首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Levels of nine heavy metals were measured in the livers and salt glands of greater scaup (Aythya marila), black duck (Anas rubripes) and mallard (A. platyrhynchos) from Raritan Bay, New Jersey to determine if the functioning avian salt gland concentrates heavy metals. Heavy metals examined were cadmium, cobalt, chromium, copper, lead, mercury, manganese, nickel and zinc. Heavy metal levels varied significantly by species and tissue for chromium, copper, lead, and manganese, and by tissue for cobalt, mercury, nickel and zinc. In comparing tissues cobalt was higher in the salt glands than in livers of all three species; chromium and nickel were higher in the salt gland than liver for mallard and black duck; and lead, manganese and zinc were higher in the liver than the salt gland in greater scaup. Generally metal levels were higher in the salt gland for mallard and black duck, and in the liver for greater scaup.  相似文献   

2.
A study was carried out on 20 water bodies of the same origin in southern Poland. The study objectives included the assessment of toxic metal contamination in the bottom sediments of the water bodies in comparison with the geochemical background and sediments found in the substrate (i.e., vicinity) of the water bodies (i.e., the formations present in the surroundings of the water body itself), thus demonstrating the scale of anthropogenic enrichment of bottom sediments with toxic metals and assessing the cumulative impact on water bodies. The following amounts of toxic metals were found in the bottom sediments of the water bodies examined: 181.7–35200.0 ppm for zinc, 33.3–1648.8 ppm for lead, 1.8–359 ppm for cadmium, 14.0–271.5 ppm for copper, 45.3–167.5 ppm for chromium, and 12–128.5 ppm for nickel. Ratios of the values measured to the geochemical background were as follows: 0.7–135.9 (Zn), 0.6–53.0 (Pb), 0.7–143.6 (Cd), 0.9–18.1 (Cu), 5.0–18.6 (Cr), 1.1–11.7 (Ni).  相似文献   

3.
This study compares the seminal plasma trace metal levels of hospital workers with groups of industrial workers in a petroleum refinery, smelter, and chemical plant. The metals measured were the essential metals (copper, zinc, nickel, cobalt, and manganese) and the toxic metals (lead, cadmium, and aluminum). The group mean±SE metal level for each group (50 subjects per group) was calculated, and the statistical significance of the group mean differences of the industrial groups with the hospital group (control) was determined by the Student’s t-test. The differences observed in the smelter group were increased copper and zinc (p≤0.001) and decreased nickel, cobalt, and manganese (p≤0.001,≤0.01). The refinery group differences were increased copper, zinc, and nickel (p≤0.001) but decreased cobalt and manganese (p≤0.001). The chemical group differences were increased zinc (p≤0.001) and decreased cobalt (p≤0.001). The seminal plasma levels of the toxic metals lead and aluminum were increased in each of the industrial groups (p≤0.001). Concurrent differences were (1) decreased accumulation of nickel, cobalt, and manganese in the smelter group, (2) decreased cobalt and managanese in the refinery group, and (3) only decreased cobalt in the chemical group.  相似文献   

4.
Abstract

The chemical fractionation of lead, cobalt, chromium, nickel, zinc, cadmium and copper in soils around Lakwa oil field, Assam, India was studied using a sequential extraction method. It is evident from the study that the residual fraction is the most important phase for the seven heavy metals under study. Among non-residual fractions metals are mostly associated with the Fe–Mn oxides fraction. The association of heavy metals with organic matter was observed in the following order: copper> cadmium> zinc> lead. The concentration of Pb in the carbonate fraction for both the seasons is higher compared with other metals, which may pose environmental problems due to its highly toxic nature. The comparatively low concentration of metals in the exchangeable fraction indicates low bioavailability. Correlations between physicochemical parameters and metal fractions of soil do not show consistent behaviour. The local mean values of metals when compared with the accepted values of normal abundance and geochemical background, indicates two to four fold increases in this area. However, the values are within the range of normal abundance. As well as from natural soil geochemical behaviour, anthropogenic influence might have a close bearing on the association of metals with the soil system in the studied area.  相似文献   

