首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FSK88, a forskolin derivative, was extracted and purified from cultured tropical plant roots, Coleus forskohlii. Our previous studies have demonstrated that FSK88 can inhibit HL-60 cell proliferation and induce the differentiation of HL-60 cells to monocyte macrophages. In this study, we showed that FSK88 can induce apoptotic death of human gastric cancer BGC823 cells in a dose- and time-dependent manner. Results showed that FSK88-induced apoptosis was accompanied by the mitochondrial release of cytochrome c and activation of caspase-3 in BGC823 cells. Furthermore, treatment with caspase-3 inhibitor (z-DEVD-fmk) was capable of preventing the FSK88-induced caspase-3 activity and apoptosis. FSK88-induced apoptosis in human gastric cancer BGC823 cells was also accompanied by the up-regulation of Bax, Bad and down-regulation of Bcl-2. Theses results clearly demonstrated that the induction of apoptosis by FSK88 involved multiple cellular and molecular pathways and strongly suggest that pro- and anti-apoptotic Bcl-2 family genes, mitochondrial membrane potential (Deltapsi(m)), cytochrome c, and caspase-3, participate in the FSK88-induced apoptotic process in human gastric cancer BGC823 cells.  相似文献   

2.
Kim HJ  Kang SK  Mun JY  Chun YJ  Choi KH  Kim MY 《FEBS letters》2003,555(2):217-222
Vitamin K-related analogs induce growth inhibition via a cell cycle arrest through cdc25A phosphatase inhibition in various cancer cell lines. We report that 2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone (DDN), a naphthoquinone analog, induces mitochondria-dependent apoptosis in human promyelocytic leukemia HL-60 cells. DDN induced cytochrome c release, Bax translocation, cleavage of Bid and Bad, and activation of caspase-3, -8, -9 upon the induction of apoptosis. Cleavage of Bid, the caspase-8 substrate, was inhibited by the broad caspase inhibitor z-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk), whereas cytochrome c release was not affected, suggesting that activation of caspase-8 and subsequent Bid cleavage occur downstream of cytochrome c release. DDN inhibited the activation of Akt detected by decreasing level of phosphorylation. Overexpression of constitutively active Akt protected cells from DDN-induced apoptosis, while dominant negative Akt moderately enhanced cell death. Furthermore, Akt prevented release of cytochrome c and cleavage of Bad in DDN-treated HL-60 cells. Taken together, DDN-induced apoptosis is associated with mitochondrial signaling which involves cytochrome c release via a mechanism inhibited by Akt.  相似文献   

3.
Cardiotoxin III (CTX III), a basic polypeptide with 60 amino acid residues isolated from Naja naja atra venom, has been reported to have anticancer activity. The molecular effects of CTX III on HL-60 cells were dissected in the present study. We found that the antiproliferative action of CTX III on HL-60 cells was mediated through apoptosis, as characterized by an increase of sub G1 population, DNA fragmentation and poly(ADP-ribose) polymerase (PARP) cleavage. Upregulation of Bax, downregulation of Bcl-2, the release of mitochondrial cytochrome c to cytosol and the activations of capase-9 and -3 were noted, while CTX III had no appreciable effect on the levels of Bcl-X(L) and Bad proteins. Moreover, c-Jun N-terminal kinase (JNK) was activated shortly after CTX III treatment in HL-60 cells. Consistently, the SP600125 compound, an anthrapyrazolone inhibitor of JNK, suppressed apoptosis induced by CTX III. As expected, this JNK inhibitor also attenuated the modulation of Bax and Bcl-2, as well as the cytosolic appearance of cytochrome c and the activation of caspase-3 and caspase-9 that induced by CTX III. These findings suggest that CTX III can induce apoptosis in HL-60 cells via the mitochondrial caspase cascade and the activation of JNK is critical for the initiation of the apoptotic death of HL-60 cells.  相似文献   

