首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Resistance of leukemic cells to chemotherapy frequently occurs in patients with acute leukemia, which may be caused by alterations in common apoptotic pathways. Controversy exists whether cytostatic agents induce the mitochondrial or death receptor pathway of apoptosis. In the mitochondrial pathway cytochrome C release and caspase-9 activation play a central role in the induction of apoptosis, while formation of a Death Inducing Signaling Complex (DISC) and caspase-8 activation have been reported to be essential in death receptor-induced apoptosis. Here, we show in human derived myeloid and lymphoblastic leukemia cell lines that caspase-8 plays a more important role than previously expected in apoptosis mediated via the mitochondrial pathway. We demonstrated in these malignant cells chemotherapy-induced apoptosis independent of the death receptor pathway, since blocking this pathway using a retroviral construct encoding Flice inhibitory protein (FLIP) did not inhibit drug-induced apoptosis or caspase-8 activation, while overexpression of Bcl-2 completely inhibited both events. Furthermore, we showed that activation of caspase-8 by cytostatic agents occurred downstream from mitochondria. Since caspase-8 plays a central role in both death receptor- and chemotherapy-induced apoptosis of malignant cells from patients with acute leukemia, therapeutic strategies focusing at modulation and activation of caspase-8 may be successful in the treatment of drug-resistant malignancies. Supported by a grant of the Dutch Cancer Society/KWF Kankerbestrijding: 99-2122.  相似文献   

2.
Oxidative stress may be a common mechanism underlying various forms of cell death, including necrosis and apoptosis. The authors have reported previously that the cupric nitrilotriacetate (Cu-NTA), a renal carcinogen, induces oxidative DNA damage and apoptosis in HL-60 human leukemia cells (Ma, Y., et al. Free Radic. Biol Med. 25:568-575; 1998). The focus of this investigation was to examine the possible pathway of the apoptosis induced by Cu-NTA. Results of the present study demonstrated that after exposure of HL-60 cells to Cu-NTA, an increase in lipid hydroperoxide and loss of mitochondrial membrane potential (deltaphim) were observed, followed by the increase in cytosolic cytochrome c that was released from the mitochondria. These events proceeded and triggered the activation of caspase-3 (CPP32/apopain/Yama), resulting in the degradation of poly (ADP-ribose) polymerase and DNA fragmentation. The antioxidants, N-acetylcysteine and glutathione, protected the loss of deltaphim and blocked the apoptosis induced by Cu-NTA. In addition, Ac-DEVD-CHO, a specific inhibitor of caspase-3, inhibited Cu-NTA-induced apoptosis. These results suggested that Cu-NTA-induced apoptosis in HL-60 cells was, at least in part, triggered by free radical-induced lipid peroxidation of membrane, which induced the release of cytochrome c from mitochondria and activation of caspase-3.  相似文献   

3.
Intervertebral disc (IVD) cell apoptosis has been suggested to play an important role in promoting the degeneration process. It has been demonstrated that IVD cell apoptosis occurs through either death receptor, mitochondrial or endoplasmic reticulum (ER) pathway. Our study aimed to explore the relationship among these three pathways and grade of IVD degeneration (IVDD). IVDs were collected from patients with lumbar fracture, vertebral tumor, disc herniation or spondylolisthesis. IVDs were distinguished by MRI and histomorphological examination, cell apoptosis was detected by TUNEL staining. Biomarkers of these three apoptosis pathways were detected by RT-PCR and Western blot. Furthermore, the correlation between apoptosis pathways biomarkers and disc pathology were analyzed. Nucleus pulposus cell density decreased with degeneration process, and increased apoptotic ratio. ER pathway was predominant in mild stage of IVDD (GRP78, GADD153 upregulation and caspase-4 activation), death receptor pathway was predominant in mild and moderate stages (Fas, FasL up-regulation and caspase-8 activation) and mitochondrial pathway was predominant in moderate and severe stages (Bcl-2 down-regulation, Bax up-regulation, cytochrome-c accumulation in cytoplasm and caspase-9 activation). There were significant differences in the expressions of Fas, FasL, Bax, GADD153, cytochrome-c and cleaved caspase-8/9/3 between contained and non-contained discs. In conclusion, apoptosis occurs via these three apoptosis pathways together in IVDD. ER pathway plays a more critical role in the mild compared to moderate and severe stages, death receptor pathway in mild and moderate, and mitochondrial pathway in moderate and severe stages of IVDD. Disc cells apoptosis may progress rapidly after herniation, and may depend on the type of herniation.  相似文献   

