首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
水稻幼苗叶绿体保护系统对盐胁迫的反应   总被引:5,自引:0,他引:5  
以耐盐性不同的水稻品种Pokkali(耐盐)和Peta(盐敏感)为材料,研究了叶绿体中保护系统对盐胁迫的响应。结果表明:随着NaCl胁迫时间的增加,供试两品种叶绿体中H2O2和MDA含量增加,耐盐品种Pokkali增加的幅度明显小于盐敏感品种Peta;NaCl胁迫下叶绿体内的SOD活性下降,APX、GR活性和.ASA、GSH含量均为先升后降,耐盐品种Pokkali下降的幅度小于Peta。在200mmol/L NaCl胁迫过程中,Pokkali叶绿体内SOD、APX、GR活性和ASA、GSH含量均高于Peta,说明在NaCl胁迫下耐盐品种叶绿体内清除活性氧的能力强于盐敏感品种。  相似文献   

2.
研究了 0~ 2 0 0mmol/L的NaCl胁迫下耐盐性不同的水稻品种Pokkali(耐盐 )和Peta(盐敏感 )根系、叶片和叶绿体中Na 、K 和Cl-含量的变化及其与叶片光合作用的关系。结果表明 :随着NaCl胁迫时间和浓度的增加 ,供试 2个品种在根、叶片和叶绿体中Na 、Cl-含量增加 ,K 含量下降。耐盐品种体内Na 、Cl-含量增加或K 含量减少的幅度小于盐敏感品种。在 2 0 0mmol/L的NaCl胁迫下盐敏感品种根、叶片和叶绿体中的Na /K 分别是耐盐品种的 2 0 8%、30 8%和 2 97%。与Na 相比 ,耐盐品种根系对K 的吸收和向叶片运输的选择性 (SK ,Na)较强。但在经过0、10 0和 2 0 0mmol/L的NaCl处理后 2个品种叶绿体中的Na /K 均高于叶片 (SK ,Na均小于 1)。盐胁迫下水稻叶绿体中Na 、Cl-含量和Na /K 与叶片净光合速率呈极显著负相关。  相似文献   

3.
盐胁迫下水稻叶绿体中Na+、Cl-积累导致叶片净光合速率下降   总被引:18,自引:0,他引:18  
研究了0-200mmol/L的NaCl胁迫下耐盐性不同的水稻品种Pokkali(耐盐)和Peta(盐敏感)根系,叶片和叶绿体中Na^ ,K^ 和Cl^-含量的变化及其与叶片光合作用的关系。结果表明:随着NaCl胁迫时间和浓度的增加,供试2个品种在根,叶片和叶绿体中Na^ ,Cl^-含量增加,K^ 含量下降。耐盐品种体内Na^ ,Cl^-含量增加或K^ 含量减少的幅度小于盐敏感品种。在200mmol/L的NaCl胁迫下盐敏感品种根,叶片和叶绿体中的Na^ /K^ 分别是耐盐品种的208%,308%和297%。与Na^ 相比,耐盐品种根系对K^ 吸收和向叶片运输的选择性(SK,Na)较强。但在经过0,100和200mmol/L的NaCl处理后2个品种叶绿体中的Na^ /K^ 均高于叶片(SK,Na均小于1)。盐胁迫下水稻叶绿体中Na^ ,Cl^-含量和Na^ /K^ 与叶片净光合速度呈极显著负相关。  相似文献   

4.
采用营养液水培,研究了外源亚精胺(Spd)对NaCl胁迫下抗盐能力不同的两个黄瓜品种幼苗生长、叶绿体中活性氧清除系统、转谷酰胺酶(TGase)活性、结合态多胺含量及植株光合速率的影响.结果表明,外源Spd能提高NaCl胁迫下叶绿体中TGase活性、叶绿体结合态腐胺(Put)、Spd、精胺(Spm)及总多胺含量;提高超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性,提高抗坏血酸(AsA)、类胡萝卜素(Car)、还原型谷胱甘肽(GSH)含量及还原型谷胱甘肽/氧化型谷胱甘肽(GSH/ GSSG)比值,降低脱氢抗坏血酸/抗坏血酸(DAsA/AsA)比值;同时显著降低叶绿体过氧化氢(H2O2)和丙二醛(MDA)含量,提高植株净光合速率,缓解NaCl胁迫对幼苗生长的抑制.表明Spd对黄瓜盐害的缓解作用之一可能是通过提高叶绿体结合态多胺含量和叶绿体活性氧清除能力,从而缓解盐胁迫对叶绿体膜的伤害.  相似文献   