5.
Concerns regarding plastic debris and its ability to accumulate large concentrations of priority pollutants in the aquatic environment led us to quantify relationships between different types of mass-produced plastic and metals in seawater. At three locations in San Diego Bay, we measured the accumulation of nine targeted metals (aluminum, chromium, manganese, iron, cobalt, nickel, zinc, cadmium and lead) sampling at 1, 3, 6, 9 and 12 months, to five plastic types: polyethylene terephthalate (PET), high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), and polypropylene (PP). Accumulation patterns were not consistent over space and time, and in general all types of plastic tended to accumulate similar concentrations of metals. When we did observe significant differences among concentrations of metals at a single sampling period or location in San Diego Bay, we found that HDPE typically accumulated lesser concentrations of metals than the other four polymers. Furthermore, over the 12-month study period, concentrations of all metals increased over time, and chromium, manganese, cobalt, nickel, zinc and lead did not reach saturation on at least one plastic type during the entire 12-month exposure. This suggests that plastic debris may accumulate greater concentrations of metals the longer it remains at sea. Overall, our work shows that a complex mixture of metals, including those listed as priority pollutants by the US EPA (Cd, Ni, Zn and Pb), can be found on plastic debris composed of various plastic types.  相似文献   

6.
【背景】大肠杆菌拓扑异构酶Ⅰ(Escherichia coli topoisomerase I,E.coli TopA)在DNA复制、转录、重组和基因表达调控等过程发挥关键作用。研究表明E.coli TopA只有结合锌离子才具有活性,然而E.coli TopA能否结合其他金属离子尤其是重金属离子,以及结合其他金属后是否具有活性,目前仍不清楚。【目的】探究大肠杆菌拓扑异构酶Ⅰ是否结合环境中常见重金属离子,研究重金属离子结合E.coli TopA蛋白后对其活性的影响。【方法】在分别添加有锌、钴、镍、镉、铁、汞、砷、铬、铅、铜离子的M9基础培养中表达、纯化出E.coli TopA蛋白,并对纯化得到的蛋白用电感耦合等离子体质谱仪进行相应金属离子含量的测定;利用表达E.coli TopA锌指结构的突变体蛋白鉴定重金属离子的结合位点;通过体外超螺旋DNA松弛实验测定不同金属结合E.coli TopA的拓扑异构酶活性;通过测定蛋白内源性荧光推测不同金属结合E.coli TopA的空间构象差异。【结果】E.coli TopA在体内除了能结合锌和铁之外,还能够结合钴、镍、镉3种离子,但是不能结合汞、砷、铬、铅、铜离子。钴、镍、镉结合形式的E.coli TopA,每个蛋白分子最多可以结合3个相应的金属离子,他们与TopA蛋白的结合位点也是位于3个锌指结构域,而且每个锌指结构域结合1个金属离子。此外,E.coli TopA结合钴、镍、镉离子后,其DNA拓扑异构酶活性并未受到影响,可能是由于钴、镍、镉离子结合形式的E.coli TopA蛋白,其空间构象与锌结合形式相比并未发生显著变化。【结论】由于DNA拓扑异构酶在维持细胞正常生理功能中发挥关键作用,研究表明E.coli TopA的功能不会受到常见重金属的干扰(不结合或者结合后活性无影响),这也有可能是大肠杆菌在进化过程中产生的对抗环境中重金属离子毒害作用的一种自我保护和耐受机制,具有重要的生理意义。  相似文献   

7.
The heavy metal accumulation in epiphytic lichens along the Sarp-Samsun Highway in Black Sea Region of Turkey was analyzed by using energy dispersive X-ray fluorescence (EDXRF) and flame atomic absorption spectroscopy (FAAS) methods. The analysis showed that the lichen samples contained elevated concentrations of the following metals: titanium, chromium, manganese, iron, cobalt, nickel, copper, zinc, tin, barium, and lead. A strong positive correlation was observed between the lead concentration of the lichens and the traffic density.  相似文献   

