首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Cellobiase enzyme was partially purified from the culture filtrate of Aspergillus niger AS-101 and the general and kinetic properties of the enzyme were examined. The enzyme was unstable on storage. However, it was protected by the addition of BSA, glycerol or sodium azide. Addition of glycerol also protected the enzyme from denaturation due to freezing and thawing. Effect of thiol group reagents revealed the presence of — SH groups at the active site of the enzyme. Different modulators such as metal ions and macroionic compounds illustrated varying effects on the purified cellobiase. Offprint requests to: A. Singh  相似文献   

2.
An aminopeptidase has been purified to homogeneity from bovine lens tissue by gel filtration and DEAE-cellulose chromatography. This enzyme has a molecular weight of 96,000 under both native and denaturing conditions. The purified enzyme hydrolyzed a variety of synthetic substrates as well as di-, tri-, and higher molecular weight peptides. Significantly this enzyme is capable of hydrolyzing arginine, lysine, and proline aminoacyl bonds. The pH optimum for activity and stability was 6.0. Both a reduced sulfhydryl group and a divalent metal ion are essential for activity. The native enzyme contains 1.6 mol of zinc and 1.0 mol of copper/mol of enzyme. No activation was seen upon incubation with either magnesium or manganese; however, heavy metal ions were inhibitory. Bestatin and puromycin were effective inhibitors and no endopeptidase activity could be detected in the purified preparation. This enzyme is clearly distinct from the lens leucine aminopeptidase, but rather, is identical to a cytosolic aminopeptidase III isolated from other tissues. Evidence is presented which argues that this enzyme may be the major lens aminopeptidase under in vivo conditions.  相似文献   

3.
Oxytocinase (cystyl-aminopeptidase) [EC 3.4.11.3] was isolated from monkey placenta in a purified form by a six-step prodedure comprising extraction from monkey placenta homogenate, ammonium sulfate fractionation, repeated chromatography on hydroxylapatite, chromatography on a column of DEAE-cellulose and gel filtration on a column of Sephadex G-200. The purified enzyme showed a single band on polyacrylamide disc electrophoresis. Oxytocin was inactivated by this enzyme preparation. The enzyme hydrolyzed several aminoacyl-beta-naphthylamides. A terminal amino group was required for enzyme activity. The molecular weight of the purified enzyme was estimated to be 87,000 by gel filtration and 83,000 by sodium dodecyl sulfate gel electrophoresis. Other properties of the enzyme, the effects of metal ions and various chemical reagents on the enzyme activity, the pH optimum, and Km values for a number of aminoacyl-beta-naphthylamides were also examined.  相似文献   

4.
An enzyme that catalyzes hydrolysis of S-benzyl-L-cysteine-p-nitroanilide was purified from E. coli B. The enzyme was a monomer with a molecular weight of 82,000. In addition to L-cysteinylglycine, the enzyme hydrolyzed various glycine-containing dipeptides most efficiently at pH 7.0. The enzyme required no metal ions for activity and was specifically inhibited by L-leucine and its analogue with free carboxyl group at the physiological concentrations.  相似文献   

5.
A monohalomethane-producing enzyme, S-adenosyl-L-methionine-dependent halide ion methyltransferase (EC 2.1.1.-) was purified from the marine microalga Pavlova pinguis by two anion exchange, hydroxyapatite and gel filtration chromatographies. The methyltransferase was a monomeric molecule having a molecular weight of 29,000. The enzyme had an isoelectric point at 5.3, and was optimally active at pH 8.0. The Km for iodide and SAM were 12 mM and 12 μM, respectively, which were measured using a partially purified enzyme. Various metal ions had no significant effect on methyl iodide production, suggesting that the enzyme does not require metal ions. The enzyme reaction strictly depended on SAM as a methyl donor, and the enzyme catalyzed methylation of the I-,Br-, and Cl- to corresponding monohalomethanes and of bisulfide to methyl mercaptan.  相似文献   

