首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Counter-current chromatography (CCC) combined with pre-separation by ultrasonic solvent extraction was successively used for the separation of series bioactive compounds from the crude extract of Hypericum perforatum L. The petroleum ether extract was separated by the solvent system of n-heptane-methanol-acetonitrile (1.5:0.5:0.5, v/v) and n-heptane-methanol (1.5:1, v/v) in gradient elution, yielding a phloroglucinol compound, hyperforin with HPLC purity over 98%. The ethyl acetate extract was separated by using the solvent system composed of hexane-ethyl acetate-methanol-water (1:1:1:1 and 1:3:1:3, v/v) in gradient through both reverse phase and normal phase elution mode, yielding a naphthodianthrone compound, hypericin with HPLC purity about 95%. The n-butanol extract was separated with the solvent system composed of n-butanol-ethyl acetate-water (1:4:5 and 1.5:3.5:5, v/v) in elution and back-extrusion mode, yielding two of flavones, rutin and hyperoside, with HPLC purity over 95%. HPLC-MS, reference sample and UV spectrum were selectively used in separation to search for target compounds from HPLC-DAD profiles of different sub-extracts. The structures of isolated compounds were further identified by ESI-MS, 1HNMR and 13CNMR.  相似文献   

2.
A method which involves the combination of pH-zone-refining counter-current chromatography (pH-zone-refining CCC) and conventional high-speed counter-current chromatography (HSCCC) was established for the preparative separation of alkaloids from the crude extracts of Stephania kwangsiensis. pH-zone-refining CCC was first performed with the solvent system composed of n-hexane-ethyl acetate-methanol-water (3:7:1:9, v/v), where triethylamine (10 mM) was added to the upper organic stationary phase as a retainer and hydrochloric acid (5 mM) to the aqueous mobile phase as an eluter. From 2.0 g of crude extract, 370 mg of sinoacutine and 600 mg of a mixture of three other alkaloids were obtained. Then, the mixture was further separated by conventional HSCCC with the solvent system composed of n-hexane-ethyl acetate-methanol-water (7:3:6:4, v/v), yielding 42 mg of (-)-crebanine, 50 mg of (-)-stephanine and 30 mg of l-romerine from 150 mg mixture of three other alkaloids, respectively. The purities of the four compounds were all over 98% as determined by HPLC, and the chemical structures of the four compounds were confirmed by positive ESI-MS and (1)H NMR data. Results of the present study successfully indicated that this method was efficient for the preparative separation of alkaloids from natural plants.  相似文献   

3.
This paper describes how distribution ratios were used for prediction of peak elution in analytical high-performance counter-current chromatography (HPCCC) to explore the method for separation and purification of bioactive compounds from the roots of Menispermum dauricum. Then important parameters related to HPCCC separations including solvent systems, sample concentration, sample loading volume and flow rate were optimized on an analytical Mini-DE HPCCC and finally linearly scaled up to a preparative Midi-DE HPCCC with nearly the same resolutions and separation time. Four phenolic alkaloids were for the first time obtained by HPCCC separation with a two-phase solvent system composed of petroleum ether–ethyl acetate–ethanol–water (1:2:1:2, v/v). This process produced 131.3 mg daurisolin, 197.1 mg dauricine, 32.4 mg daurinoline and 14.7 mg dauricicoline with the purity of 97.6%, 96.4%, 97.2% and 98.3%, respectively from 500 mg crude extract of the roots of M. dauricum in a one-step separation. The purities of compounds were determined by high-performance liquid chromatography (HPLC). Their structures were identified by electrospray ionization mass spectrometer (ESI-MS) and nuclear magnetic resonance (NMR).  相似文献   