4.
5.
Acinar cells in pancreatitis die through apoptosis and necrosis, the roles of which are different. The severity of experimental pancreatitis correlates directly with the extent of necrosis and inversely, with apoptosis. Apoptosis is mediated by the release of cytochrome c into the cytosol followed by caspase activation, whereas necrosis is associated with the mitochondrial membrane potential (ΔΨm) loss leading to ATP depletion. Here, we investigate the role of Bcl-2 proteins in apoptosis and necrosis in pancreatitis. We found up-regulation of prosurvival Bcl-2 proteins in pancreas in various experimental models of acute pancreatitis, most pronounced for Bcl-xL. This up-regulation translated into increased levels of Bcl-xL and Bcl-2 in pancreatic mitochondria. Bcl-xL/Bcl-2 inhibitors induced ΔΨm loss and cytochrome c release in isolated mitochondria. Corroborating the results on mitochondria, Bcl-xL/Bcl-2 inhibitors induced ΔΨm loss, ATP depletion and necrosis in pancreatic acinar cells, both untreated and hyperstimulated with CCK-8 (in vitro pancreatitis model). Together Bcl-xL/Bcl-2 inhibitors and CCK induced more necrosis than either treatment alone. Bcl-xL/Bcl-2 inhibitors also stimulated cytochrome c release in acinar cells leading to caspase-3 activation and apoptosis. However, different from their effect on pronecrotic signals, the stimulation by Bcl-xL/Bcl-2 inhibitors of apoptotic responses was less in CCK-treated than control cells. Therefore, Bcl-xL/Bcl-2 inhibitors potentiated CCK-induced necrosis but not apoptosis. Correspondingly, transfection with Bcl-xL siRNA stimulated necrosis but not apoptosis in the in vitro pancreatitis model. Further, in animal models of pancreatitis Bcl-xL up-regulation inversely correlated with necrosis, but not apoptosis. Results indicate that Bcl-xL and Bcl-2 protect acinar cells from necrosis in pancreatitis by stabilizing mitochondria against death signals. We conclude that Bcl-xL/Bcl-2 inhibition would aggravate acute pancreatitis, whereas Bcl-xL/Bcl-2 up-regulation presents a strategy to prevent or attenuate necrosis in pancreatitis.  相似文献   

6.
K Liu  D Shu  N Song  Z Gai  Y Yuan  J Li  M Li  S Guo  J Peng  H Hong 《PloS one》2012,7(8):e40877
There are conflicting reports on the role of cytochrome c during insect apoptosis. Our previous studies have showed that cytochrome c released from the mitochondria was an early event by western blot analysis and caspase-3 activation was closely related to cytochrome c release during apoptosis induced by baculovirus in Spodoptera litura cells (Sl-1 cell line). In the present study, alteration in mitochondrial morphology was observed by transmission electron microscopy, and cytochrome c release from mitochondria in apoptotic Sl-1 cells induced with Anagrapha falcifera multiple nuclear polyhedrosis virus (AfMNPV) has further been confirmed by immunofluoresence staining protocol, suggesting that structural disruption of mitochondria and the release of cytochrome c are important events during Lepidoptera insect cell apoptosis. We also used Sl-1 cell-free extract system and the technique of RNA interference to further investigate the role of cytochrome c in apoptotic Sl-1 cells induced by AfMNPV. Caspase-3 activity in cell- free extracts supplemented with exogenous cytochrome c was determined and showed an increase with the extension of incubation time. DsRNA-mediated silencing of cytochrome c resulted in the inhibition of apoptosis and protected the cells from AfMNPV-induced cell death. Silencing of expression of cytochrome c had a remarkable effect on pro-caspase-3 and pro-caspase-9 activation and resulted in the reduction of caspase-3 and caspase-9 activity in Sl-1 cells undergoing apoptosis. Caspase-9 inhibitor could inhibit activation of pro-caspase-3, and the inhibition of the function of Apaf-1 with FSBA blocked apoptosis, hinting that Apaf-1 could be involved in Sl-1 cell apoptosis induced by AfMNPV. Taken together, these results strongly demonstrate that cytochrome c plays an important role in apoptotic signaling pathways in Lepidopteran insect cells.  相似文献   

