首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Streptomyces viridosporus A-914 was screened as a producer of an enzyme to effectively form chiral intermediates of 1,4-dihydropyridine calcium antagonists. The supernatant liquid of the growing culture of this strain exhibited high activity for enantioselective hydrolysis of prochiral 1,4-dihydropyridine diesters to the corresponding (4R) half esters. The responsible enzyme (termed DHP-A) was purified to apparent homogeneity and characterized. Cloning and sequence analysis of the gene for DHP-A (dhpA) revealed that the enzyme was a serine protease that is highly similar in both structural and enzymatic feature to SAM-P45, which is known as a target enzyme of Streptomyces subtilisin inhibitor (SSI), from Streptomyces albogriseolus. In a batch reaction test, DHP-A produced a higher yield of a chiral intermediate of 1,4-dihydropyridine than the commercially available protease P6. Homologous or heterologous expression of dhpA resulted in overproduction of the enzyme in culture supernatants, with 2.4- to 4.2-fold higher specific activities than in the parent S. viridosporus A-914. This indicates that DHP-A is suitable for use in reactions forming chiral intermediates of calcium antagonists and suggests the feasibility of developing DHP-A as a new commercial enzyme for use in the chiral drug industry.  相似文献   

2.
不对称还原胺化反应是制备医药中间体手性胺结构单元的重要反应。目前已有许多不同种类的酶被应用于合成手性胺,其中NAD(P)H依赖型氧化还原酶催化的还原胺化反应最为引人注目,因为其能够一步将潜手性酮化合物完全转化为光学纯的手性胺化合物。文中以亚胺还原酶、氨基酸脱氢酶、冠瘿碱脱氢酶和还原性酮胺化酶为例,从NAD(P)H依赖型氧化还原酶的结构特征、作用机理、分子改造及催化应用等方面,综述了其在不对称还原胺化合成手性胺领域的研究进展。  相似文献   

3.
Streptomyces viridosporus A-914 was screened as a producer of an enzyme to effectively form chiral intermediates of 1,4-dihydropyridine calcium antagonists. The supernatant liquid of the growing culture of this strain exhibited high activity for enantioselective hydrolysis of prochiral 1,4-dihydropyridine diesters to the corresponding (4R) half esters. The responsible enzyme (termed DHP-A) was purified to apparent homogeneity and characterized. Cloning and sequence analysis of the gene for DHP-A (dhpA) revealed that the enzyme was a serine protease that is highly similar in both structural and enzymatic feature to SAM-P45, which is known as a target enzyme of Streptomyces subtilisin inhibitor (SSI), from Streptomyces albogriseolus. In a batch reaction test, DHP-A produced a higher yield of a chiral intermediate of 1,4-dihydropyridine than the commercially available protease P6. Homologous or heterologous expression of dhpA resulted in overproduction of the enzyme in culture supernatants, with 2.4- to 4.2-fold higher specific activities than in the parent S. viridosporus A-914. This indicates that DHP-A is suitable for use in reactions forming chiral intermediates of calcium antagonists and suggests the feasibility of developing DHP-A as a new commercial enzyme for use in the chiral drug industry.  相似文献   

4.
We have tested the hypothesis that Okazaki fragment replicative intermediates have defined termini using as a model system the in vivo DNA replication of the tiny bacteriophage P4. The kinetics of formation of intermediates in P4 DNA replication have been investigated. P4 DNA replication in DNA polymerase I-deficient mutants generates Okazaki fragments with a size distribution similar to that in uninfected cells. When P4-derived Okazaki fragments are resolved by agarose gel electrophoresis, no discrete size classes appear. This finding is incompatible with sequence-specific models of Okazaki fragment formation but supports the view that these replication intermediates are initiated and terminated at random locations on the P4 chromosome.  相似文献   

5.
Petucci C  Di L  McConnell O 《Chirality》2007,19(9):701-705
Thirty-five enzymes were rapidly screened for their ability to selectively hydrolyze chiral esters to their corresponding carboxylic acids for the efficient generation of chiral intermediates in drug discovery. Optimization of the enzymatic reactions at various incubation times was performed using a robotic liquid handler. Enantiomeric pairs of chiral esters and carboxylic acids were then analyzed simultaneously by chiral GC/MS in a single analysis. This analytical approach is particularly useful for compounds that do not possess a conjugated chromophore or are volatile and difficult to analyze by chiral HPLC/UV or HPLC/MS. The resulting data was used to determine enantiomeric excesses and percent conversions to the desired enantiomer of the carboxylic acid for the selection of efficient enzymes for bioconversions in drug discovery in a pharmaceutical company.  相似文献   