4.
High-speed counter-current chromatography (HSCCC) was successfully used for the isolation and purification of 1,2,3,4,6-penta-O-galloyl-beta-D-glucose from the ethyl acetate extract of the leaves of Acer truncatum Bunge using a two-phase system composed of n-hexane-ethyl acetate-methanol-water at a volume ratio of (0.25:5:1:5, v/v/v/v) for the first time. Each injection of 80 mg crude extract yielded 7.25 mg of pure 1,2,3,4,6-penta-O-galloyl-beta-D-glucose. High-performance liquid chromatography (HPLC) analyses of the CCC fraction revealed that the purity of 1,2,3,4,6-penta-O-galloyl-beta-D- glucose was over 95%.  相似文献   

5.
A method for extraction and preparative separation of tanshinones from Salvia miltiorrhiza Bunge was successfully established in this paper. Tanshinones from Salvia miltiorrhiza Bunge were extracted using ethyl acetate as the extractant under reflux. The extracts were then purified by high speed counter-current chromatography (HSCCC) with light petroleum-ethyl acetate-methanol-water (6:4:6.5:3.5, v/v) as the two phase solvent system. The upper phase was used as the stationary phase and the lower phase as the mobile phase. 8.2mg of dihydrotanshinone I, 5.8 mg of 1,2,15,16-tetrahydrotanshiquinone, 26.3mg of cryptotanshinone, 16.2mg of tanshinone I, 25.6 mg of neo-przewaquinone A, 68.8 mg of tanshinone IIA and 9.3mg of miltirone were obtained from 400mg of extracts from Salvia miltiorrhiza Bunge in one-step HSCCC separation, with the purity of 97. 6%, 95.1%, 99.0%, 99.1%, 93.2%, 99.3% and 98.7%, respectively, as determined by HPLC area normalization method. Their chemical structures were identified by 1H NMR.  相似文献   

6.
High-speed counter-current chromatography (HSCCC) was applied for preparative separation of helvolic acid from the crude extract of the endophytic fungus Pichia guilliermondii Ppf9, associated with the medicinal plant Paris polyphylla var. yunnanensis for the first time. The two-phase solvent system consisted of n-hexane-ethyl acetate-methanol-water (4.5:4.5:5.0:5.0, v/v) appending with phosphoric acid (0.2%, v/v) was employed. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature of the apparatus were 800 rpm, 3 ml min(-1) and 25°C, respectively. About 6.8 mg of helvolic acid was successfully obtained from 450 mg of the crude extract by HSCCC within 4 h separation procedure, and its purity reached to 93.2% according to the HPLC analysis. The product was further characterized by MS, (1)H-NMR and (13)C-NMR spectra.  相似文献   

7.
pH-Zone-refining counter-current chromatography was successfully applied for the preparative separation of alkaloids from Dactylicapnos scandens. The two-phase solvent system was composed of petroleum ether-ethyl acetate-methanol-water (3:7:1:9, v/v), where 20 mM of triethylamine (TEA) was added to the upper phase as a retainer and 5 mM of hydrochloric acid (HCl) to the aqueous phase as an eluter. In this experiment, the apparatus with an adjustable length of the separation column was used for the separation of alkaloids from D. scandens and the resolution of the compounds can be remarkably improved by increasing the length of the separation column. As a result, 70 mg protopin, 30 mg (+) corydine, 120 mg (+) isocorydine and 40 mg (+) glaucine were obtained from 1.0 g of the crude extracts and each with 99.2%, 96.5%, 99.3%, 99.5% purity as determined by HPLC. The chemical structures of these compounds were confirmed by positive ESI-MS and (1)H NMR.  相似文献   

8.
One of the most crucial factors determining the safety and efficacy of any herbal medicine or natural product-based formulation is the quality of the raw material. The absence of readily available bio-markers (standards) is one of the hurdles which need to be overcome to develop robust and effective quality control protocols.Aloe ferox Mill. is a most coveted ethnomedicinally import plant indigenous to South Africa. A. ferox has been used since ancient times in folk medicine and recently it has gained popularity as an ingredient in cosmetic formulations and food supplements. This study aimed to develop a superior method for the isolation of bio-markers from “aloe bitters” (exudate) obtained from A. ferox.For separation by HPCCC the solvent system comprising of EtOAc/n-BuOH/H2O (3.5:1.5:5, v/v/v) was used in reversed phase mode. By this method, and only in one run, eight bio-markers were separated and isolated on semi-preparative scale including aloesin, aloeresin C, aloeresin A, 5-hydroxyaloin, aloin B, aloinoside B, aloin A and aloinoside A. The isolation of bio-active molecules from A. ferox (Cape aloes) is presented to illustrate the efficiency and advantages of high performance counter-current chromatography (HPCCC).  相似文献   