4.
Hypoxia-induced cardiomyocyte apoptosis is one of the leading causes of heart failure. Nuclear respiratory factor 1 (NRF-1) was suggested as a protector against cell apoptosis; However, the mechanism is not clear. Therefore, the aim of this study was to elucidate the role of NRF-1 in hypoxia-induced H9C2 cardiomyocyte apoptosis and to explore its effect on regulating the death receptor pathway and mitochondrial pathway. NRF-1 was overexpressed or knocked down in H9C2 cells, which were then exposed to a hypoxia condition for 0, 3, 6, 12, and 24 h. Changes in cell proliferation, cell viability, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP) were investigated. The activities of caspase-3, -8, and -9, apoptosis rate, and the gene and protein expression levels of the death receptor pathway and mitochondrial pathway were analyzed. Under hypoxia exposure, NRF-1 overexpression improved the proliferation and viability of H9C2 cells and decreased ROS generation, MMP loss, caspase activities, and the apoptosis rate. However, the NRF-1 knockdown group showed the opposite results. Additionally, NRF-1 upregulated the expression of antiapoptotic molecules involved in the death receptor and mitochondrial pathways, such as CASP8 and FADD-like apoptosis regulator, B-cell lymphoma 2, B-cell lymphoma-extra-large, and cytochrome C. Conversely, the expression of proapoptotic molecules, such as caspase-8, BH3-interacting domain death agonist, Bcl-2-associated X protein, caspase-9, and caspase-3 was downregulated by NRF-1 overexpression in hypoxia-induced H9C2 cells. These results suggest that NRF-1 functions as an antiapoptotic factor in the death receptor and mitochondrial pathways to mitigate hypoxia-induced apoptosis in H9C2 cardiomyocytes.  相似文献   

5.
Reactive alpha,beta-unsaturated aldehydes such as acrolein are major components of common environmental pollutants. As a toxic by-product of lipid peroxidation, acrolein has been implicated as a possible mediator of oxidative damage to cells and tissues in a wide variety of disease states, including atherosclerosis and neurodegenerative and pulmonary diseases. Although acrolein can induce apoptotic cell death in various cell types, the biochemical mechanisms are not understood. This study investigates the implication of the death receptor pathway in acrolein-induced apoptosis. Exposure of Chinese hamster ovary cells to acrolein caused translocation of adaptor protein Fas associated with death domain to the cytoplasmic membrane and caspase-8 activation. Kp7-6, an antagonist of Fas receptor activation, blocked apoptotic events downstream of caspase-8, such as caspase-7 activation and nuclear chromatin condensation. Acrolein activated the cross-talk pathway between the death receptor and mitochondrial pathways. Bid was cleaved to truncated-Bid, which was translocated to mitochondria. Activation of the mitochondrial pathway by acrolein was confirmed by caspase-9 activation. Inhibition of activation of either the Fas receptor or caspase-8 partially decreased acrolein-induced caspase-9 activation. These findings indicate that acrolein activates the Fas receptor pathway, which occurs upstream of the mitochondrial pathway. Caspase-9 activation still occurred despite inhibition of the Fas receptor pathway, suggesting that acrolein could also trigger the mitochondrial pathway independent of the receptor pathway. These findings improve our understanding of mechanisms of toxicity of the reactive aldehyde acrolein, which has widespread implications in multiple disease states which seem to be mediated by oxidative stress and lipid peroxidation.  相似文献   