6.
An asymmetric route was developed for the synthesis of a class of novel glucocorticoid receptor ligand derivatives 1. The key step of this synthesis involves a diastereoselective addition of chiral sulfoxide anion to a trifluoromethyl ketone precursor. The resulting diastereomers are readily separable and can be converted to the corresponding chiral epoxide and chiral alkyne intermediates (2 and 3). This sequence of reactions is suitable for large-scale preparation of these chiral intermediates and derivatives of 1. The absolute stereochemistry of the biologically active enantiomer of these GR ligands has also been determined.  相似文献   

7.
Cheng GI  Shei CT  Sung K 《Chirality》2007,19(3):235-238
An alternative route from (1R)-(+)-camphor to chiral N-substituted camphor-derived beta-amino alcohol (4b-e) consists of four steps with a total yield of 28%. N-Alkylation of camphor-derived beta-amino alcohol (4a) involves condensation and hydride reduction in one pot without isolation of intermediates. Condensation of 4a with aldehydes or ketones generates a mixture of 1,3-oxazolidines (6) and imino-alcohols (7), which are reduced to 4b-e by NaBH(4).  相似文献   

8.
The two enantiomers of ethyl 3‐hydroxybutyrate are important intermediates for the synthesis of a great variety of valuable chiral drugs. The preparation of chiral drug intermediates through kinetic resolution reactions catalyzed by esterases/lipases has been demonstrated to be an efficient and environmentally friendly method. We previously functionally characterized microbial esterase PHE21 and used PHE21 as a biocatalyst to generate optically pure ethyl (S)‐3‐hydroxybutyrate. Herein, we also functionally characterized one novel salt‐tolerant microbial esterase WDEst17 from the genome of Dactylosporangium aurantiacum subsp. Hamdenensis NRRL 18085. Esterase WDEst17 was further developed as an efficient biocatalyst to generate (R)‐3‐hydroxybutyrate, an important chiral drug intermediate, with the enantiomeric excess being 99% and the conversion rate being 65.05%, respectively, after process optimization. Notably, the enantio‐selectivity of esterase WDEst17 was opposite than that of esterase PHE21. The identification of esterases WDEst17 and PHE21 through genome mining of microorganisms provides useful biocatalysts for the preparation of valuable chiral drug intermediates.  相似文献   

9.
Direct spectroscopic observation of thiamin diphosphate-bound intermediates was achieved on the enzyme benzaldehyde lyase, which carries out reversible and highly enantiospecific conversion of ( R)-benzoin to benzaldehyde. The key enamine intermediate could be observed at lambda max 393 nm in the benzoin breakdown direction and in the decarboxylase reaction starting with benzoylformate. With benzaldehyde as substrate, no intermediates could be detected, only formation of benzoin at 314 nm. To probe the rate-limiting step in the direction of ( R)-benzoin synthesis, the (1)H/ (2)H kinetic isotope effect was determined for benzaldehyde labeled at the aldehyde position and found to be small (1.14 +/- 0.03), indicating that ionization of the C2alphaH from C2alpha-hydroxybenzylthiamin diphosphate is not rate limiting. Use of the alternate substrates benzoylformic and phenylpyruvic acids (motivated by the observation that while a carboligase, benzaldehyde lyase could also catalyze the slow decarboxylation of 2-oxo acids) enabled the observation of the substrate-thiamin covalent intermediate via the 1',4'-iminopyrimidine tautomer, characteristic of all intermediates with a tetrahedral C2 substituent on ThDP. The reaction of benzaldehyde lyase with the chromophoric substrate analogue ( E)-2-oxo-4(pyridin-3-yl)-3-butenoic acid and its decarboxylated product ( E)-3-(pyridine-3-yl)acrylaldehyde enabled the detection of covalent adducts with both. Neither adduct underwent further reaction. An important finding of the studies is that all thiamin-related intermediates are in a chiral environment on benzaldehyde lyase as reflected by their circular dichroism signatures.  相似文献   

