halocynthia and the Ciona mt genomes. Molecular phylogenetic analyses based on amino acid sequences of mt protein genes failed to demonstrate the monophyly of the chordates.  相似文献   

18.
Summary The nucleotide sequence of a segment of the mitochondrial DNA (mtDNA) molecule of the liver flukeFasciola hepatica (phylum Platyhelminthes, class Trematoda) has been determined, within which have been identified the genes for tRNAala, tRNAasp, respiratory chain NADH dehydrogenase subunit I (ND1), tRNAasn, tRNApro, tRNAile, tRNAlys, ND3, tRNAserAGN, tRNAtrp, and cytochromec oxidase subunit I (COI). The 11 genes are arranged in the order given and are all transcribed from the same strand of the molecule. The overall order of theF. hepatica mitochondrial genes differs from what is found in other metazoan mtDNAs. All of the sequenced tRNA genes except the one for tRNAserAGN can be folded into a secondary structure with four arms resembling most other metazoan mitochondrial tRNAs, rather than the tRNAs that contain a TψC arm replacement loop, found in nematode mtDNAs. TheF. hepatica mitochondrial tRNAserAGN gene contains a dihydrouridine arm replacement loop, as is the case in all other metazoan mtDNAs examined to date. AGA and AGG are found in theF. hepatica mitochondrial protein genes and both codons appear to specify serine. These findings concerningF. hepatica mtDNA indicate that both a dihydrouridine arm replacement loop-containing tRNAserAGN gene and the use of AGA and AGG codons to specify serine must first have occurred very early in, or before, the evolution of metazoa.  相似文献   

19.
The complete mitochondrial genome of Macrobrachium nipponense   总被引:1,自引:0,他引:1  
Ma K  Feng J  Lin J  Li J 《Gene》2011,487(2):160-165
The complete mitochondrial (mt) genome sequence plays an important role in the accurate determination of phylogenetic relationships among metazoans. Herein, we determined the complete mt genome sequence, structure and organization of Macrobrachium nipponense (M. nipponense) (GenBank ID: NC_015073.1) and compared it to that of Macrobrachium lanchesteri (M. lanchesteri) and Macrobrachium rosenbergii (M. rosenbergii). The 15,806 base pair (bp) M. nipponense mt genome, which is comprised of 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs) and 2 ribosomal RNAs (rRNAs), is slightly larger than that of M. lanchesteri (15,694 bp, GenBank ID: NC_012217.1) and M. rosenbergii (15,772 bp, GenBank ID: NC_006880.1). The M. nipponense genome contains a high AT content (66.0%), which is a common feature among metazoan mt genomes. Compared with M. lanchesteri and M. rosenbergii, we found a peculiar non-coding region of 950 bp with a microsatellite-like (TA)6 element and many hairpin structures. The 13 PCGs are comprised of a total of 3707 codons, excluding incomplete termination codons, and the most frequently used amino acid is Leu (16.0%). The predicted start codons in the M. nipponense mt genome include ATG, ATC and ATA. Seven PCGs use TAA as a stop codon, whereas two use TAG, three use T and only one uses TA. Twenty-three of the genes are encoded on the L strand, and ND1, ND4, ND5, ND4L, 12S rRNA, 16S rRNA, tRNAHis, tRNAPro, tRNAPhe, tRNAVal, tRNAGln, tRNACys, tRNATyr and a tRNALeu are encoded on the H strand. The two rRNAs of M. nipponense and M. rosenbergii are encoded on the H strand, whereas the M. lanchesteri rRNAs are encoded on the L stand.  相似文献   

20.
He CB  Wang J  Gao XG  Song WT  Li HJ  Li YF  Liu WD  Su H 《Molecular biology reports》2011,38(5):3401-3409
Veneridae is a diverse, commercially important, and cosmopolitan family. Here we present the complete mitochondrial genome of the hard clam Meretrix meretrix (Bivalvia: Veneridae). The entire mitochondrial genome (mitogenome) sequence of M. meretrix is 19,826 bp in length, and contains 37 genes including 12 protein-coding genes, 2 ribosomal RNAs, and 23 tRNAs. All genes are encoded on the heavy strand. In contrast to the typical animal mitochondrial genome, it lacks the protein-coding gene ATP8, and has only one copy of the tRNASer gene, but three duplications of the tRNAGln, which is the first report among the present molluscan mtDNAs. We observed that the gene arrangement between M. meretrix and M. petechialis is same except one more tRNAGln gene in M. meretrix., and the sequence similarity is as high as 99%, indicating that M. petechialis and M. meretrix could be treated as a junior synonym of M. meretrix. Maximum Likelihood and Bayeslan analysis of 12 concatenated protein-coding amino acid sequences place the Unionidae as a sister group to other bivalves, which reflects the general opinion that the Unionidae deverged very early in Bivalvia evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号