6.
Recently, caspase-2 was shown to act upstream of mitochondria in stress-induced apoptosis. Activation of caspase-8, a key event in death receptor-mediated apoptosis, also has been demonstrated in death receptor-independent apoptosis. The regulation of these initiator caspases, which trigger the mitochondrial apoptotic pathway, is unclear. Here we report a potential regulatory role of caspase-2 on caspase-8 during ceramide-induced apoptosis. Our results demonstrate the sequential events of initiator caspase-2 and caspase-8 activation, Bid cleavage and translocation, and mitochondrial damage followed by downstream caspase-9 and -3 activation and cell apoptosis after ceramide induction in T cell lines. The expression of truncated Bid (tBid) and the reduction in mitochondrial transmembrane potential were blocked by caspase-2 or caspase-8, but not caspase-3, knockdown using an RNA interference technique. Ceramide-induced caspase-8 activation, mitochondrial damage, and apoptosis were blocked in caspase-2 short interfering RNA-expressing cells. Therefore, caspase-2 acts upstream of caspase-8 during ceramide-induced mitochondrial apoptosis. Similarly, sequential caspase-2 and caspase-8 activation upstream of mitochondria was also observed in etoposide-induced apoptosis. These data suggest sequential initiator caspase-2 and caspase-8 activation in the mitochondrial apoptotic pathway induced by ceramide or etoposide.  相似文献   

7.
The hierarchy of events accompanying induction of apoptosis by the microtubule inhibitor docetaxel was investigated in HL-60 human leukemia cells. Treatment of HL-60 cells with docetaxel resulted in the production of reactive oxygen species (ROS), activation of caspase-3 (-like) protease, c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) activation, bcl-2 phosphorylation and apoptosis. Docetaxel elicited ROS production from NADPH oxidase as demonstrated by specific oxidase inhibitor diphenylene iodonium (DPI). ROS mediated the caspase-3 activation and apoptosis in HL-60 cells. The caspase inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) effectively inhibited JNK/SAPK activation, bcl-2 phosphorylation and partially attenuated the ROS production induced by docetaxel. Docetaxel-induced bcl-2 phosphorylation was completely blocked by expression of dominant negative JNK or the JNK/SAPK inhibitor SP600125. Overexpression of bcl-2 partially prevented docetaxel-mediated ROS production and subsequent caspase-3 activation, thereby inhibiting apoptotic cell death. It is thus conferred that such sequent events as ROS production, caspase activation, JNK/SAPK activation, bcl-2 phosphorylation and the further generation of ROS should be parts of an amplification loop to increase caspase activity, thereby facilitating the apoptotic cell death process.  相似文献   

8.
A ginseng polysaccharide was extracted, purified, and modified by nitric acid-selenious acid (HNO3-H2SeO3) method to yield one selenylation-modified polysaccharide (sGP). We reported for the first time the anticancer potential of sGP on the human promyelocytic leukemia HL-60 cell line and evaluated its relevant underlying mechanism. Our results showed that sGP markedly inhibited the growth of HL-60 cells via induction of apoptosis. The event of apoptosis was accompanied by the formation of apoptotic bodies; the release of cytochrome c; loss of mitochondrial membrane potential; and activation of caspase-9, caspase-3, and cleavage of poly ADP ribose polymerase (PARP) in HL-60 cells. In addition, western blot analysis showed that sGP inhibited antiapoptotic Bcl-2 protein expression and increased proapoptotic Bax protein expression in cells under identical conditions. Together, our study suggests that sGP induces apoptosis of HL-60 cells through the mitochondrial-dependent pathway.  相似文献   