10.
The modern use of preparative chromatography in pharmaceutical development is illustrated by the case of a recent preclinical candidate from these laboratories. The synthesis of the candidate employed a coupling of two enantiopure intermediates, each of which could be resolved using preparative chiral chromatography. SFC screening was employed to identify the enantioselective stationary phases, and semipreparative SFC methods derived from this screening were used to produce gram amounts of enantiopure intermediate for initial studies. However, initial larger scale resolution required the translation of the SFC methods to HPLC conditions. Preparative chiral HPLC on a 30-cm i.d. column was then used to produce enantiopure intermediates which were coupled to give 170 g of the preclinical candidate. Subsequent preparation of the candidate at larger scale for later-stage clinical evaluation employed an improved synthesis in which one component was constructed by asymmetric synthesis. Resolution of the other component, now a more advanced intermediate, was carried out using newly obtained large-scale SFC equipment. Some discussion is presented on the varying strategies whereby preparative chiral chromatography can be used to support either short-term or long-term synthetic goals in preclinical pharmaceutical development.  相似文献   

11.
Indene is oxidized to mixtures of cis- and trans-indandiols and related metabolites by Pseudomonas putida and Rhodococcus sp. isolates. Indene metabolism is consistent with monooxygenase and dioxygenase activity. P. putida resolves enantiomeric mixtures of cis-1,2-indandiol by further selective oxidation of the 1R, 2S-enantiomer yielding high enantiomeric purity of cis-(1S, 2R)-indandiol, a potential intermediate in the synthesis of indinavir sulfate (CRIXIVAN), a protease inhibitor used in the treatment of AIDS. Molecular cloning of P. putida toluene dioxygenase in Escherichia coli confirmed the requirement for the dihydrodiol dehydrogenase in resolving racemic mixtures of cis-indandiol. Rhodococcus sp. isolates convert indene to cis-(1S, 2R)-indandiol at high initial enantiomeric excess and one isolate also produces trans-(1R, 2R)-indandiol, suggesting the presence of monooxygenase activity. Scale up and optimization of the bioconversions to these key synthons for chiral synthesis of potential intermediates for commercial manufacture of indinavir sulfate are described.  相似文献   

12.
介绍手性源、手性池和手性分子化合物的基本概念;由手性池化合物制备手性衍生物;比较了手性化合物生物加工与化学加工过程的优、缺点,寻求高效、经济和最合理的综合工艺流程。  相似文献   

13.
2-Substituted 4-chromanones were synthesized in their optically active forms. The chiral intermediates were obtained via lipase-catalyzed enantioselective reactions. Lipase and esterase were also used for the hydrolysis of ester moieties of the precursors of the target compounds under mild conditions.  相似文献   

14.
When dioxygen is reduced to water by cytochrome c oxidase a sequence of oxygen intermediates are formed at the reaction site. One of these intermediates is called the "peroxy" (P) intermediate. It can be formed by reacting the two-electron reduced (mixed-valence) cytochrome c oxidase with dioxygen (called P(m)), but it is also formed transiently during the reaction of the fully reduced enzyme with oxygen (called P(r)). In recent years, evidence has accumulated to suggest that the O-O bond is cleaved in the P intermediate and that the heme a(3) iron is in the oxo-ferryl state. In this study, we have investigated the kinetic and thermodynamic parameters for formation of P(m) and P(r), respectively, in the Rhodobacter sphaeroides enzyme. The rate constants and activation energies for the formation of the P(r) and P(m) intermediates were 1.4 x 10(4) s(-1) ( approximately 20 kJ/mol) and 3 x 10(3) s(-1) ( approximately 24 kJ/mol), respectively. The formation rates of both P intermediates were independent of pH in the range 6.5-9, and there was no proton uptake from solution during P formation. Nevertheless, formation of both P(m) and P(r) were slowed by a factor of 1.4-1.9 in D(2)O, which suggests that transfer of an internal proton or hydrogen atom is involved in the rate-limiting step of P formation. We discuss the origin of the difference in the formation rates of the P(m) and P(r) intermediates, the formation mechanisms of P(m)/P(r), and the involvement of these intermediates in proton pumping.  相似文献   

15.
Application of the Sharpless AD protocol to a series of alpha-(E)-benzylidene-delta-lactam precursors followed by selective deoxygenation provided efficient synthetic routes to the chiral quaternary alpha-hydroxy-gammalactam derivatives 4 and 5. These functionalized intermediates and the diol precursors 3 are regarded as novel types of D-Phe-Pro dipeptide surrogates that are useful as enzyme active site probes.  相似文献   