8.
An investigation was carried out to evaluate the effect of heavy metal toxicity on growth, herb, oil yield and quality and metal accumulation in rose scented geranium (Pelargonium graveolens) grown in heavy metal enriched soils. Four heavy metals (Cd, Ni, Cr, and Pb) each at two levels (10 and 20 mg kg–1 soil) were tested on geranium. Results indicated that Cr concentration in soil at 20 mg kg–1 reduced leaves, stem and root yield by 70, 83, and 45%, respectively, over control. Root growth was significantly affected in Cr stressed soil. Nickel, Cr, and Cd concentration and accumulation in plant increased with higher application of these metals. Chromium, nickel and cadmium uptake was observed to be higher in leaves than in stem and roots. Essential oil constituents were generally not significantly affected by heavy metals except Pb at 10 and 20 ppm, which significantly increased the content of citronellol and Ni at 20 ppm increased the content of geraniol. Looking in to the higher accumulation of toxic metals by geranium and the minimal impact of heavy metals on quality of essential oil, geranium can be commercially cultivated in heavy metal polluted soil for production of high value essential oil.  相似文献   

9.
A field experiment was conducted to evaluate the effective utilization of tannery sludge for cultivation of clarysage (Salvia sclarea) at CIMAP research farm, Lucknow, India during the year 2012–2013. Six doses (0, 20, 40, 60, 80, 100 tha?1) of processed tannery sludge were tested in randomised block design with four replications. Results revealed that maximum shoot, root, dry matter and oil yield were obtained with application of 80 tha?1of tannery sludge and these were 94, 113 and 61% higher respectively, over control. Accumulation of heavy metals (Cr, Ni, Fe, Pb) were relatively high in shoot portion of the plant than root. Among heavy metals, magnitude of chromium accumulation was higher than nickel, iron and lead in shoot as well as in root. Linalool, linalyl acetate and sclareol content in oil increased by 13,8 and 27% respectively over control, with tannery sludge application at 80 tha?1. Heavy metals such as chromium, cadmium and lead content reduced in postharvest soil when compared to initial status. Results indicated that clarysage (Salvia sclarea) can be grown in soil amended with 80 tha?1sludge and this can be a suitable accumulator of heavy metals for phytoremediation of metal polluted soils.  相似文献   

10.
The main objective of this investigation is to determine the concentration and accumulation of heavy metals in the coastal sediments of the Southeastern Black Sea of Turkey. The selected sampling area has mainly been affected by anthropogenic activities, such as agricultural, untreated domestic and treated industrial wastewater, and mining. Metal enrichment factor (EF), geo-accumulation index (Igeo), and metal pollution index (MPI) have been calculated and relative contamination levels evaluated at all stations. In this study, the maximum EF values calculated for nickel (Ni), cobalt (Co), cadmium (Cd), lead (Pb), chromium (Cr), arsenic (As), zinc (Zn), and copper (Cu) were 1.4, 3.1, 5.2, 7.8, 7.8, 20, 26, and 42, respectively. Metal pollution has decreased in recent years, but the enrichment of heavy metals has been observed to be relatively high, especially in the uppermost 3-6 cm of the core sample from the Sürmene sampling station, which has been polluted by mining activities. In addition, factor analysis revealed that the coastal sediments from the Eastern Black Sea were influenced by several sources, namely lithogenic and anthropogenic activities (mining, wastewater discharging, agriculture).  相似文献   

11.
Distribution of extractable heavy metals in different soil fractions   总被引:1,自引:0,他引:1  
Abstract

Due to the difficulties of precisely characterizing environmentally contaminated soil, the effects of heavy metals on plants are studied using uncontaminated soil spiked with known quantities of heavy metals. One problem in using spiked soils is how accurately the distribution of metals mimics stabilized natural soils. We studied the distribution of cadmium, chromium, copper, lead, nickel, and zinc in soil fractions after application in soluble form. The soil samples included a control (an uncontaminated Typic Argiudoll) and two samples spiked with either a moderate or high heavy metal concentration). After application of the salts the soils were subjected to wet/dry cycles over the course of three months. The soils were fractionated using a sequential chemical extraction procedure employing: (1) CaCl2,(2) NaOH, (3) Na2EDTA and (4) HNO3, HCl, and HF. Soil physical separation was carried out by ultrasonic dispersion. The heavy metal levels were determined using ICP-AES. Each heavy metal displayed a unique behavior when added to soil in the form of soluble salts. Cadmium and zinc remained in the soluble fraction, indicating that no equilibrium was attained, while nickel primarily appeared in the insoluble fraction. Chromium, copper and lead were distributed among various soil chemical fractions. The highest levels of all metals appeared in the clay fraction except lead which was mainly present in the silt fraction.  相似文献   