5.
外源硅对盐胁迫下黄瓜幼苗叶绿体活性氧清除系统的影响   总被引:19,自引:0,他引:19  
以黄瓜为材料,研究了外源硅(K2SiO3 1.0mmol/L)对NaCl(50mmol/L)胁迫下黄瓜幼苗叶绿体中Na^+、K^+向叶绿体分配及活性氧清除系统的影响。结果表明:盐胁迫下硅处理使叶绿体在K^+与Na^+之间选择性吸收K^+,从而降低了叶绿体内Na^+的含量;同时Si处理可以显著降低盐胁迫下叶绿体中过氧化氢(H2O2)和丙二醛(MDA)含量,提高超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)和脱氢抗坏血酸还原酶(DHAR)的活性及抗坏血酸(ASA)、还原型谷胱甘肽(GSH)含量。说明Si不仅能降低叶绿体对Na^+的选择吸收,还能增强叶绿体活性氧清除系统清除活性氧的能力,缓解盐胁迫对叶绿体膜的伤害。  相似文献   

6.
采用营养液水培法,以较耐盐黄瓜品种"新泰密刺"为试验材料,研究了叶面喷施硝酸钙对盐胁迫(NaCl65mmol·L-1)下黄瓜幼苗活性氧、谷胱甘肽-抗坏血酸循环(GluAsA)中抗氧化酶和抗氧化物质及膜质子泵活性的影响。结果表明:叶面喷施硝酸钙能够显著降低盐胁迫下黄瓜幼苗叶片超氧阴离子(O.2-)产生速率和丙二醛(MDA)含量;显著提高盐胁迫下黄瓜幼苗叶片抗坏血酸过氧化物酶(APX)和脱氢抗坏血酸还原酶(DHAR)等酶活性、抗氧化物质抗坏血酸(AsA)含量、AsA/DHA和GSH/GSSG比值及质膜和液泡膜H+-ATPase和H+-PPase活性。表明外源硝酸钙通过提高Glu-AsA抗氧化系统和膜质子泵活性,降低活性氧对叶片的伤害,增强了植株抗氧化能力和对离子的区域化,进而提高植株盐胁迫耐性。  相似文献   

7.
外源亚精胺对盐胁迫下黄瓜幼苗体内抗氧化酶活性的影响   总被引:10,自引:0,他引:10  
张润花  郭世荣  樊怀福  李娟 《生态学杂志》2006,25(11):1333-1337
以不同耐盐性黄瓜品种“长春密刺”和“津春2号”为材料,采用营养液栽培,研究了外源亚精胺(Spd)对NaCl胁迫下黄瓜幼苗叶片与根系中超氧阴离子(O2-.)产生速率、超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性的影响。结果表明,外源Spd对未经盐胁迫处理(对照)黄瓜幼苗体内O2-.产生速率、SOD、CAT和POD活性均无显著性影响;盐胁迫处理提高了O2-.产生速率,SOD、POD和CAT活性都有不同程度的升高;外源Spd处理进一步提高了盐胁迫下SOD、POD和CAT活性,减缓了O2-.产生速率。与耐盐型“长春密刺”品种相比,盐胁迫对盐敏感型“津春2号”影响较大,外源Spd对盐敏感型黄瓜品种盐胁迫伤害的缓解作用较大。表明盐胁迫下外源Spd可缓解盐胁迫对膜的伤害,从而提高黄瓜幼苗的耐盐性。  相似文献   