9.
Scutellarin, a flavone glycoside, popularly applied for the treatment of cardiopathy, has been purified in two-step purification by high-speed counter-current chromatography (HSCCC) from Erigeron breviscapus (vant.) Hand. Mazz. (Deng-zhan-hua in Chinese), a well-known traditional Chinese medicinal plant for heart disease. Two solvent systems, n-hexane-ethyl acetate-methanol-acetic acid-water (1:6:1.5:1:4, v/v/v/v/v) and ethyl acetate-n-butanol-acetonitrile-0.1% HCl (5:2:5:10, v/v/v/v) were used for the two-step purification. The purity of the collected fraction of scutellarin was 95.6%. This study supplies a new alternative method for purification of scutellarin.  相似文献   

10.
本文建立高速逆流色谱(HSCCC)方法,从白芍粗提物中分离纯化五没食子酰基葡萄糖.分别采用正己烷-乙酸乙酯-甲醇-水体积比0.5∶5∶1∶5及0.5∶5∶0.5∶5混合溶剂作为两相溶剂体系,上相为固定相,下相为流动相,转速为800 rpm,流速为2.0 mL/min,用HPLC检测及ESI-MS进行验证.经过两次HSCCC分离纯化,得到五没食子酰基葡萄糖纯度为95.7%.  相似文献   

11.
Two modes of high-speed counter-current chromatography (HSCCC) were successfully applied to the separation of alkaloids from crude extract of Nelumbo nucifera leaves. The conventional HSCCC separations were performed with a two-phase solvent system composed of tetrachloromethane–CHCl3–methanol–0.1 M HCl at a volume ratio of 1:3:3:2 (v/v/v/v), and 120 mg crude extract could be successfully separated. pH-Zone-refining CCC was performed with a two-phase solvent system composed of petroleum ether (60–90 °C)–ethyl acetate–methanol–water (5:5:2:8, v/v/v/v) where triethylamine (10 mM) was added to the upper organic stationary phase as a retainer and hydrochloric acid (5 mM) to the aqueous mobile phase as an eluent. From 4.0 g of the crude extract, 120 mg N-nornuciferine, 1020 mg nuciferine and 96 mg roemerine were obtained in a single run each with a purity of over 98% as determined by HPLC. The structures of the isolated compounds were identified by ESI-MS, 1H NMR and 13C NMR.  相似文献   

12.
A high yield of betulinic acid (up to 17% from the ethanolic extract) was found in the leaves of Eugenia florida collected in south-eastern Brazil, making this species a potential commercial source of the title compound. Extracts of E. florida were subjected to solvent partition, and rapid high-speed counter-current chromatography (HSCCC) was applied to the semi-crude extracts to afford betulinic acid in high purity. The mobile and stationary phases were derived from the two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (10:5:2.5:1). The developing solvent system (stationary and mobile phases) for optimum HSCCC separation was chosen by dissolving the fraction to be chromatographed in the proposed solvent mixture and determining the amount of betulinic acid in each phase by densitometric TLC. Purified betulinic acid was characterized by 13C-NMR, GC-MS and co-injection of its methyl ester with standards in GC-FID. The HSCCC technique is commonly employed to isolate triterpene glycosides, but is applied in this study to an aglycone.  相似文献   