12.
Survey of metal tolerance in moderately halophilic eubacteria   总被引:1,自引:0,他引:1  
The tolerance patterns, expressed as MICs, for 250 moderately halophilic eubacteria to 10 heavy metals were surveyed by using an agar dilution method. The moderate halophiles tested included 12 culture collection strains and fresh isolates representative of Deleya halophila (37 strains), Acinetobacter sp. (24 strains), Flavobacterium sp. (28 strains), and 149 moderately halophilic gram-positive cocci included in the genera Marinococcus, Sporosarcina, Micrococcus, and Staphylococcus. On the basis of the MICs, the collection strains showed, overall, similar responses to silver, cobalt, mercury, nickel, lead, and zinc. All were sensitive to silver, mercury, and zinc and tolerant of lead. The response to arsenate, cadmium, chromium, and copper was very heterogeneous. The metal susceptibility levels of the 238 freshly isolated strains were, in general, very heterogeneous among the four taxonomic groups as well as within the strains included in each group. The highest toxicities were found with mercury, silver, and zinc, while arsenate showed the lowest activity. All these strains were tolerant of nickel, lead, and chromium and sensitive to silver and mercury. Acinetobacter sp. strains were the most heavy-metal tolerant, with the majority of them showing tolerance of eight different metal ions. In contrast, Flavobacterium sp. strains were the most metal sensitive. The influence of salinity and yeast extract concentrations of the culture medium on the toxicity of the heavy metals tested for some representative strains was also studied. Lowering the salinity, in general, led to enhanced sensitivity to cadmium and, in some cases, to cobalt and copper. However, increasing the salinity resulted in only a slight decrease in the cadmium, copper, and nickel toxicities.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Survey of metal tolerance in moderately halophilic eubacteria.   总被引:6,自引:3,他引:3       下载免费PDF全文
The tolerance patterns, expressed as MICs, for 250 moderately halophilic eubacteria to 10 heavy metals were surveyed by using an agar dilution method. The moderate halophiles tested included 12 culture collection strains and fresh isolates representative of Deleya halophila (37 strains), Acinetobacter sp. (24 strains), Flavobacterium sp. (28 strains), and 149 moderately halophilic gram-positive cocci included in the genera Marinococcus, Sporosarcina, Micrococcus, and Staphylococcus. On the basis of the MICs, the collection strains showed, overall, similar responses to silver, cobalt, mercury, nickel, lead, and zinc. All were sensitive to silver, mercury, and zinc and tolerant of lead. The response to arsenate, cadmium, chromium, and copper was very heterogeneous. The metal susceptibility levels of the 238 freshly isolated strains were, in general, very heterogeneous among the four taxonomic groups as well as within the strains included in each group. The highest toxicities were found with mercury, silver, and zinc, while arsenate showed the lowest activity. All these strains were tolerant of nickel, lead, and chromium and sensitive to silver and mercury. Acinetobacter sp. strains were the most heavy-metal tolerant, with the majority of them showing tolerance of eight different metal ions. In contrast, Flavobacterium sp. strains were the most metal sensitive. The influence of salinity and yeast extract concentrations of the culture medium on the toxicity of the heavy metals tested for some representative strains was also studied. Lowering the salinity, in general, led to enhanced sensitivity to cadmium and, in some cases, to cobalt and copper. However, increasing the salinity resulted in only a slight decrease in the cadmium, copper, and nickel toxicities.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Aims: To characterize polycyclic aromatic hydrocarbon (PAH)‐degrading bacteria from sediments of the Bizerte lagoon, and to determine their ability to resist other pollutants such as antibiotics and heavy metals. Methods and Results: More than 100 strains were isolated for their ability to use fluoranthene as the sole carbon and energy source. Most of them showed antibiotic and heavy metal resistance; 20 representative strains were selected for further analysis. 16S rRNA coding sequences analysis showed that the majority of the selected bacteria (75%) were affiliated to the Gammaproteobacteria. The selected strains also utilized high molecular weight PAHs containing up to four benzene rings and showed different profiles of PAH substrate usage suggesting different PAH degradation pathways. These results are consistent with the fact that nah‐like genes and idoA‐like genes, involved in PAH degradation, were detected in 6 and 1 strains respectively. Conclusions: The Bizerte lagoon, polluted by many human activities, leads to the co‐selection of strains able to cope with multiple contaminants. Significance and Impact of the Study: Polluted areas are often characterized by the concomitant presence of organic pollutants, heavy metals and antibiotics. This study is one of the first showing bacterial strains adapted to multiple contaminants, a promising potential for the development of bioremediation processes.  相似文献   