8.
选用两个耐盐性强弱不同的大麦(Hordeumvulgare L.)品种,研究了NaCl胁迫下其幼苗根中ATP和焦磷酸(PPi)含量的变化以及PPi对液泡膜H -ATP酶活性的影响.结果表明:在含NaCl 200mmol/L的1/2 Hoagland溶液中处理2 d,耐盐品种(滩引2号)根中液泡膜H -ATP酶活性增加,然后逐渐下降,而H -PPi酶活性在NaCl处理9 d中'直下降.盐敏感品种(科品7号)在NaCl胁迫下根中H -ATP酶和H -PPi酶活性都下降(图1).与对照相比较,NaCl胁迫下耐盐品种根中ATP含量2 d时增加,4 d后下降;盐敏感品种根中ATP积累受NaCl胁迫的抑制(图2).NaCl胁迫下,两品种的PPi含量皆略有增加(图3).PPi对液泡膜H -ATP酶活性有竞争性抑制作用(图4).结果表明:ATP积累是NaCl胁迫下液泡膜H -ATP酶活性增加的原因之一,NaCl胁迫下大麦品种根中ATP含量下降和PPi对液泡膜H -ATP酶的抑制使该酶活性下降.  相似文献   

9.
以2个不同耐盐强度的甜瓜品种‘玉皇’(耐盐性强)和‘雪美’(耐盐性弱)为材料,采用营养液栽培方法,研究外源脯氨酸对盐胁迫下甜瓜幼苗根系抗坏血酸-谷胱甘肽循环的影响。结果显示:(1)盐胁迫下,2个甜瓜品种根系内的还原型抗坏血酸(ASA)、还原型谷胱甘肽(GSH)含量降低,氧化型谷胱甘肽(GSSG)含量升高,且‘雪美’变化幅度大于‘玉皇’;(2)盐胁迫下,施用外源脯氨酸提高了2个甜瓜品种根系中ASA和GSH的含量,降低了GSSG含量,同时也提高了GSH/GSSG的比值,且对‘雪美’的作用大于‘玉皇’;(3)盐胁迫处理3 d时,2个甜瓜品种根系的抗坏血酸过氧化物酶(APX)、脱氢抗坏血酸还原酶(DHAR)、谷胱甘肽还原酶(GR)活性均下降,且‘雪美’下降的幅度较大;随着胁迫时间的延长(5 d时),‘玉皇’幼苗根系内APX、DHAR、GR活性有所上升,‘雪美’根系中这3种酶活性则进一步降低;(4)盐胁迫下,施用外源脯氨酸提高了2个甜瓜品种根系内的APX、DHAR和GR的酶活性,且对‘雪美’的作用大于‘玉皇’。本研究结果表明,外源脯氨酸可以通过增加非酶促抗氧化物质ASA、GSH的含量和抗氧化酶活性,提高抗坏血酸-谷胱甘肽循环清除活性氧的能力,从而缓解盐胁迫对甜瓜植株的伤害。  相似文献   

10.
以辣椒 (Capsicum annuum)幼苗的叶片为材料 ,研究了外源 Ca2 预处理对热胁迫下细胞质膜透性和谷胱甘肽 (GSH)、抗坏血酸 (As A)含量变化及 Ca2 分布的影响。结果表明 :外源 Ca2 预处理能减轻热胁迫引起的细胞膜破坏 ,能够减少叶片中 GSH和 As A的破坏。热胁迫后 ,Ca2 具有从胞外转运到胞质内和叶绿体中的趋势 ;外施Ca2 预处理能够明显增加细胞间隙、液泡和叶绿体中的 Ca2 颗粒密度 ,能够稳定热胁迫下叶肉细胞膜和叶绿体的超微结构。结果表明 ,外施 Ca2 预处理可能通过改变细胞内外的 Ca2 分布 ,减轻热胁迫对叶肉细胞的伤害  相似文献   

11.
The changes in the activity of antioxidant enzymes such as superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), peroxidase (POX: EC 1.11.1.7), ascorbate peroxidase (APOX: EC 1.11.1.11) and glutathione reductase (GR: EC 1.6.4.2), free proline content, and the rate of lipid peroxidation level in terms of malondialdehyde (MDA) in roots of two rice cultivars (cvs.) differing in salt tolerance were investigated. Plants were subjected to three salt treatments, 0, 60, and 120 mol m−3 NaCl for 7 days. The results showed that activated oxygen species may play a role in cellular toxicity of NaCl and indicated differences in activation of antioxidant defense systems between the two cvs. The roots of both cultivars showed a decrease in GR activity with increase in salinity. CAT and APOX activities increased with increasing salt stress in roots of salt-tolerant cultivar Pokkali but decreased and showed no change, respectively, in roots of IR-28 cultivar. POX activity decreased with increasing NaCl concentrations in salt-tolerant Pokkali but increased in IR-28. SOD activity showed no change in roots of both cultivars under increasing salinity. MDA level in the roots increased under salt stress in sensitive IR-28 but showed no change in Pokkali. IR-28 produced higher amount of proline under salt stress than in Pokkali. Increasing NaCl concentration caused a reduction in root fresh weight of Pokkali and root dry weight of IR-28. The results indicate that improved tolerance to salt stress in root tissues of rice plants may be accomplished by increased capacity of antioxidative system.  相似文献   