7.
Growth factors signaling through the phosphoinositide 3-kinase/Akt pathway promote cell survival. The mechanism by which the serine/threonine kinase Akt prevents cell death remains unclear. We have previously shown that Akt inhibits the activity of DEVD-targeted caspases without changing the steady-state levels of Bcl-2 and Bcl-x(L). Here we show that Akt inhibits apoptosis and the processing of procaspases to their active forms by delaying mitochondrial changes in a caspase-independent manner. Akt activation is sufficient to inhibit the release of cytochrome c from mitochondria and the alterations in the inner mitochondrial membrane potential. However, Akt cannot inhibit apoptosis induced by microinjection of cytochrome c. We also demonstrated that Akt inhibits apoptosis and cytochrome c release induced by several proapoptotic Bcl-2 family members. Taken together, our results show that Akt promotes cell survival by intervening in the apoptosis cascade before cytochrome c release and caspase activation via a mechanism that is distinct from Bad phosphorylation.  相似文献   

8.
HL-60 cell differentiation into neutrophil like cells is associated with their induction of apoptosis. We investigated the cellular events that occur pre and post mitochondrial permeability transition to determine the role of the mitochondria in the induction of differentiation induced apoptosis. Pro-apoptotic Bax was translocated to and cleaved at the mitochondrial membrane in addition to t-Bid activation. These processes contributed to mitochondrial membrane disruption and the release of cytochrome c and Smac/DIABLO. The release of cytochrome c was caspase independent, as the caspase inhibitor Z-VAD.fmk, which inhibited apoptosis, did not block the release of cytochrome c. In contrast, the release of Smac/DIABLO was partially inhibited by caspase inhibition indicating differential release pathways for these mitochondrial pro-apoptotic factors. In addition to caspase inhibition we assessed the effects of the Bcl-2 anti-apoptotic family on differentiation induced apoptosis. BH4-Bcl-xl-TAT recombinant protein did not delay apoptosis, but did block the release of cytochrome c and Smac/DIABLO. Bcl-2 over-expression also inhibited differentiation induced apoptosis but was associated with the inhibition of the differentiation process. Differentiation mediated mitochondrial release of cytochrome c and Smac/DIABLO, may not trigger the induction of apoptosis, as BH4-Bclxl-TAT blocks the release of pro-apoptotic factors from the mitochondria, but does not prevent apoptosis.  相似文献   

9.
We reported previously that singlet oxygen, generated by irradiation of rose bengal with visible light, induced apoptosis in human promyelocytic leukemia HL-60 cells. However, the mechanism of apoptosis caused by this reactive oxygen species is unclear. In this study, we demonstrate that singlet oxygen induced caspase-3 activation and Z-DEVD-FMK, a caspase-3 inhibitor, blocked apoptosis induction, while caspase-1 activity was not detectable and the caspase-1 inhibitor Z-YVAD-FMK had a very limited effect on apoptosis. This suggests that the activation of caspase-3 by singlet oxygen is essential for the commitment of cells to undergo apoptosis. Further studies showed that singlet oxygen induced an increase in caspase-8 activity and a reduction in mitochondrial cytochrome c. Time course analysis indicated that the cleavage of caspase-8 precedes that of caspase-3. In addition, blockade of caspase-8 by Z-IETD-FMK inhibited cleavage of pro-caspase-3 and prevented loss of mitochondrial cytochrome c. These results suggest that caspase-8 mediates caspase-3 activation and cytochrome c release during singlet oxygen-induced apoptosis in HL-60 cells.  相似文献   

10.
11.
A tumor suppressor gene product, ARF, sensitizes cells to apoptosis in the presence of appropriate collateral signals. In this study, we analyzed the mechanism of ARF-dependent apoptosis and demonstrated that ARF induces mitochondria-dependent apoptosis in p53 wild-type, ARF/p16-null cells. We also found that ARF evokes cytochrome c release from mitochondria, decreases mitochondrial membrane potential, and activates pro-caspase-9 to induce apoptosis. Our findings suggest that this apoptotic cellular modulation is brought about by up-regulation of the proapoptotic Bcl-2 family proteins Bax and Bim and down-regulation of antiapoptotic Bcl-2 in mitochondrial fractions. Additionally, ARF seems to down-regulate Bcl-2 in a p53-dependent manner while up-regulating Bax/Bim via a p53-independent pathway.  相似文献   