15.
Overlying water, sediment, rhizosphere sediment and mangrove seedlings in the Futian mangrove forest were analyzed for heavy metals. The results showed that mangrove plant acidified sediment and increased organic matter contents. Except for chromium (Cr), nickel (Ni) and copper (Cu) in Aegiceras corniculatum sediment, heavy metals in all sediments were higher than in overlying water, rhizosphere sediment and mangrove root. Heavy metals in Avicennia marina sediments were higher than other sediments. The lower heavy metal biological concentration factors (BCFs) and translocation factors (TFs) indicated that mangrove plant adopted exclusion strategy. The geo-accumulation index, potential ecological risk index and risk assessment code (RAC) demonstrated that heavy metals have posed a considerable ecological risk, especially for cadmium (Cd). Heavy metals (Cr, Ni, Cu and Cd) mainly existed in the reducible fractions. These findings provide actual heavy metal accumulations in sediment-plant ecosystems in mangrove forest, being important in designing the long-term management and conservation policies for managers of mangrove forest.  相似文献   

16.
The Korbeva?ka River is located in the southeastern part of Serbia. This river is a main recipient of all kinds of pollutants from the Pb?Zn mine “Grot.” Sediments from the Korbeva?ka River were studied to determine the distribution of the metals along the river, assess the quality of sediment, and find the degree of contamination. The concentration of iron, manganese, nickel, copper, zinc, cadmium, lead, mercury, arsenic, chromium, and barium were determined. River sediments were collected and analyzed for heavy metal concentration using atomic absorption spectrophotometer. The degree of pollution in the sediments of the Korbeva?ka River has been evaluated based on Canadian sediment quality guidelines, enrichment factor (EF), geo-accumulation index (Igeo) and pollution load index (PLI). Inter-metal associations have been evaluated by Pearson correlation coefficients (r). The results indicated that: (1) sediments have been polluted with Pb, Cd, Zn, and Cu and have high anthropogenic influences; (2) the calculation of geo-accumulation index suggests that the Korbeva?ka River sediments have background concentrations of Fe, Cr, and Ni (Igeo < 1); (3) the co-precipitation (inclusion, occlusion, and adsorption) of heavy metals (except As and Ba) with Mn and Fe geochemical phases.  相似文献   

17.
To investigate the soil heavy metal pollution characteristics and ecological risk factors, 42 samples and six typical soil profiles were collected from the Shenyang industrial district in northeast China and were analyzed for contents of titanium (Ti), copper (Cu), lead (Pb), zinc (Zn), cobalt (Co), nickel (Ni), chromium (Cr) and arsenic (As). Through statistical analysis, it was found that the mean concentrations were higher than their background values (Ti = 4.77>3.8g/kg, Cu = 33.75>22.6 mg/kg, Pb = 45.95>26 mg/kg, Zn = 81.54>74.2 mg/kg, Co = 12.91>12.7 mg/kg, Ni = 32.26>26.9 mg/kg, Cr = 83.36>61 mg/kg and As = 13.69>11.2 mg/kg) but did not exceed their corresponding pollution limits for the Chinese Environmental Quality Standard for Soils (State Environmental Protection Administration of China, 1995). There were contamination hotspots that may be caused by human activities such as smelting plants and sewage irrigation. The Enrichment Factor and Ecological Risk Index were used to identify the anthropogenic contamination and ecological risks of heavy metals. Soil in the study area could be considered lightly or partially polluted by heavy metals. According to clustering analysis, distinct groups of heavy metals were discriminated between natural or anthropogenic sources.  相似文献   