12.
To identify biochemical markers for salt tolerance, two contrasting cultivars of rice (Oryza sativa L.) differing in salt tolerance were analyzed for various parameters. Pokkali, a salt-tolerant cultivar, showed considerably lower level of H2O2 as compared to IR64, a sensitive cultivar, and such a physiology may be ascribed to the higher activity of enzymes in Pokkali, which either directly or indirectly are involved in the detoxification of H2O2. Enzyme activities and the isoenzyme pattern of antioxidant enzymes also showed higher activity of different types and forms in Pokkali as compared to IR64, suggesting that Pokkali possesses a more efficient antioxidant defense system to cope up with salt-induced oxidative stress. Further, Pokkali exhibited a higher GSH/GSSG ratio along with a higher ratio of reduced ascorbate/oxidized ascorbate as compared to IR64 under NaCl stress. In addition, the activity of methylglyoxal detoxification system (glyoxalase I and II) was significantly higher in Pokkali as compared to IR64. As reduced glutathione is involved in the ascorbate–glutathione pathway as well as in the methylglyoxal detoxification pathway, it may be a point of interaction between these two. Our results suggest that both ascorbate and glutathione homeostasis, modulated also via glyoxalase enzymes, can be considered as biomarkers for salt tolerance in Pokkali rice. In addition, status of reactive oxygen species and oxidative DNA damage can serve as a quick and sensitive biomarker for screening against salt and other abiotic stresses in crop plants.  相似文献   

13.
NaCl stress (200 mM) inhibited the electron transport activity of photosystem 2 (PS2) more than that of PS1. The degree of electron transport activity inhibition was lower in the salt-tolerant cultivar Pokkali than in the salt-sensitive cultivar Peta. The polypeptide composition of the thylakoid membrane and PS2 particles did not change after NaCl treatment but there was a difference in polypeptide compositions of thylakoid membrane and PS2 particles between the two cultivars. PS2 particles of cv. Pokkali contained more 33-kDa and 43-kDa polypeptides than cv. Peta. Additionally, PS2 particles after NaCl treatment showed deficiency of 23-kDa outside polypeptides of PS2.  相似文献   

14.
Water permeability and cytoplasmic viscosity and streaming were investigated in seedlings of two Hordeum vulgare cultivars differing in salt tolerance. Six-day-old seedlings were grown for 4 additional days in Hoagland solution with and without 100 m M NaCl added.
Observations and measurements were made in subepidermal cells of the coleoptile using plasmolytic and centrifugation methods and recordings of the speed of movement of microsomes.
Water permeability was about the same in controls of both cultivars, and was decreased by NaCl stress, but decreased less in the tolerant cultivar. Cells from control plants of the stress tolerant variety had a higher cytoplasmic viscosity than cells from the moderately sensitive cultivar. Cytoplasmic viscosity in both cultivars decreased due to NaCl stress, and more so in the sensitive one. Cytoplasmic streaming was faster in the controls of the salt sensitive cultivar than in controls of the salt tolerant cultivar; NaCl had no significant effect on cytoplasmic streaming in both cultivars.
The specific responses of the cytoplasm of the sensitive and tolerant cultivars to the salt treatment reflect differences in its structure and composition. These differences in the cytoplasm already exist before exposure to salt stress but some alterations of cytoplasmic parameters (e.g. water permeability) were induced by the saline environment.  相似文献   