12.
This study was to identify the signaling pathways for the induction of HL-60 cell apoptosis by Cordyceps sinensis mycelium extract (CSME). CSME at 25 mug/ml induced nuclear fragmentation and DNA degradation, two hallmark events of apoptosis, in the HL-60 cells within 12-24 hrs of treatment. Concomitantly, several major events in the mitochondrial signal pathway occurred, including the loss of MTP (DeltaPsi(m)), cytochrome c release into the cytoplasm, the decrease in Bcl-2 protein level, the translocation of Bax protein from cytoplasm into mitochondria, and the activation of caspase-2, -3, and -9, but caspase-8, the initiator caspase in the death receptor pathway, was not activated. These results suggest that CSME induces apoptosis in HL-60 cell through the mitochondrial pathway rather than the death receptor pathway.  相似文献   

13.
Activation of pro-caspase-3 is a central event in the execution phase of apoptosis and appears to serve as the convergence point of different apoptotic signaling pathways. Recently, mitochondria were found to play a central role in apoptosis through release of cytochrome c and activation of caspases. Moreover, a sub-population of pro-caspase-3 has been found to be localized to this organelle. In the present study, we demonstrate that pro-caspase-3 is present in the mitochondrial fraction of Jurkat T cells in a complex with the chaperone proteins Hsp60 and Hsp10. Induction of apoptosis with staurosporine led to the activation of mitochondrial pro-caspase-3 and its dissociation from the Hsps which were released from mitochondria. The release of Hsps occurred simultaneously with the release of other mitochondrial intermembrane space proteins including cytochrome c and adenylate kinase, prior to a loss of mitochondrial transmembrane potential. In in vitro systems, recombinant Hsp60 and Hsp10 accelerated the activation of pro-caspase-3 by cytochrome c and dATP in an ATP-dependent manner, consistent with their function as chaperones. This finding suggests that the release of mitochondrial Hsps may also accelerate caspase activation in the cytoplasm of intact cells.  相似文献   

14.
Zhang QH  Sheng HP  Loh TT 《Life sciences》1999,65(16):1715-1723
bcl-2 has been shown to enhance cell survival by inhibiting apoptosis. The present study investigates the potential role of bcl-2 on apoptosis in HL-60 cells induced by different agents. HL-60/bcl-2 and control HL-60/neo cells were obtained by transfection of bcl-2 cDNA or the neomycin-resistant gene, respectively. Staurosporine (STS) promoted DNA fragmentation dose-dependently in the 6 h exposure assay while C2-ceramide was relatively slow in the induction of apoptosis (approximately 40% after 24 h) and required higher concentrations (> 20 microM). Caspases inhibitors, Ac-YVAD-cmk (100 microM) and zVAD-fmk (20 microM) had no effect on DNA fragmentation themselves. However, they blocked C2-ceramide-induced caspase-3 cleavage and apoptosis, but not the release of cytochrome c from the mitochondria. In addition, we found that both Ac-YVAD-cmk and zVAD-fmk failed to protect STS-induced apoptosis in HL-60 cells. Overexpression of bcl-2 inhibited STS and C2-ceramide induced cytochrome c redistribution, caspase-3 activation and apoptosis. These results suggest a protective role of bcl-2 in the regulation of apoptosis and cytochrome c release is unlikely to be involved in the final common pathway in apoptosis.  相似文献   

15.
A ginseng polysaccharide was extracted, purified, and modified by nitric acid-selenious acid (HNO3-H2SeO3) method to yield one selenylation-modified polysaccharide (sGP). We reported for the first time the anticancer potential of sGP on the human promyelocytic leukemia HL-60 cell line and evaluated its relevant underlying mechanism. Our results showed that sGP markedly inhibited the growth of HL-60 cells via induction of apoptosis. The event of apoptosis was accompanied by the formation of apoptotic bodies; the release of cytochrome c; loss of mitochondrial membrane potential; and activation of caspase-9, caspase-3, and cleavage of poly ADP ribose polymerase (PARP) in HL-60 cells. In addition, western blot analysis showed that sGP inhibited antiapoptotic Bcl-2 protein expression and increased proapoptotic Bax protein expression in cells under identical conditions. Together, our study suggests that sGP induces apoptosis of HL-60 cells through the mitochondrial-dependent pathway.  相似文献   