6.
为了探讨日本鳗鲡(Anguilla japonica)N-乙酰-β-D-氨基葡萄糖苷酶(EC3.2.1.52, NAGase)的分离纯化及其酶学性质, 通过硫酸铵沉淀分级分离、Sephadex G-100分子筛凝胶柱层析和DEAE-32离子交换柱层析纯化NAGase, 经聚丙烯酰胺凝胶电泳(PAGE)和SDS-PAGE鉴定酶的纯度、测定酶蛋白亚基分子质量; 以对-硝基苯-N-乙酰-β-D-氨基葡萄糖为底物, 研究NAGase催化反应的动力学参数, 探讨其酶学性质。结果表明: 日本鳗鲡肠道NAGase纯酶制剂比活力为2517.40 U/mg, 酶蛋白亚基分子质量为69.98 kD, 酶的最适pH、最适温度、米氏常数Km和最大反应速度Vmax分别为6.0、60℃、0.336 mmol/L和7.634 μmol/(L·min); 酶在pH 4.8—7.2较稳定, 在温度60℃以下具有较好的热稳定性, 在65℃以上酶迅速失活。Mg2+、Ca2+、Mn2+、Cu2+和Fe3+对NAGase表现出不同程度的激活作用, Na+、Li+和Ba2+对酶活力几乎没有影响, Zn2+、Fe2+、Pb2+和Hg2+对酶活力有不同程度的抑制作用, Hg2+对酶活力抑制作用最强, 1.0 μmol/L Hg2+可使酶活力丧失83.69%。化学修饰法研究表明, 精氨酸胍基不是日本鳗鲡NAGase的必需基团, 而赖氨酸?-氨基、半胱氨酸巯基、组氨酸咪唑基、丝氨酸羟基和色氨酸吲哚基是酶的必需基团, 二硫键是NAGase活性所必需的。综上所述, 实验采用的日本鳗鲡肠道NAGase分离纯化方案有效可行, 酶活力易受环境中酸碱度、温度和金属离子的影响, 且与其他不同动物来源的NAGase具有相似的必需基团。  相似文献   

7.
A newly isolated Rhizopus oryzae was found to exhibit some unusual phenomenon of secreting alkaline protease which was purified and characterized. The molecular weight was determined to be 28,600 dalton in gel electrophoresis. The enzyme is stable in the pH range from 3 to 11 and most active at pH 8. The temperature optimum of this thermostable biocatalyst is at 60 °C. The enzyme is sensitive to metal chelators, most of the metal ions (excepting a few monovalent cations) and inhibitor like PMSF. This indicates that the protease of isolated Rhizopus oryzae falls under alkaline serine group.  相似文献   

8.
从产L-丝氨酸菌株假单胞菌N-13中纯化了丝氨酸羟甲基转移酶,并对其性质进行了研究.结果表明,丝氨酸羟甲基转移酶酶活力在pH=7.0~9.0间稳定,最适宜pH=8.0;酶的最适温度为35℃,在30~40℃水浴30 min酶活力未见明显下降.磷酸吡哆醛的最适添加浓度为25 μmol·L-1.研究了不同金属离子对酶活力的影...  相似文献   

9.
Galactocerebroside sulfotransferase (EC 2.8.2.11) was purified to apparent homogeneity from rat kidneys. The purified protein is stable at -20 degrees C, and has an estimated molecular weight of 64,000 and a pI of 5.1. In contrast to other known sulfotransferases, the enzyme appears not to require divalent metal ions for activity. The Km for the donor, 3'-phosphoadenosine 5'-phosphosulfate, is 5.2 microM. Structural studies on this "active" sulfate donor show the requirement of a phosphate group at the 3' position of the ribose moiety. Modification of the amino group at either the 6 or 8 position on the purine ring renders the corresponding compounds poor substrates. Both galactosylceramide and lactosylceramide are effective acceptors for this enzyme, while galactosylsphingosine and galactosylglycerolipids are sulfated only poorly, suggesting that the in vivo sulfation of these glycolipids is carried out by different sulfotransferases. The active site of the enzyme contains arginine residues which appear to be important in binding the sulfate donor. The enzyme protein is hydrophobic and binds 0.17 mg [3H]Triton X-100/mg protein. The purified enzyme contains bound lipids, consisting primarily of cholesterol and phosphatidylcholine. The lipid environment affects the activity of the enzyme which, in turn, regulates the sulfation of glycolipids.  相似文献   