9.
Caspase-2 is one of the earliest identified caspases, but the mechanism of caspase-2-induced apoptosis remains unknown. We show here that caspase-2 engages the mitochondria-dependent apoptotic pathway by inducing the release of cytochrome c (Cyt c) and other mitochondrial apoptogenic factors into the cell cytoplasm. In support of these observations we found that Bcl-2 and Bcl-xL can block caspase-2- and CRADD (caspase and RIP adaptor with death domain)-induced cell death. Unlike caspase-8, which can process all known caspase zymogens directly, caspase-2 is completely inactive toward other caspase zymogens. However, like caspase-8, physiological levels of purified caspase-2 can cleave cytosolic Bid protein, which in turn can trigger the release of Cyt c from isolated mitochondria. Interestingly, caspase-2 can also induce directly the release of Cyt c, AIF (apoptosis-inducing factor), and Smac (second mitochondria-derived activator of caspases protein) from isolated mitochondria independent of Bid or other cytosolic factors. The caspase-2-released Cyt c is sufficient to activate the Apaf-caspase-9 apoptosome in vitro. In combination, our data suggest that caspase-2 is a direct effector of the mitochondrial apoptotic pathway.  相似文献   

10.
AP9-cd, a standardized lignan composition from Cedrus deodara consisting of (-)-wikstromal, (-)-matairesinol, and dibenzyl butyrolactol, showed cytotoxicity in several human cancer cell lines reported earlier. An attempt was made in this study to investigate the mechanism of cell death in human leukemia Molt-4 and HL-60 cells. It inhibited Molt-4 cell proliferation with 48-h IC(50) of approximately 15 microg/ml, increased sub-G0 cell fraction with no mitotic block, produced apoptotic bodies and induced DNA ladder formation. Flow cytometric analysis of annexinV-FITC/PI-stained cells showed time-related increase in apoptosis and post-apoptotic necrosis. All these biological end-points indicated cell death by apoptosis. Further, initial events involved massive nitric oxide (NO) formation within 4 h with subsequent late appearance of peroxides in cells; measured by flow cytometry using specific fluorescent probes. Persistently high levels of NO and peroxide appeared to decrease mitochondrial membrane potential (Psi(mt)) which was recovered by cyclosporin A in Molt-4 cells. AP9-cd caused 2-fold activation of caspase-3 in Molt-4 and 5-fold activation in HL-60 cells. Also caspases-8 and -9 were activated in HL-60 cells. Ascorbate suppressed the enhanced caspases activities indicating a pro-oxidant effect of AP9-cd. Further, caspase-3 activation correlated with NO generation that was partially impaired by nitric oxide synthase (NOS) inhibitors and ascorbate suggesting a role of pro-oxidant species in caspase-3 activation. AP9-cd produced no cytotoxicity in primary rat hepatocyte culture at the concentrations used. The studies indicated that AP9-cd mediated early NO formation leads to caspases activation, peroxide generation, and mitochondrial depolarization which may be responsible for mitochondrial-dependent and -independent apoptotic pathways involved in the killing of leukemia cells by AP9-cd.  相似文献   

11.
Haplophytin-A (10-methoxy-2,2-dimethyl-2,6-dihydro-pyrano[3,2-c]quinolin-5-one), a novel quinoline alkaloid, was isolated from the Haplophyllum acutifolium. In this study, we investigated the effect of haplophytin-A on the apoptotic activity and the molecular mechanism of action in human promyelocytic leukemia HL-60 cells. Treatment with haplophytin-A (50 μM) induced classical features of apoptosis, such as, DNA fragmentation, DNA ladder formation, and the externalization of annexin-V-targeted phosphatidylserine residues in HL-60 cells. In addition, haplophytin-A triggered the activations of caspase-8, -9, and -3, and the cleavage of poly (ADP-ribose) polymerase (PARP) in HL-60 cells. In addition, haplophytin-A caused the loss of mitochondrial membrane potential (ΔΨm) and the release of cytochrome c and Smac/DIABLO to the cytosol, and modulated the expression levels of Bcl-2 family proteins. We further demonstrated that knockdown of caspase-8 using its siRNA inhibited the mitochondrial translocation of tBid, the activations of caspase-9 and caspase-3, and subsequent DNA fragmentation by haplophytin-A. Furthermore, haplophytin-A-induced the formation of death-inducing signaling complex (DISC) and then activated caspase-8 in HL-60 cells. During haplophytin-A-induced apoptosis, caspase-8-stimulated tBid provide a link between the death receptor-mediated extrinsic pathway and the mitochondria- mediated intrinsic pathway. Taken together, these results suggest that the novel compound haplophytin-A play therapeutical role for leukemia via the potent apoptotic activity through the extrinsic pathway, involving the intrinsic pathway.  相似文献   