16.
Bcl-2 protein plays important roles in the regulation of apoptosis. However, the exact mechanism by which Bcl-2 blocks apoptosis is still unclear. In the present study, we found that overexpression of Bcl-2 in human small cell lung carcinoma Ms-1 cells inhibited not only the release of cytochrome c from mitochondria into cytosol but also de novo ceramide synthesis induced by inostamycin, a phosphatidylinositol turnover inhibitor. To investigate the correlation between the structure of Bcl-2 and its inhibitory function in inostamycin-induced apoptosis, Ms-1 cells that stably overexpress domain-deletional mutants of Bcl-2 were established. Transmembrane domain-deleted Bcl-2 failed to inhibit inostamycin-induced de novo ceramide synthesis, whereas it inhibited inostamycin-induced cytochrome c release, indicating that anchoring of Bcl-2 to membrane was a requirement for its inhibitory effect on inostamycin-induced ceramide synthesis, but not cytochrome c release. Thus, the deletion mutant of tarnsmembrane domain of Bcl-2 can suppress inostamycin-induced apoptosis by inhibiting cytochrome c release, a downstream event of ceramide synthesis in the pathway of inostamycin-induced apoptosis. We also found that the BH3 and BH4 domains of Bcl-2 were necessary for inhibition of inostamycin-induced apoptosis, and deletion of BH1 or BH2 did not affect the inhibitory effect of Bcl-2 to inostamycin-induced apoptotic events.  相似文献   

17.
It has been suggested that oxidative stress plays a major role in various forms of cell death, including necrosis and apoptosis. We have previously reported that fluoride (NaF) induces apoptosis in HL-60 cells by caspase-3 activation. The main focus of this investigation was to arrive at a possible pathway of the apoptosis induced by NaF upstream of caspase-3, because the mechanism is still unknown. The present study showed that after exposure to NaF, there was an increase in MDA and 4-HNE and a loss of mitochondrial membrane potential (deltaPsi(m)) was also observed in NaF-treated cells.There was a significant increase in cytosolic cytochrome c, which is released from the mitochondria. We have reported a downregulation of Bcl-2 protein in NaF-treated cells. The antioxidants N-acetyl cysteine (NAC), glutathione (GSH) protected the cells from loss of deltaPsi(m), and there was no cytochrome c exit or Bcl-2 downregulation, and we suggest that these antioxidants prevent apoptosis induced by NaF. These results suggested that perhaps NaF induced apoptosis by oxidative stress-induced lipid peroxidation, causing loss of deltaPsi(m), and thereby releasing cytochrome c into the cytosol and further triggering the caspase cascade leading to apoptotic cell death in HL-60 cells.  相似文献   

18.
We used a rat pheochromocytoma (PC12) cell line to study the effects of salidroside on hydrogen peroxide (H(2)O(2))-induced apoptosis. In PC12 cells, H(2)O(2)-induced apoptosis was accompanied by the down-regulation of Bcl-2, the up-regulation of Bax, the release of mitochondrial cytochrome c to cytosol, and the activation of caspase-3, -8 and -9. However, salidroside suppressed the down-regulation of Bcl-2, the up-regulation of Bax and the release of mitochondrial cytochrome c to cytosol. Moreover, salidroside attenuated caspase-3, -8 and -9 activation, and eventually protected cells against H(2)O(2)-induced apoptosis. Taken together, these results suggest that treatment of PC12 cells with salidroside can block H(2)O(2)-induced apoptosis by regulating Bcl-2 family members and by suppressing cytochrome c release and caspase cascade activation.  相似文献   

19.
The mechanisms of UVB-induced apoptosis and the role of p38 mitogen-activated protein kinase (MAPK) were investigated in HaCaT cells. UVB doses that induced apoptosis also produced a sustained activation of p38 MAPK and mitochondrial cytochrome c release, leading to pro-caspase-3 activation. Late into the apoptotic process, UVB also induced a caspase-mediated cleavage of Bid. Caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone and benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone substantially blocked the UVB-induced apoptosis without preventing the release of mitochondrial cytochrome c and the p38 MAPK activation. The inhibition of p38 MAPK counteracted both apoptosis and cytochrome c release as well as the DEVD-amino-4-methylcoumarin cleavage activity without affecting the processing of pro-caspase-8. These results indicate that UVB induces multiple and independent apoptotic pathways, which culminate in pro-caspase-3 activation, and that the initial cytochrome c release is independent of caspase activity. Importantly, we show that a sustained p38 MAPK activation contributes to the UVB-induced apoptosis by mediating the release of mitochondrial cytochrome c into the cytosol.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号