16.
A new method has been developed for the rapid determination of D-cysteine contents in synthetic peptides. It is based on the reduction of cystine residues, when present, with tris- alkylphosphines, selective derivatization of the cysteine residues with 4-vinylpyridine, followed by acid hydrolysis of the (4-pyridylethyl)cysteine –peptides. Baseline enantiomeric resolution of theD ,L -S-β-(4-pyridylethyl)cysteine, and thus quantification ofD - enantiomer contents at levels ≤1%, is easily achieved by capillary zone electrophoresis exploiting the host–guest complexation principle with crown ethers or by gas chromatography on chiral glass capillary columns upon conventional derivatization of the hydrolysate. The acid-stability of the (4-pyridylethyl)cysteine derivative prevents racemization via thiazoline intermediates and allows for standardization of the acid hydrolysis-dependent racemization.  相似文献   

17.
The solution structures of (3R,4S)- and (3S,4R)- 4-(4-fluorophenyl)-3-hydroxylmethyl- 1-methylpiperidine, which are intermediates in the synthesis of the two pharmaceuticals paroxetine and femoxetine, were studied by vibrational circular dichroism (VCD) spectroscopy. In addition, six derivatives with different substituents attached to the C3 atom were prepared and their VCD and absorption spectra discussed with the aid of ab initio simulations. The VCD spectra were found to be sensitive to the geometry changes. In addition, a subtle variation caused by intermolecular aggregation was apparent in the spectra. The VCD technique can be applied for structural analysis of chiral pharmaceuticals in solutions.  相似文献   

18.
Summary Keto-lactones1–4 have been submitted to the action of a group of selected yeasts. The mode of reduction changes with the structure of the substrate, yielding products with diastereo- and/or enantioselection. The preparation of highly functionalised chiral intermediates in enantiomerically enriched form is envisaged.  相似文献   

19.
An efficient asymmetric synthesis of the chiral N-(3-chloro-2-hydroxypropyl)anilines (2a and 2b) was achieved through the regioselective ring-opening reaction of chiral epichlorohydrin with aniline. This was applied to an asymmetric synthesis of the enantiomers of 1-[4,4-bis(4-fluorophenyl)butyl]-4-[2-hydroxy-3-(phenylamino)propyl]piperazine 1 as a novel potent dopamine uptake inhibitor. Both enantiomers as trihydrochlorides, 4a.3HCl and 4b.3HCl, could be synthesized in good total yields and optical purities of 100% ee in three steps synthesis, respectively. The absolute configurations of 4a.3HCl and 4b.3HCl were determined using the modified Mosher's method with the related compounds, the intermediates (2a and 2b) and the free bases (4a and 4b). The analytical results indicated that 4a.3HCl and 4b.3HCl have the (S)- and (R)-configuration, respectively, and a series of reactions to provide them proceeded without the apparent influence on the stereochemistry at the chiral centers. In in vitro pharmacological evaluations, 4a.3HCl and 4b.3HCl showed potent dopamine transporter binding affinities, high dopamine, moderate serotonin, and weak norepinephrine uptake inhibitory activities, and 4a.3HCl exhibited a more potent and selective dopamine uptake inhibition over the serotonin or norepinephrine uptake inhibition as compared with 4b.3HCl. An ex vivo evaluation revealed that the oral administrations of both enantiomers at a dose of 30 mg/kg in rats displayed apparent dopamine uptake inhibitory activities and 4a.3HCl had a stronger tendency to inhibit dopamine uptake compared with 4b.3HCl.  相似文献   

20.
Carlier PR 《Chirality》2003,15(4):340-347
Chiral, configurationally stable lithiated nitriles would be valuable intermediates for asymmetric carbon-carbon bond-forming reactions. To gain insight into the design of such species, Walborsky's attempted enantioselective deprotonation/trapping reactions of a chiral cyclopropylnitrile were studied computationally up to the MP2(fc)/6-31+G* and B3LYP/6-31+G* levels. Investigation of cyclopropylnitrile/LiNH(2) deprotonation transition structures demonstrated a significant (20-23 kcal/mol) kinetic preference for N-lithiation, and a facile (4-6 kcal/mol barrier) "conducted tour" racemization pathway for the N-lithiated nitrile product. Addition of a model directing group (formyl) to the beta-carbon of the cyclopropyl ring is predicted to significantly favor C-lithiation over N-lithiation, both kinetically and thermodynamically. Thus, chiral beta-Lewis base substituted cyclopropylnitriles may serve as precursors to chiral, configurationally stable organolithium reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号