12.
Fresh loquat leaves have been used as folk health herb in Asian countries for long time, although the evidence supporting their functions is still minimal. This study aimed to clarify the chemopreventive effect of loquat tea extract (LTE) by investigating the inhibition on proliferation, and underlying mechanisms in human promyelocytic leukemia cells (HL-60). LTE inhibited proliferation of HL-60 in a dose-dependent manner. Molecular data showed that the isolated fraction of LTE induced apoptosis of HL-60 as characterized by DNA fragmentation; activation of caspase-3, -8, and -9; and inactivation of poly(ADP)ribose polymerase. Moreover, LTE fraction increased the ratio of pro-apoptotic Bcl-2-associated X protein (Bax)/anti-apoptotic myeloid cell leukemia 1 (Mcl-1) that caused mitochondrial membrane potential loss and cytochrome c released to cytosol. Thus, our data indicate that LTE might induce apoptosis in HL-60 cells through a mitochondrial dysfunction pathway. These findings enhance our understanding for chemopreventive function of loquat tea.  相似文献   

13.
BACKGROUND: Antimycin A (AMA) inhibits mitochondrial electron transport, collapses the mitochondrial membrane potential, and causes the production of reactive oxygen species. Previous work by me and my colleagues has demonstrated that AMA causes an array of typical apoptotic phenomena in HL-60 cells. The hypothesis that AMA causes HL-60 apoptosis by the intrinsic apoptotic pathway has now been tested. METHODS: Z-LEHD-FMK and Z-IETD-FMK were used as specific inhibitors of the initiator caspases 9 and 8, respectively. Caspase 3 activation, DNA fragmentation, and cellular disintegration were measured by flow cytometry. Cytochrome c release, chromatin condensation, and nuclear fragmentation were measured by microscopy. RESULTS: AMA caused mitochondrial cytochrome c release and neither Z-LEHD-FMK nor Z-IETD-FMK inhibited that. In the absence of caspase inhibition there was a very close correlation between cytochrome c release and caspase 3 activation. Z-LEHD-FMK blocked caspase 3 activation but enhanced DNA fragmentation and failed to stop nuclear or cellular disintegration. Z-IETD-FMK also blocked caspase 3 activation but, in contrast to Z-LEHD-FMK, delayed DNA fragmentation and disintegration of the nucleus and the cell. CONCLUSIONS: The hypothesis to explain AMA-induced HL-60 apoptosis was clearly inadequate because: (a) caspase 9 inhibition did not prevent DNA fragmentation or cell death, (b) apoptosis proceeded in the absence of caspase-3 activation, (c) the main pathway leading to activation of the executioner caspases was by caspase-8 activation, but caspase 8 inhibition only delayed apoptosis, and (d) activation of caspases 8 and 9 may be necessary for caspase-3 activation. Thus, in this cell model, apoptosis triggered from within the mitochondria does not necessarily proceed by caspase 9, and caspase 3 is not critical to apoptosis. The results provide further evidence that, when parts of the apoptotic network are blocked, a cell is able to complete the program of cell death by alternate pathways.  相似文献   

14.
Zhu XF  Liu ZC  Xie BF  Li ZM  Feng GK  Xie HH  Wu SJ  Yang RZ  Wei XY  Zeng YX 《Life sciences》2002,70(11):1259-1269
Annonaceous acetogenins have potent antitumor effect in vitro and in vivo. Squamocin is one of the annonaceous acetogenins and has been reported to have antiproliferative effect on cancer cells. Our results from this study showed that squamocin inhibited proliferation of HL-60 cells with IC50 value of 0.17 microg/ml and induced apoptosis of HL-60 cells. Investigation of the mechanism of squamocin-induced apoptosis revealed that treatment of HL-60 cells with squamocin resulted in extensive nuclear condensation. DNA fragmentation, cleavage of the death substrate poly (ADP-ribose) polymerase (PARP) and induction of caspase-3 activity. Pretreatment of HL-60 cells with caspase-3 specific inhibitor DEVD-CHO prevented squamocin-induced DNA fragmentation, PARP cleavage and cell death. The expression levels of protein bcl-2, bax have no change in response to squamocin treatment in HL-60 cells, whereas stress-activated protein kinase (SAPK/JNK) was activated after treatment with squamocin in HL-60 cells. These results suggest that apoptosis of HL-60 cells induced by squamocin requires caspase-3 activation and is related to SAPK activation.  相似文献   