13.
Seven lignans including (-)-maglifloenone, futoenone, magnoline, cylohexadienone, fargesone C, fargesone A and fargesone B were isolated and purified from Magnolia sprengeri Pamp. using high-speed counter-current chromatography (HSCCC) with two-step separation. In the first step, a stepwise elution mode with the two-phase solvent system composed of petroleum ether-ethyl acetate-methanol-water (1:0.8:0.6:1.2, 1:0.8:0.8:1, v/v) was used and 15.6 mg of (-)-maglifloenone, 19.2 mg of futoenone, 10.8 mg of magnoline, 14.7 mg of cylohexadienone and 217 mg residues were obtained from 370 mg crude extract. In the second step, the residues were successfully separated by HSCCC with the solvent system composed of petroleum ether-ethyl acetate-methanol-water (1:0.8:1.2:0.6, v/v), yielding 33.2 mg of fargesone C, 47.5 mg of fargesone A and 17.7 mg of fargesone B. The purities of the separated compounds were all over 95% determined by HPLC. The chemical structures of these compounds were confirmed by (1)H NMR, (13)C NMR and ESI-MS.  相似文献   

14.
An on-line method based upon dynamic microwave-assisted extraction (DMAE) coupled with high-speed counter-current chromatography (HSCCC) was developed for continuous isolation of nevadensin from Lyeicnotus pauciflorus Maxim. The DMAE parameters were optimized by means of the Box-Behnken design. The maximum extraction yield was achieved using 30:1 ml/g of liquid-solid ratio, 10 ml/min of solvent flow rate and 200 W of microwave power. The crude extracts were then separated by HSCCC with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (7:3:5:5, v/v/v/v). 13.0mg of nevadensin was isolated from 15.0 g original sample by HSCCC with five times sample injection in 12h, and the isolation yield of nevadensin was 0.87 mg/g. The average purity of nevadensin was higher than 98.0%. The chemical structure of collected fraction was identified by HPLC, ESI-MS and (1)H NMR. The results indicated that this on-line method was effective and fast for high-throughput isolation of nevadensin from L. pauciflorus Maxim.  相似文献   

15.

Green microalgae are a recognized lutein source; however, processing for lutein production requires additional operations such as extraction and saponification, mainly due to the high green pigment and lipid content in the biomass. In this study lutein was isolated from a chlorophyll-deficient Parachlorella kessleri HY1 strain using high-performance countercurrent chromatography (HPCCC). The lower phase of the biphasic solvent system composed of n-heptane–ethanol–water, 5:4:1.5, v/v/v was used both as biomass extraction solvent and HPCCC mobile phase conferring a high selectivity to the lutein production process. For the HPCCC isolation, a multiple injection method was developed, and ten consecutive sample injections (300 mg per each) were performed. To favor the economics of the process, the HPCCC mobile and stationary phases were separately formulated based on nuclear magnetic resonance (NMR) analyses. This strategy enabled to avoid obtaining immiscible liquid phases from their parent biphasic solvent system, which led to the reduction of the separation process duration and solvent consumption. Overall, 3 g of P. kessleri HY1 strain extract was processed by HPCCC yielding 150 mg of lutein (95% purity, 97% recovery). The results presented here form an efficient and economical basis for the large-scale production of microalgae-sourced lutein.

  相似文献   

16.
Following an initial clean-up step on silica gel, high-speed counter-current chromatography (HSCCC) was used to separate cyclic peptides from an extract of the seeds of Vaccaria segetalis. The two-phase solvent system used for HSCCC separation was composed of petroleum ether-ethyl acetate-methanol-water at an optimized volume ratio of 0.5:3.5:1:5. From 190 mg of crude extract, 38.0 mg of segetalin B and 28.5 mg of segetalin A were obtained with purities of 98.1% and 95.6% as determined by HPLC, respectively. The chemical structures of the target compounds were confirmed by high resolution electrospray ionization time of flight MS (HRESI-TOF-MS) and (1)H NMR analyses.  相似文献   