10.
Cyclic AMP phosphodiesterase from Saccharomyces cerevisiae was purified about 20,000-fold to homogeneity. The purified enzyme had a molecular weight of about 60,000 as estimated by gel filtration.The enzyme activity was optimal at pH 8.5–9.0 and was not stimulated by imidazole. Among cyclic 3′,5′-nucleotides, cyclic AMP was the most active substrate for the purified enzyme (Km = 0.25 mM), but it was inhibitory at concentrations above 4 mm. N6,O2′-dibutyryl cyclic AMP was not hydrolyzed at all.Unlike other cyclic AMP phosphodiesterases from various sources, the purified yeast enzyme did not require divalent metal ions for maximal activity and was rather inhibited in various degrees by added metal ions. The enzyme was not very sensitive to thiol inhibitors.The purified yeast enzyme was strongly inhibited by theophylline and slightly by caffeine. In contrast to the enzyme from S. carlsbergensis, the enzyme from S. cerevisiae was not inhibited at all by ATP or PPi.The enzyme activity was not released into the growth medium, and the intracellular distribution studies indicated that the enzyme was located mainly in the cytosol fraction.  相似文献   

11.
A monohalomethane-producing enzyme, S-adenosyl-L-methionine-dependent halide ion methyltransferase (EC 2.1.1.-) was purified from the marine microalga Pavlova pinguis by two anion exchange, hydroxyapatite and gel filtration chromatographies. The methyltransferase was a monomeric molecule having a molecular weight of 29,000. The enzyme had an isoelectric point at 5.3, and was optimally active at pH 8.0. The Km for iodide and SAM were 12 mM and 12 microM, respectively, which were measured using a partially purified enzyme. Various metal ions had no significant effect on methyl iodide production, suggesting that the enzyme does not require metal ions. The enzyme reaction strictly depended on SAM as a methyl donor, and the enzyme catalyzed methylation of the I-, Br-, and Cl- to corresponding monohalomethanes and of bisulfide to methyl mercaptan.  相似文献   

12.
An aminopeptidase was isolated from a soluble fraction of Alaska pollack roe in the presence of 2-mercaptoethanol by fractionation with ammonium sulfate and column chromatography on DEAE-cellulose, hydroxyapatite, and Sephadex G-200. The molecular weight of the enzyme was estimated to be 125,000 and 105,000 by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively. The pH optimum and temperature optimum were 7.2 and 35 degrees C, respectively. The purified enzyme hydrolyzed various alpha-aminoacyl beta-naphthylamides and cleaved L-Ala-beta-naphthylamide most rapidly. Both a sulfhydryl group and a divalent metal ion are essential for activity; however, the enzyme was inhibited when incubated with divalent metal ions. Puromycin, chelating agents, and thiol reagents were effective inhibitors. The enzyme was also inhibited by L-amino acids, in particular glutamic acid. Thus, the Alaska pollack roe aminopeptidase resembles soluble alanyl aminopeptidase [EC 3.4.11.14].  相似文献   

13.
The regulatory mechanism of a phosphoprotein phosphatase (EC 3.1.3.16), which is considered to catalyze the dephosphorylation reaction of several phosphoproteins (glycogen synthetase-D (EC 2.4.1.11), phospho-form of phosphorylase b kinase (EC 2.7.1.38), phosphohistone and phosphorylase a (EC 2.4.1.1)), was studied with partially purified preparations from rabbit skeletal muscle. Time- and temperature-dependent inactivation and reactivation of phosphohistone phosphatase, as well as phosphorylase phosphatase (EC 3.1.3.17), were observed on pre0incubation of the enzyme(s) with ATP, and subsequent incubation with divalent metal ions (Mg2+, Mn2+, or Co2+) without any change of molecular size. Manganese, however, instantly restored the activity of the ATP-inactivated enzyme, and increased the maximal velocity of the enzyme while decreasing its affinity to phosphorylase a. However, the metal ion inhibited the reactivated enzyme competively with respect to phosphorylase a. It is suggested that phosphoprotein phosphatase(s) is a metalloenzyme, and that ATP results in a conformational change of the enzyme protein in such a way that a metal ion can be easily released due to the chelating effect of ATP, or incorporated (in the presence of excess metal ions) into the enzyme protein.  相似文献   