15.
The role of protein kinase C-beta (PKC-beta) in apoptosis induced by tumor necrosis factor (TNF)-alpha and anti-Fas monoclonal antibody (mAb) in the human myeloid HL-60 leukemia cell line was studied by using its variant HL-525, which is deficient in PKC-beta. In contrast to the parental HL-60 cells, HL-525 is resistant to TNF-alpha-induced apoptosis but sensitive to anti-Fas mAb-induced apoptosis. Both cell types expressed similar levels of the TNF-receptor I, whereas the Fas receptor was detected only in HL-525 cells. Transfecting the HL-525 cells with an expression vector containing PKC-beta reestablished their susceptibility to TNF-alpha-induced apoptosis. The apoptotic effect of TNF-alpha in HL-60 and the transfectants was abrogated by fumonisin, an inhibitor of ceramide generation, and by the peptide Ac-YVAD-BoMK, an inhibitor of caspase-1 and -4. Supplementing HL-525 cells with exogenous ceramides bypassed the PKC-beta deficiency and induced apoptosis, which was also restrained by the caspase-1 and -4 inhibitor. The apoptotic effect of anti-Fas mAb in HL-525 cells was abrogated by the antioxidants N-acetylcysteine and glutathione and by the peptide z-DEVD-FMK, an inhibitor of caspase-3 and -7. We suggest that TNF-alpha-induced apoptosis involves PKC-beta and then ceramide and, in turn, caspase-1 and/or -4, whereas anti-Fas mAb-induced apoptosis utilizes reactive oxygen intermediates and, in turn, caspase-3 and/or -7.  相似文献   

16.
It is generally believed that traditional Chinese medicine such as saponins has great value as potent cancer prevention and chemotherapeutic agents; however, the molecular basis for their activities is for the most part lacking. In the present study, we used proteomics to examine the cytotoxic effect of dioscin, a glucoside saponin, on human myeloblast leukemia HL-60 cells. Dioscin induced apoptosis in HL-60 cells in a time-dependent manner. Protein profiling of the microsomal fraction with enriched plasma membrane proteins isolated from HL-60 cells revealed that proteins act as chaperones and/or mediators of protein folding and were substantially altered in expression cells upon dioscin stimuli. Further biochemical study indicated that mitochondria dysfunction caused generation of reactive oxygen species (ROS), leading to the changes in protein expression. The mitochondrial transmembrane potential (DeltaPsi m) inhibitor aristolochic acid (ArA) partially abrogated the dioscin-initiated death receptor apoptosis pathway and cell death. The current study provided detailed evidence to support that dioscin is capable of inducing apoptosis in mammalian cells, in which the mitochondria-initiated apoptosis pathway plays an important role.  相似文献   

17.
In the current study, we isolated 10 carbazole alkaloids from the plant species Murraya koenigii (Rutaceae), and examined their effects on the growth of the human leukemia cell line HL-60. Three carbazole alkaloids, mahanine (6), pyrayafoline-D (7) and murrafoline-I (9), showed significant cytotoxicity against HL-60 cells. Fluorescence microscopy with Hoechst 33342 staining revealed that the percentage of apoptotic cells with fragmented nuclei and condensed chromatin was increased in a time-dependent manner after treatment with each alkaloid. Interestingly, each carbazole alkaloid induced the loss of mitochondrial membrane potential. In addition, both caspase-9 and caspase-3 were also time-dependently activated upon treatment with the alkaloids. Caspase-9 and caspase-3 inhibitors suppressed apoptosis induced by these alkaloids. The results suggest that these three alkaloids induced apoptosis in HL-60 cells through activation of the caspase-9/caspase-3 pathway, through mitochondrial dysfunction.  相似文献   