17.
A preparative high-speed counter-current chromatography (HSCCC) method for the isolation and purification of 1'-O-glucosylcimifugin (1), 4'-O-beta-d-glucosyl-5-O-methylvisamminol (2), cimifugin (3) and 3'-O-glucosylhamaudol (4) from the Chinese medicinal herb radix saposhnikoviae has been successfully developed. A sample of 300 mg of crude extract was separated using ethyl acetate:n-butanol:1% aqueous acetic acid (1:4:5, v/v) as the two-phase solvent system and yielded 102.4 mg of 1 and 81.6 mg of 2. During this separation 3 and 4 remained in the stationary phase, which was collected, evaporated to dryness and separated with another two-phase solvent system involving ethyl acetate:n-butanol:1% aqueous acetic acid (5:0.5:5, v/v) to yield 31.4 mg of 3 and 12.7 mg of 4. The purities of compounds 1-4 were 98.4, 98.7, 99.3 and 98.2%, respectively, as determined by HPLC. The chemical structures of these components were established by (1)H-NMR and (13)C-NMR.  相似文献   

18.
In order to separate the main individual theaflavin monomers from black tea, high-speed countercurrent chromatography (HSCCC) and Sephadex LH-20 column chromatography were applied. The results showed that theaflavin (TF1), theaflavin-3-gallate (TF2A), theaflavin-3'-gallate (TF2B) and theaflavin-3,3'-digallate (TF3) can be obtained by HSCCC using a solvent system composed of n-hexane-ethyl acetate-methanol-water (1:3:1:6, v/v/v/v), but the TF1 was containing epicatechin-3-gallate (ECG). Similarly, Sephadex LH-20 can also effectively separate TF2A(B) and TF3, but epigallocatechin-3-gallate (EGCG) contaminated TF1, too. Combination of HSCCC and Sephadex LH-20, the preferably purified TF1, TF2A(B) and TF3 were obtained than single separation technique. In addition, ECG and EGCG were also suggested to be able to be comprehensively separated by combination of the two techniques.  相似文献   

19.
采用高速逆流色谱(HSCCC)技术从蛹虫草子实体粗提物中分离制备高纯度虫草素和N6-(2-羟乙基)-腺苷。利用高效液相色谱(HPLC)测定目标产物在溶剂体系中的分配系数,优化HSCCC分离虫草素和N6-(2-羟乙基)-腺苷的溶剂体系,确定了以乙酸乙酯-正丁醇-1.5%氨水(1:4:5,V/V/V)为HSCCC的两相溶剂体系,并运用此溶剂体系,上相为固定相,下相为流动相,主机转速850r/min,流动相流速为1.5mL/min,检测波长为254nm条件下进行分离制备,在250min内从200mg蛹虫草子实体粗提物中一步分离得到10.8mg纯度99%的虫草素和6.1mg 纯度98%的N6-(2-羟乙基)-腺苷。该方法简便、快速,为虫草素和N6-(2-羟乙基)-腺苷的大量制备建立了基础。  相似文献   

20.
A reverse-phase high performance liquid chromatography method with electrospray ionization and detection by mass spectrometry is described for the simultaneous determination of doxifluridine and its active metabolite 5-fluorouracil in monkey serum. A liquid/liquid extraction with ethyl acetate (90%) and isopropyl alcohol (10%) was used to extract simultaneously doxifluridine and 5-FU which have considerable difference in the polarity. Optimum chromatographic separation was achieved on a Agilent Zorbax C(18) (100 mm x 2.1mm, 3.5 microm) column with a mobile phase of methanol-water (20:80, v/v). The flow rate was 0.2 mL/min with total cycle time of 5 min. The lower limit of quantification (LLOQ) was validated at 10.0 ng/mL of serum for both doxifluridine and 5-FU. Accuracy and precision of quality control (QC) samples for both compounds met FDA Guidance criteria of +/-15% with average QC accuracy of 95.5-105.0% and coefficients of variation of 1.1-9.5% in the 10-2000 ng/mL concentration range. This method demonstrated adequate sensitivity, specificity, accuracy, precision, stability to support the analysis of monkey serum samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号