14.
J Ike  P Sangan  M Gunasekaran 《Microbios》1992,69(279):119-127
The lactate dehydrogenase (LDH) from Nocardia asteroides was purified to homogeneity by ammonium sulphate precipitation, gel filtration on Sephadex G-150 and DEAE-Sepharose column chromatography. The purified enzyme showed a single band in native condition which indicated its homogeneity. SDS-PAGE of the purified enzyme showed the presence of three bands which correspond to molecular weights of 60, 66 and 74 kDa. The pH and temperature optima of the purified enzyme were 9.5 and 50 degrees C, respectively. The metal ions Mn++, Fe++, Co++, Mg++ and Ca++, increased the purified LDH activity. On the other hand, enzyme activity was completely inhibited by CuCl2. Potassium chloride, ammonium sulphate and sodium chloride did not alter the enzyme activity. The purified enzyme exhibited a Km value of 1.6 x 10(-5) M for pyruvate.  相似文献   

15.
Malate synthase (EC 4.1.3.2), the key enzyme of the glyoxylate cycle, was purified to a homogeneous protein from the wood-rotting basidiomycete Fomitopsis palustris grown on glucose. The purified enzyme, with a molecular mass of 520 kDa, was found to consist of eight 65-kDa subunits, and to have Km of 45 and 2.2 microM for glyoxylate and acetyl-CoA, respectively. The enzyme activity was competitively inhibited by oxalate (K1, 8.5 microM) and glycolate (Ki, 17 microM), and uncompetitively by coenzyme A (Ki, 100 microM). The potent inhibition of the activity by p-chloromercuribenzoate suggests that the enzyme has a sulfhydryl group at the active center. However, the enzyme was inhibited moderately by adenine nucleotides and weakly by some of the metabolic intermediates of glycolysis and tricarboxylic acid cycle. The enzyme was completely inactive in the absence of metal ions and was maximally activated by Mg2+ (Km, 0.4 microM), which also served to significantly prevent enzyme inactivation during storage.  相似文献   

16.
Hydroxycinnamic acid ester hydrolase from the wheat bran culture medium of Aspergillus japonicus was purified 255-fold by ammonium sulfate fractionation, DEAE-Sephadex treatment and column chromatographies on DEAE-Sephadex, CM-Sephadex and various other Sephadexes. The purified enzyme was free from tannase and found to be homogeneous on polyacrylamide disc gel electrophoresis. Its molecular weight was estimated to be 150,000 by gel filtration and 142,000 by SDS-gel electrophoresis. The isoelectric point of the enzyme was pH 4.80. As to its amino acid composition, aspartic acid and glycine were abundant. The optimum pH and temperature for the enzyme reaction were, respectively, 6.5 and 55°C when chlorogenic acid was used as a substrate. The enzyme was stable between pH 3.0 to 7.5 and inactivated completely by heat treatment at 70°C for 10 min.

All metal ions examined did not activate the enzyme, while Hg++ reduced its activity. The enzyme was markedly inhibited by diisopropylfluorophosphate and an oxidizing reagent, iodine, although it was not affected so much by metal chelating or reducing reagents. The purified enzyme hydrolyzed not only esters of hydroxycinnamic acids such as chlorogenic acid, caffeoyl tartaric acid and p-coumaroyl tartaric acid, but also ethyl and benzyl esters of cinnamic acid. However, the enzyme did not act on ethyl esters of crotonic acid and acrylic acid or esters of hydroxybenzoic acids.  相似文献   