18.
We have demonstrated that focal adhesion kinase (FAK)-overexpressed (HL-60/FAK) cells have marked resistance against various apoptotic stimuli such as hydrogen peroxide, etoposide, and ionizing radiation compared with the vector-transfected (HL-60/Vect) cells. HL-60/FAK cells are highly resistant to TRAIL-induced apoptosis, while original HL-60 or HL-60/Vect cells were sensitive. TRAIL at 500 ng/ml induced significant DNA fragmentation, activation of caspase-8 and 3, the processing of a proapoptotic BID, and mitochondrial release of cytochrome c in HL-60/Vect cells, whereas no such events were observed in the HL-60/FAK cells. In particular, the expression of procaspase-8 gene and subsequent cleavage of caspase-8 were markedly reduced in HL-60/FAK cells, while expression of TRAIL-receptor 2 and 3, TRADD, and FADD was equivalent in both types of cells. In HL-60/FAK cells, the phosphoinositide 3 (PI3)-kinase/Akt survival pathway was constitutively activated, accompanied by significant induction of inhibitor-of-apoptosis proteins, XIAP, RIP, and Bcl-XL. The introduction of FAK siRNA in HL-60/FAK cells sensitized them against TRAIL-induced apoptosis, confirming that overexpressed FAK downregulates procaspase-8 expression, which subsequently inhibits downstream apoptosis pathway in the HL-60/FAK cells.  相似文献   

19.
Employing fluorescence resonance energy transfer (FRET) imaging, we previously demonstrated that effector caspase activation is often an all-or-none response independent of drug choice or dose administered. We here investigated the signaling dynamics during apoptosis initiation via the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor pathway to investigate how variability in drug exposure can be translated into largely kinetically invariant cell death execution pathways. FRET-based microscopy demonstrated dose-dependent responses of caspase-8 activation and activity within individual living HeLa cells. Caspase-8 on average was activated 45-600 min after TRAIL/cycloheximide addition. Caspase-8-like activities persisted for 15-60 min before eventually inducing mitochondrial outer membrane permeabilization. Independent of the TRAIL concentrations used or the resulting caspase-8-like activities, mitochondrial outer membrane permeabilization was induced when 10% of the FRET substrate was cleaved. In contrast, in Bid-depleted cells, caspase-8-like activity persisted for hours without causing immediate cell death. Our findings provide detailed insight into the intracellular signaling kinetics during apoptosis initiation and describe a threshold mechanism controlling the induction of apoptosis execution.  相似文献   

20.
Yang HL  Hseu YC  Hseu YT  Lu FJ  Lin E  Lai JS 《Life sciences》2004,75(15):1817-1831
It has been shown that humic acid (HA), a phenolic polymer, exhibits pro-oxidant and cytotoxic effects. In this study, HA induction of apoptosis was studied using cultured human premyelocytic leukemia HL-60 cells. Treatment at a range of HA concentrations (50-400 microg/ml) resulted in dose-and time-dependent sequences of events marked by apoptosis, as demonstrated through by apoptotic features such as loss of cell viability, chromatin condensation, and internucleosomal DNA fragmentation. This HA-induced apoptosis in the HL-60 cells was mainly associated with the release of cytochrome c from the mitochondria. Furthermore, apoptosis in the HL-60 cells was accompanied by the activation of caspase-3 and the specific proteolytic cleavage of poly (ADP-ribose) polymerase (PARP), a major component in the apoptotic cell death mechanism. Although the HA-induced apoptosis was associated with Bax protein levels, negligible Bcl-2 reduction was observed. Analysis of the data reported herein reveals that HA exerts antiproliferative action and growth inhibition on HL-60 cells through induction of apoptosis, which may have anticancer properties potentially useful for the development of new drug products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号