18.
Summary Experiments on sitka-spruce seedlings grown in acidic peaty gley soils under green-house conditions, where the soils where doped with increasing amounts of Cd, Cu and Pb up to maximum levels of metal added of 16 ppm, 32 ppm and 400 ppm respectively, showed that the levels of Cd and Pb in shoots and roots increased with increasing levels in the soil, whereas levels of copper appeared to be independent. The addition of these three metals to the soils did not influence the uptake of other heavy metals, or of the nutrients potassium or calcium. Increases in the shoot cadmium levels significantly reduced the yields of the plant shoots. However, the plant yields were only affected by the highest level of lead that was added to the soil (400 ppm Pb) and unaffected by all the copper treatments (0–32 ppm Cu in the soil). The lengths of the sitka-spruce roots were reduced when cadmium and lead levels in the soil exceeded certain threshold concentrations (2.5 ppm total Cd, where 0.3 ppm was extractable with 0.5 M acetic acid; and 48 ppm total Pb, where 1.7 ppm was extractable). However, root lengths were not reduced by copper. This was probably related to the fact that copper appears to be relatively unavailable in the type of soil used, as only 1.1. ppm Cu was extractable from a total of 32 ppm Cu added. Root branching was apparently reduced by increases in the soil levels of cadmium, copper and lead. The roots of some control plants had symbiotic mycorrhizal associations (4 out of 19 plants), whereas the roots of all the plants grown in the soils with added heavy metals did not develop these.  相似文献   

19.
Solid wastes from the oil-shale industry produce leachates containing toxic compounds such as heavy metals and persistent polycyclic aromatic hydrocarbons (PAH). The hazard to the environment represented by waste leachates depends not only on their chemical composition, but also on the mobility and bioavailability of toxic contaminants in soils. We evaluated the applicability of bioassays for toxicity assessment of the bioavailable fraction of heavy metals and PAH in soils, in experiments with samples of four different soil types (Rendzina, Brown pseudopodzolic, Typical brown, Sodpodzolic), the pH of which ranged from 6.2 to 7.2. The toxicity of the bioavailable fraction of the soil contaminants was assessed with the dehydrogenase enzyme activity assay, and with a Toxkit microbiotest with the crustacean, Thamnocephalus platyurus, after treatment of the soil samples with an artificial solution containing chromium (III), lead (II), copper (II), cadmium (II) and pyrene. The test results confirm those of earlier experiments, which characterised the sorption potential of investigated soils for the same compounds. Both tests turned out to be sufficiently sensitive, and hence can be recommended as effective and useful tools for the assessment of the bioavailable fraction of soil contaminants.  相似文献   

20.
The 1999 NATO bombing of the oil refinery in Novi Sad (Yugoslavia) has heavily contaminated the Danube River and its sediments, as well as the surrounding soil and groundwater. The destruction of the factories released 73,569 tons of crude oil of which 90% was incinerated, 560 tons reached the Danube River, and the remainder was spilled onto the soil. The contents of oil and oil derivatives in the soil were in the range of 3 to 42,000?mg/kg. The first soil layer contained an average of 67,000?mg/kg of crude oil and oil derivatives. The layers beneath it, above the groundwater table, contained 56?ml/l of free oil derivatives in the drained water. The spreading of this pollution could imperil the groundwater quality in the water supply zone because the refinery is located in the hinterland of the zone. The quality of water and sediment samples was monitored from April 1999 to November 2000 by measuring concentrations of hydrocarbons and polyaromatic hydrocarbons (PAH). The hydrocarbon content in the Danube River water in October 2000 was about 20% of the value measured at the time of the accident. Immediately after the accident the concentration of mineral oil in the surface sediment was in the range of 0.11 to 0.29?g/kg. At the same time PAH concentrations in the river sediment were up to 160?mg/kg, depending on the sampling site location. The values showed a decrease in the course of further monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号