17.
NADP+-linked isocitrate dehydrogenase (E.C.1.1.1.42) has been purified to homogeneity from germinating pea seeds. The enzyme is a tetrameric protein (mol wt, about 146,000) made up of apparently identical monomers (subunit mol wt, about 36,000). Thermal inactivation of purified enzyme at 45 degrees and 50 degrees C shows simple first order kinetics. The enzyme shows optimum activity at pH range 7.5-8. Effect of substrate [S] on enzyme activity at different pH (6.5-8) suggests that the proton behaves formally as an "uncompetitive inhibitor". A basic group of the enzyme (site) is protonated in this pH range in the presence of substrate only, with a pKa equal to 6.78. On successive dialysis against EDTA and phosphate buffer, pH 7.8 at 0 degrees C, yields an enzymatically inactive protein showing kinetics of thermal inactivation identical to the untreated (native) enzyme. Maximum enzyme activity is observed in presence of Mn2+ and Mg2+ ions (3.75 mM). Addition of Zn2+, Cd2+, Co2+ and Ca2+ ions brings about partial recovery. Other metal ions Fe2+, Cu2+ and Ni2+ are ineffective.  相似文献   

18.
大凉疣螈碱性磷酸酶的分离纯化及部分性质   总被引:6,自引:0,他引:6  
碱性磷酸酶 (alkaline phosphatase,AKP)在生物界的分布很广 ,动物、植物、微生物中均广泛存在 .提纯的 AKP常被应用于对核酸等的研究 ,是基因工程常用的工具酶 ,也是酶标免疫测定技术的常用工具酶之一 .人类血清中的 AKP在不同疾病状态下有显著变化 ,临床上将血清 AKP变化指标作为诊断某些疾病的依据 .对于细菌和高等动物的 AKP已有广泛的研究 ,但国内外对两栖爬行类动物 AKP的研究报导却很少 ,仅有蛇毒中 AKP的研究报导 [1,2 ] .本文对大凉疣螈皮肤的 AKP进行了分离纯化 ,并对其部分性质进行了初步研究 .1 材料和方法1 .1 材…  相似文献   

19.
Flavobacterium rigense strain PR2, a broad-spectrum mercury-resistant bacterium abundantly present in soil exhibited multiple metal resistance properties. Mercury resistance was due to the sequential action of two mercury-detoxicating enzymes, organomercurial lyase and mercuric reductase. The levels of these enzyme activities were determined using different mercury compounds as inducers and substrates. Mercuric reductase was partially purified from the bacterium and the physicochemical properties of the enzyme were studied. The effect of several enzyme inhibitors and heavy metal ions on the enzyme activity was also studied.  相似文献   

20.
A comparative study was made of the metal ion requirement of rat liver mitochondrial phospholipase A2 in purified and membrane-associated forms. Membrane-bound enzyme was assayed using either exogenous or endogenous phosphatidylethanolamine. Although several divalent metal ions caused increased activity of the membrane-associated enzyme, only Ca2+ and Sr2+ activated the purified phospholipase A2. The activity in the presence of Sr2+ amounted to about 25% of that found with Ca2+. When the Ca2+ concentration was varied two activity plateaus were observed. The corresponding dissociation constants varied from 6 to 20 microM Ca2+ and from 1.4 to 12 mM Ca2+ for the high- and low-affinity binding sites, respectively, depending on the assay conditions and whether purified or membrane-bound enzyme was used. A kSr2+ of 60 microM was found for the high-affinity binding site. The effect of calmodulin and its antagonist trifluoperazine was also investigated using purified and membrane-associated enzyme. When membrane-bound enzyme was measured with exogenous phosphatidylethanolamine, small stimulations by calmodulin were found. However, these were not believed to indicate a specific role for calmodulin in the Ca2+ dependency of the phospholipase A2, since trifluoperazine did not lower the activity of the membrane-bound enzyme to levels below those found in the presence of Ca2+ alone. Membrane-bound enzyme in its action toward endogenous phosphatidylethanolamine was neither stimulated by calmodulin nor inhibited by trifluoperazine. Purified enzyme was also not stimulated by calmodulin, while trifluoperazine caused small stimulations, presumably due to interactions at the substrate level. These results indicate that calmodulin involvement in phospholipase A2 activation should not be generalized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号