15.
Rice ( Oryza sativa L.), a staple food in Asia, is very sensitive to soil salinity. However, intraspecific variations exist, with the coastal cultivar Pokkali tolerating even brackish water. This study explores cellular mechanisms that contribute to salt tolerance in rice. It is widely accepted that limiting cytosolic Na+ should improve the survival of plants subjected to saline stress. However, an understanding of the mechanisms by which Na+ levels are controlled in relatively tolerant cultivars requires monitoring cytosolic Na+ non-invasively and in real time, which is technically challenging. We have used two-photon excitation for the ratiometric estimation of cytosolic Na+ in cultured cells using sodium-binding benzofuran isophthalate. Pokkali cells maintained low cytosolic Na+ (approximately 25 m M ), and a viability of over 85% under high salinity , while Jaya cells were unable to maintain low cytosolic Na+ and suffered decreased viability even at moderate saline stress. Here we show that the permeability of the Pokkali plasma membrane to Na+ is significantly lower than that of Jaya, to the extent that it is comparable with permeabilities reported for halophytes. Pokkali effectively sequesters Na+ in intracellular compartments utilizing a Ca2+-regulated transport system(s). Together these cellular mechanisms allow Pokkali to maintain low cytosolic Na+ up to a stress of 250 m M NaCl. The findings demonstrate that differences in survival between these contrasting varieties of rice are mainly because of differences in membrane transport mechanisms and thus have significance in crop improvement.  相似文献   

16.
The effect of exogenously applied glycinebetaine (GB) on the alleviation of damaging effects of NaCl treatment was studied in view of relative water content (RWC), malondialdehyde content, and the activity of some antioxidant enzymes in two rice (Oryza sativa L.) cultivars differing in salt tolerance (salt-tolerant Pokkali and--sensitive IR-28), comparatively. Both cultivars took up exogenously applied GB through their roots and accumulated it to considerable levels. Leaf RWC of both cultivars under salt treatment showed an increase with GB application. The activities of superoxide dismutase (SOD), ascorbate peroxidase (AP), catalase (CAT), and glutathione reductase (GR) increased in leaves of Pokkali, but peroxidase (POX) activity decreased under salinity. In IR-28, the activities of SOD, AP and POX increased, whereas CAT and GR decreased upon exposure to salt treatment. When compared to the salt-treated group alone, GB application decreased the activities of SOD, AP, CAT, and GR in Pokkali, whereas it increased the activities of CAT and AP in IR-28 under salinity. However, the activity of POX in IR-28 under salinity showed a decrease with GB application compared to the NaCl group. In addition, lipid peroxidation levels of both cvs. under salt treatment showed a decrease with GB treatment. Therefore, we conclude that GB protects both rice seedlings from salinity-induced oxidative stress.  相似文献   

17.
Rice is an important crop that is very sensitive to salinity. However, some varieties differ greatly in this feature, making investigations of salinity tolerance mechanisms possible. The cultivar Pokkali is salinity tolerant and is known to have more extensive hydrophobic barriers in its roots than does IR20, a more sensitive cultivar. These barriers located in the root endodermis and exodermis prevent the direct entry of external fluid into the stele. However, it is known that in the case of rice, these barriers are bypassed by most of the Na(+) that enters the shoot. Exposing plants to a moderate stress of 100 mM NaCl resulted in deposition of additional hydrophobic aliphatic suberin in both cultivars. The present study demonstrated that Pokkali roots have a lower permeability to water (measured using a pressure chamber) than those of IR20. Conditioning plants with 100 mM NaCl effectively reduced Na(+) accumulation in the shoot and improved survival of the plants when they were subsequently subjected to a lethal stress of 200 mM NaCl. The Na(+) accumulated during the conditioning period was rapidly released when the plants were returned to the control medium. It has been suggested that the location of the bypass flow is around young lateral roots, the early development of which disrupts the continuity of the endodermal and exodermal Casparian bands. However, in the present study, the observed increase in lateral root densities during stress in both cultivars did not correlate with bypass flow. Overall the data suggest that in rice roots Na(+) bypass flow is reduced by the deposition of apoplastic barriers, leading to improved plant survival under salt stress.  相似文献   

18.
In six cultivars of rice (Oryza sativa L.), Pusa Basmati 1, Basmati 370, Type III, Pant Dhan 4, CSR 10 and Pokkali, embryogenic callus growth, plant regeneration, and proline and total protein contents were studied under salt stress (on agar solidified media containing 0, 0.5, 1.0, 1.5 and 2.0 % NaCl). Four weeks after inoculation the callus fresh mass decreased with increasing salt concentration in all the six cultivars. The regeneration frequency in salt stressed callus was also lower as compared to control. 15 d and 30 d after inoculation proline content increased several fold whereas total protein content decreased markedly with increase in salt concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号